Selected Papers

E. Zuccoli, E.J. Brambley, and D. Barkley,
Free Surface Waves for a LambOseen Vortex Flow,
J. Fluid Mech. (under review).

S.Gomé:, L.S. Tuckerman, and D. Barkley,
Patterns in transitional shear turbulence. Part 1. Energy transfer and meanflow interaction,
J. Fluid Mech. 964, A16 (2023).
doi.org/10.1017/jfm.2023.288.

S.Gomé:, L.S. Tuckerman, and D. Barkley,
Patterns in transitional shear turbulence. Part 2. Emergence and optimal wavelength,
J. Fluid Mech. 964, A17 (2023).
doi.org/10.1017/jfm.2023.289.

M. Avila, D. Barkley, and B. Hof
Transition to Turbulence in Pipe Flow,
Annu. Rev. Fluid Mech.
55, 575 (2023)

S.Gomé:, L.S. Tuckerman, and D. Barkley,
Extreme events in transitional turbulence,
Phil. Trans. R. Soc. A 380, 20210036 (2022).
https://doi.org/10.1098/rsta.2021.0036,
(C) 2022 The Author(s) Published by the Royal Society

D. Barkley,
A fluid mechanic's analysis of the teacup singularity,
Proc. R. Soc. A. 476, 20200348 (2020).

S.Gomé:, L.S. Tuckerman, and D. Barkley,
Statistical transition to turbulence in plane channel flow,
Phys. Rev. Fluids 5, 083905 (2020).
doi.org/10.1103/PhysRevFluids.5.083905,
(C) 2020 American Physical Society

L.S. Tuckerman, M. Chantry, and D. Barkley,
Patterns in WallBounded Shear Flows,
Annu. Rev. Fluid Mec. 52, 343  367 (2020).
(C) 2020 Annual Reviews. A copy may be obtained from Annual Reviews
here

D. Barkley,
Taming turbulent fronts by bending pipes,
J. Fluid Mech. 872, 14 (2019).
doi.org/10.1017/jfm.2019.340,
(C) 2019 Cambridge University Press.

T. Dessup, L.S. Tuckerman, J.E. Wesfreid, D. Barkley, A.P. Willis,
Selfsustaining process in TaylorCouette flow,
Phys. Rev. Fluids 3, 123902 (2018).
doi.org/10.1103/PhysRevFluids.3.123902,
(C) 2018 American Physical Society

J. Langham, H. Bense, and D. Barkley,
Modeling shape selection of buckled dielectric elastomers,
J. Appl. Phys. 123, 065102 (2018).
doi:10.1063/1.5012848,
(C) 2018 AIP Publishing.

M. Chantry, L.S. Tuckerman and D. Barkley,
Universal continuous transition to turbulence in a planar shear flow,
J. Fluid Mech. 824, R1 (2017).
doi:10.1017/jfm.2017.405,
(C) 2017 Cambridge University Press.

B. Song, D. Barkley, B. Hof, and M. Avila,
Speed and structure of turbulent fronts in pipe flow,
J. Fluid Mech. 813, 10451059 (2017).
doi:10.1017/jfm.2017.14,
(C) 2017 Cambridge University Press.

D. Barkley,
Theoretical perspective on the route to turbulence in a pipe,
J. Fluid Mech. 803, P1 (2016).
doi:10.1017/jfm.2016.465,
(C) 2016 Cambridge University Press.

M. Chantry, L.S. Tuckerman and D. Barkley,
Turbulentlaminar patterns in shear flows without walls,
J. Fluid Mech. 791, R8 (2016).
doi:10.1017/jfm.2016.92,
(C) 2016 Cambridge University Press.
See also P. Manneville
Turbulent patterns made simple?.

D. Barkley, B. Song, V. Mukund, G. Lemoult, M. Avila, and B. Hof,
The rise of fully turbulent flow,
Nature 526, 550553 (2015).
See also M.D. Graham
Fluid dynamics: Turbulence spreads like wildfire.

S.E. Turton, L.S. Tuckerman, and D. Barkley,
Prediction of frequencies in thermosolutal convection from mean flows,
Phys. Rev. E 91, 043009 (2015).
pdf

J. Langham, I.V. Biktasheva, and D. Barkley,
Asymptotic dynamics of reflecting spiral waves,
Phys. Rev. E 90, 062902 (2014).
pdf

J. Langham and D. Barkley,
Nonspecular reflections in a macroscopic system with waveparticle duality: Spiral waves in bounded media,
Chaos 23, 013134 (2013).
pdf

D. Barkley,
Pipe flow as an excitable medium,
Rev. Cub. Fis. 29, 1E27 (2012).

D. Barkley,
Modeling turbulent pipe flow (24MB),
Slides from talk given July 19th 2011 at BIFD 2011, Barcelona.

D. Barkley,
Modeling the transition to turbulence in shear flows,
J. Phys.: Conf. Ser. 318, 032001 (2011).

D. Barkley,
Simplifying the complexity of pipe flow,
Phys. Rev. E 84, 016309 (2011).
pdf

K. Avila, D. Moxey, A. de Lozar, M. Avila, D. Barkley, Bjorn Hof,
The Onset of Turbulence in Pipe Flow,
Science 333, 192196 (2011).
pdf,
SOM.

L. S. Tuckerman and D. Barkley
Patterns and dynamics in transitional plane Couette flow,
Phys. Fluids 23, 041301 (2011).

C. Marais, R. GodoyDiana, D. Barkley, and J. E. Wesfreid,
Convective instability in inhomogeneous media: Impulse response in the
subcritical cylinder wake,
Phys. Fluids 23, 014104 (2011).

A.J. Foulkes, D. Barkley, V.N. Biktashev, I.V. Biktasheva,
Alternative Stable Scroll Waves
and Conversion of Autowave Turbulence,
Chaos 20, 043136 (2010).

C.D. Cantwell and D. Barkley,
Computational study of subcritical response in flow past a circular
cylinder,
Phys. Rev. E 82, 026315 (2010).

I.V. Biktasheva, D. Barkley, V.N. Biktashev, A.J. Foulkes,
Computation of the Drift Velocity
of Spiral Waves using Response Functions,
Phys. Rev. E 81, 066202 (2010).

D. Moxey and D. Barkley,
Distinct largescale turbulentlaminar states in transitional pipe flow
,
PNAS 107, 80918096 (2010).

L. Bordja, L.S. Tuckerman, L. Martin Witkowski, M.C. Navarro, D. Barkley,
R. Bessiah,
Influence of counterrotating von Karman flow on cylindrical
RayleighBenard convection,
Phys. Rev. E 81, 036322 (2010).
Version corrected on page 8 to incorporate Erratum:
Phys. Rev. E 81, 069903 (2010) .

C.D. Cantwell, D. Barkley, H.M. Blackburn,
Transient growth analysis of flow through a sudden expansion in a circular
pipe,
Phys. Fluids 22, 034101 (2010).

V.N. Biktashev, D. Barkley, I.V. Biktasheva,
Orbital motion of spiral waves in excitable media,
Phys. Rev. Lett. 104, 058302 (2010).

I.V. Biktasheva, D. Barkley, V.N. Biktashev, G.V. Bordyugov, and A.J. Foulkes,
Computation of the response functions of spiral waves in active media,
Phys. Rev. E 79, 056702 (2009).

H.M. Blackburn, S.J. Sherwin, and D. Barkley,
Convective instability and transient growth in steady and pulsatile
stenotic flows,
J. Fluid Mech. 607, 267277 (2008).

D. Barkley, H.M. Blackburn, and S.J. Sherwin,
Direct optimal growth analysis for timesteppers,
Int. J. Numer. Meth. Fluids 57, 14351458 (2008).

H.M. Blackburn, D. Barkley, and S.J. Sherwin,
Convective instability and transient growth in flow over a
backwardfacing step,
J. Fluid Mech. 603, 271304 (2008).

D. Barkley,
Barkley Model,
Scholarpedia  The free peer reviewed encyclopedia,
3(11):1877 (2008).

D. Barkley and L.S. Tuckerman,
Mean flow of turbulentlaminar patterns in plane Couette flow,
J. Fluid Mech. 576, 109137 (2007).

D. Barkley,
Linear analysis of the cylinder wake mean flow,
Europhys. Lett. 75, 750  756 (2006).
 D. Barkley, I.G. Kevrekidis and A.M. Stuart,
The Moment Map: Nonlinear dynamics of density evolution via a few
moments,
SIADS 5, 403  434 (2006).
 P. Wheeler and D. Barkley,
Computation of Spiral Spectra,
SIADS 5, 157  177 (2006).
 D. Barkley and L.S. Tuckerman,
Computational study of turbulentlaminar patterns in Couette flow,
Phys. Rev. Lett. 94, 014502 (2005).
 D. Barkley,
Confined threedimensional stability analysis of the cylinder wake,
Phys. Rev. E. 71, 017301 (2005).
 D. Barkley and L.S. Tuckerman,
Turbulentlaminar patterns in plane Couette flow,
BibTex,
Presented at: Symposium on NonUniqueness of Solutions to the NavierStokes
Equations and Their Connection with LaminarTransition, AUG 0911,
2004 Bristol, ENGLAND.
Citation Source: IUTAM Symposium on LaminarTurbulent
Transition and Finite Amplitude Solutions, Book Series: FLUID
MECHANICS AND ITS APPLICATIONS, 77, 107127 (2005)
 L.S. Tuckerman and D. Barkley,
Symmetry breaking and chaos in perturbed plane Couette flow ,
Theoretical and Computational Fluid Dynamics 16 9197 (2002).
 D. Barkley, M.G.M. Gomes, and R.D. Henderson,
Threedimensional instability in flow over a backwardfacing step ,
J. Fluid Mech. 473, 167190 (2002).
 D. Margerit and D. Barkley,
Cookbook asymptotics for spiral and scroll waves in excitable media ,
Chaos 12, 636649 (2002).
 D. Margerit and D. Barkley,
Largeexcitability asymptotics for scroll waves in threedimensional
excitable media,
Phys. Rev. E 66, 036214 (2002).
 D. Margerit and D. Barkley, Selection
of twisted scroll waves in threedimensional excitable media ,
Phys. Rev. Lett. 86, 175178 (2001).
 R.M Mantel and D. Barkley,
Parametric forcing of scrollwave patterns in threedimensional
excitable media , Physica D 149, 107122 (2001).
 G. Duckett and D. Barkley,
Modeling the dynamics of cardiac action potentials , Phys.
Rev. Lett. 85, 884887 (2000).
 D. Barkley, L. S. Tuckerman, and M. Golubitsky,
Bifurcation theory for
threedimensional flow in the wake of a circular cylinder ,
Phys. Rev. E 61, 52475252 (2000).
 L.S. Tuckerman and D. Barkley,
Bifurcation analysis for Timesteppers,
BibTex,
in Numerical
Methods for Bifurcation Problems and LargeScale Dynamical Systems
ed. by E. Doedel and L.S. Tuckerman, IMA Volumes in Mathematics
and its Applications , vol. 119, pp. 543466 (Springer, New York,
2000).
Presented at: Workshop on Numerical Methods for LargeScale
Dynamical Systems, SEP 29OCT 03, 1997 MINNEAPOLIS, MN
 D. Barkley and L.S. Tuckerman,
Stability analysis of perturbed plane Couette flow , Phys.
Fluids 11 11871195 (1999).
 M.Dowle, R.M. Mantel and D. Barkley,
Fast simulations of waves in threedimensional excitable media ,
Int. J. Bif. Chaos 7(11) 25292546 (1997).
 D. Barkley and L.S. Tuckerman,
Stokes preconditioning for the inverse
power method,
in 15th International Conference on Numerical Methods in Fluid
Dynamics ed. by J.C. Chattot (Springer, New York, 1997).
 R.M. Mantel and D. Barkley,
Periodic forcing of spiral waves in excitable media,
Phys. Rev. E 54, 47914802 (1996).
 D. Barkley and R.D. Henderson,
Floquet stability analysis of the periodic wake of a circular
cylinder,
J. Fluid Mech. 322, 215241 (1996).
 R.D. Henderson and D. Barkley,
Secondary instability in the wake of a circular cylinder ,
Phys. Fluids 8, 16831685 (1996).
 D. Barkley,
Spiral Meandering , in Chemical Waves and Patterns, edited by
R. Kapral and K. Showalter, (Kluwer,
1995) p. 163. This is a difficulttoobtain
review of spiral meandering
 M.F. Schatz, D. Barkley, and H.L. Swinney,
Instabilities in spatially periodic channel flow, Phys.
Fluids 7, 344358 (1995).
 D. Barkley and I.G. Kevrekidis,
A dynamical systems approach to spiralwave dynamics, Chaos 4,
453460 (1994).
 D. Barkley,
Euclidean symmetry and the dynamics of rotating spiral waves ,
Phys. Rev. Lett. 72, 164167 (1994).
 M. Kness, L.S. Tuckerman, and D. Barkley,
Symmetrybreaking bifurcations in onedimensional excitable media ,
Phys. Rev. A 46, 50545062 (1992).
 D. Barkley,
Linear stability analysis of spiral waves in excitable media ,
Phys. Rev. Lett. 68, 20902093 (1992).
 D. Barkley,
A model for fast computer simulation of waves in excitable media ,
Physica 49D, 6170 (1991).
 L.S. Tuckerman and D. Barkley,
Bifurcation analysis of the Eckhaus instability ,
Physica 46D, 5786 (1990).
 D. Barkley, Theory and predictions for
finiteamplitude waves in twodimensional plane Poiseuille flow,
Phys. Fluids A 2, 955970
(1990).
 D. Lindberg, J.S. Turner, and D. Barkley, Chaos in the
ShowalterNoyesBarEli model of the BelousovZhabotinskii reaction,
J. Chem. Phys. 92, 32383239
(1990).
 D. Barkley, M. Kness, and L. S. Tuckerman,
Spiralwave dynamics in a simple model of excitable media: The
transition
from simple to compound rotation ,
Phys. Rev. A 42, 24892492 (1990).
 D. Barkley and A. Cumming, Thermodynamics of the quasiperiodic
parameter set at the borderline of chaos: experimental results,
Phys. Rev. Lett. 64, 327331
(1990).
 D. Barkley and L.S. Tuckerman, Traveling
waves in axisymmetric convection:
the role of sidewall conductivity, Physica D 37,
288294 (1989).
 D. Barkley, Nearcritical behavior for oneparameter
families of circle maps, Phys. Lett. A 129, 219222 (1988).
 L.S. Tuckerman and D. Barkley,
Global bifurcation to travelling waves in axisymmetric convection,
Phys. Rev. Lett. 61, 408411 (1988).
 D. Barkley, Slow manifolds and mixedmode oscillations
in the BelousovZhabotinskii reaction, J. Chem. Phys. 89, 55475559 (1988).
 D. Barkley, J. Ringland, and J.S. Turner, Observations
of a torus in a model of the BelousovZhabotinskii reaction,
J. Chem. Phys. 87, 38123820
(1987).