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A spatially confined stability analysis is reported for the cylinder wake at Reynolds numbers 190 and 260.
The two three-dimensional instabilities at these Reynolds numbers are shown to be driven by the flow just
behind the cylinder.
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Consider the von Kármán vortex street generated by flow
past an infinitely long circular cylinder. This flow is time
periodic and two dimensional for Reynolds numbers between
approximately 47 and 189[1–4]. (The Reynolds number is
Re;U`d/n, whereU` is the fluid velocity far from the cyl-
inder,d is the cylinder diameter, andn is the kinematic vis-
cosity.) At Reynolds number 189 the two-dimensional(2D)
vortex street becomes three-dimensionally unstable[3–7]. A
numerical stability analysis of the flow up to Reynolds num-
ber 300 has determined two separate bands of linearly un-
stable modes[5]. The first appears at Re=189 with a span-
wise wavelength of 4 cylinder diameters and the second
appears at Re=260 with a spanwise wavelength of 0.8 diam-
eters. These linear instabilities are related to three-
dimensional(3D) shedding modes known as modeA and
modeB, first observed experimentally by Williamson[3].

In this paper I revisit the stability analysis of the vortex
street. I show that small regions of the full flow just behind
the cylinder are responsible for the 3D linear instabilities
despite the fact that the actual linear modes extend many
cylinder diameters downstream of the cylinder. This is im-
portant for two separate reasons. The first is that this limits
the regions that should be analyzed either to clarify instabil-
ity mechanisms or to suppress the instabilities if so desired.
The second reason is that the stability analysis of small flow
regions is computationally very efficient compared with a
stability analysis of the full flow field. Thus this approach
provides a method for quickly obtaining approximate stabil-
ity information about a complex flow.

The computational approach is described fully elsewhere
[5]. I summarize briefly the main points with focus on the
important aspects for the current work. First, direct simula-
tions of the incompressible Navier-Stokes equations are used
to obtain 2D, time-periodic wake flows:Usx,y,t+Td
=Usx,y,td whereT is the wake period. A spectral-element
method is employed on a computational domain shown in
Fig. 1. The length scale is the cylinder diameter. The size of
the computational domain depends on the Reynolds number
and the accuracy required[5]. The domain shown gives suf-
ficiently accurate results for the purposes of this work.

The boundary conditions imposed for the computation of
U are as follows. On the top, bottom, and left boundaries
uniform flow is imposedU=sU ,Vd=s1,0d. At the right edge

a (Neumann) outflow boundary condition for the velocity
and pressureP is used

]U/]x = 0, ]V/]x = 0, P = 0. s1d

No-slip conditions are imposed at the cylinder surface.
The next step is a Floquet stability analysis of 3D distur-

bances to the 2D wake. This analysis is based on the evolu-
tion of infinitesimal 3D perturbationsu8sx,y,z,td of the 2D
flow Usx,y,td. The equation for such a perturbation is ob-
tained by linearizing the Navier-Stokes equations aboutU

]u8

]t
= − sU · = du8 − su8 · = dU −

1

r
= p8 +

1

Re
=2u8,

s2d

where p8 is the perturbation to the pressure that enforces
= ·u8=0.

In this Brief Report I shall primarily consider Eq.(2)
posed on subdomains such as that illustrated in Fig. 1. These
subdomains are characterized by their inflow and outflow
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FIG. 1. Spectral-element computational mesh. The base flow is
computed on the full domain and stability computations are per-
formed on the full domain and on a variety of subdomains. The
subdomain outlined in bold and shown as an enlargement has in-
flow length Li =1.5, outflow lengthLo=4, and cross-stream height
Ly=1.5.
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lengthsLi andLo, measured with respect to the cylinder cen-
ter, and their cross-flow range −LyøyøLy. The base flowU
appearing in Eq.(2) is obtained by restricting the base flow
from the full domain to the appropriate subdomain.

Boundary conditions onu8 are required by Eq.(2). Con-
sider the standard case in whichu8 is computed on the same
domain asU. Then the requirement thatU+u8 satisfies the
same boundary conditions asU gives homogeneous bound-
ary conditions onu8: u8=s0,0,0d on all domain boundaries
except the outflow boundary whereu8 satisfies the analogy
of Eq. (1). One can view these boundary conditions as the
requirement that the perturbation be zero at the inflow and
lateral boundaries of the domain but that perturbations can
advect out of the domain. Based on this reasoning we impose
these homogeneous boundary conditions when computingu8
on subdomains. We are interested in examining perturbations
u8 that are zero on all boundaries of the subdomain except
the outflow boundary. Perturbations are allowed to advect
out of the subdomain.

From the linearized equations the spectrum of Floquet
multipliers m and corresponding Floquet modesũ can be
found [5]. Exponentially growing perturbations correspond
to multipliers outside the unit circle in the complex plane
sumu.1d. Because the geometry is homogeneous in the span-
wise direction, Floquet modes decouple in spanwise wave
numberb. The Floquet multipliers are thus computed as a
function of b on a number of subdomains for Re=190 and
Re=260, just above the critical Reynolds numbers for the 3D
instabilities.

Figure 2 summarizes the study in terms of multiplier
spectra while Figs. 3 and 4 shows representative Floquet
modes. A large number of subdomains have been studied but
only representative cases are shown near the minimum di-
mensions necessary to capture the 3D instabilities.

Figure 2 primarily demonstrates the effect of outflow
length Lo on the Floquet multiplier spectrum. The inflow
length and cross-stream height are fixed at minimal values of
Li =0 andLy=1.5. One sees thatLo=3 is sufficient to capture
the destabilizing Floquet mode. IncreasingLo further has al-
most no effect. For Re=190, decreasingLo to 2.25 causes a

substantial change to the spectrum—the subdomain is evi-
dently too small to capture all the relevant flow features that
drive the instability. In the case of Re=260, decreasingLo to
2.25 causes only a small change to the spectrum and the
subdomain is essentially still large enough to capture rel-
evant flow features. Decreasing the outflow length toLo
=1.5 causes the spectrum in both cases to deviate wildly
from the correct behavior(at Re=260 the multipliers become
complex with large magnitude and cannot be plotted on the
scale of Fig. 2). Figs. 3 and 4 show just how well the Floquet
modes are captured by the subdomain computations even
though the Floquet mode on the full domain extends far
downstream of the cylinder[5].

Increasing the inflow lengthLi has some effect on the
spectrum of multipliers in the case of Re=190. However, the

FIG. 2. Summary of Floquet multipliers at Re=190 and Re
=260 (as labeled) for b near the critical value in each case. Solid
curves are from computations on the full domain. Points are from
subdomains withLi =0, Ly=1.5, and Lo=3 (squares), Lo=2.25
(crosses), andLo=1.5 (dots). The multipliers for Re=260,Lo=1.5
are off the scale of the figure.

FIG. 3. Floquet modes at Re=190 withb=1.6. The main figure
shows(a portion of) the mode computed on the full domain. Insets
show modes computed on the subdomains indicated.(The inflow
boundaryLi =0 and the lateral boundariesLy=1.5 are the same for
all subdomains.) All modes are plotted as spanwise vorticity con-
tours at the same fixed time. The spanwise vorticity contours ±0.4
of the base flow are also plotted.

FIG. 4. Floquet modes at Re=260 withb=7.7 using the same
conventions as Fig. 3.
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effect is very small at the critical wave number where the
multiplier branch has largest magnitude. Increasing the in-
flow length has almost no effect in the case Re=260. Increas-
ing the cross-stream height has very little effect in either
case. It is possible, in fact, that the cross-stream height could
be reduced slightly from that used here without compromis-
ing the accuracy of the multipliers.

It is reasonable to conclude that the physical region re-
sponsible for the instability is localized within the subdo-
main in those cases where the Floquet multipliers and Flo-
quet modes from subdomains are close to those from the full
domain. This localization of the instability is similar to the
transition from steady flow to vortex shedding that takes
place at the primary wake instability. In that case there is a
local, absolutely unstable region extending approximately
three to four diameters downstream[8,9], very similar to the
scales observed here. In fact the current computational analy-
sis is similar in spirit to that of Hannemann and Oertel[8]
and can be thought of as situated between the local analysis

of a parallel wake profile and the global analysis previously
reported for the secondary instability to three dimensionality
[5].

Finally, it is worth considering the stability of the down-
stream portion of the flow. In this case the base flow is pro-
jected onto the subdomain with 2.25øxø25 and −4øy
ø4. At both Re=190 and Re=260 the flow in this down-
stream region is found to be very stable. The maximum
modulus of the Floquet multipliers areumu.0.28 at Re
=190,b=1.6 andumu.0.19 at Re=260,b=7.5.

In this Brief Report I have shown how a local Floquet
stability analysis of small regions of the wake just behind a
cylinder are sufficient to capture both 3D instabilities ob-
served in wake transition. The specific results are of interest
for future attempts to understand better the physical mecha-
nisms of 3D transition[7,10–13] because the results set lim-
its to the regions that could drive the instabilities. The gen-
eral method is of interest for future computational studies of
flow instabilities.
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