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Confined three-dimensional stability analysis of the cylinder wake
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A spatially confined stability analysis is reported for the cylinder wake at Reynolds numbers 190 and 260.
The two three-dimensional instabilities at these Reynolds numbers are shown to be driven by the flow just
behind the cylinder.
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Consider the von Karman vortex street generated by flova (Neumann outflow boundary condition for the velocity
past an infinitely long circular cylinder. This flow is time and pressur® is used
periodic and two dimensional for Reynolds numbers between
approximately 47 and 18f1—4]. (The Reynolds number is Mlox=0, NVIx=0, P=0. (1)
Re=U..d/», whereU.,. is the fluid velocity far from the cyl-  No_g|ip conditions are imposed at the cylinder surface.
mdgr,d is the cylinder diameter, andis the klnemgtlc VIS- The next step is a Floquet stability analysis of 3D distur-
cosity) At Reynolds number 189 the_ two-dimensioniab) bances to the 2D wake. This analysis is based on the evolu-
vortex street becomes three-dimensionally unstg®@]. A 5y of infinitesimal 3D perturbationg’ (x,y,z,t) of the 2D
numerical stability analysis of the flow up to Reynolds num-g U(x,y,t). The equation for such a perturbation is ob-

ber 300 has determined two separate bands of linearly un-. . . . .
stable modeg5]. The first appears at Re=189 with a Spanﬂamed by linearizing the Navier-Stokes equations akéut

wise wavelength of 4 cylinder diameters and the second gu’ . , 1, 1.,

appears at Re=260 with a spanwise wavelength of 0.8 diam- ~,~ =~ (U-V)u' =" V)u- P Vp'+ R_ev u,

eters. These linear instabilities are related to three-

dimensional(3D) shedding modes known as modeand (2)

modeB, first observed experimentally by Williamsg8]. where p’ is the perturbation to the pressure that enforces
In this paper | revisit the stability analysis of the vortex y.,"=0.

street. | show that small regions of the full flow just behind | this Brief Report I shall primarily consider Eq2)

the cylinder are responsible for the 3D linear instabilitiesposed on subdomains such as that illustrated in Fig. 1. These

despite the fact that the actual linear modes extend many,phdomains are characterized by their inflow and outflow
cylinder diameters downstream of the cylinder. This is im-

portant for two separate reasons. The first is that this limits g
the regions that should be analyzed either to clarify instabil-
ity mechanisms or to suppress the instabilities if so desired.
The second reason is that the stability analysis of small flow
regions is computationally very efficient compared with a
stability analysis of the full flow field. Thus this approach
provides a method for quickly obtaining approximate stabil-
ity information about a complex flow.

The computational approach is described fully elsewhere
[5]. | summarize briefly the main points with focus on the 8.3 25
important aspects for the current work. First, direct simula-
tions of the incompressible Navier-Stokes equations are used
to obtain 2D, time-periodic wake flowsU(x,y,t+T)
=U(x,y,t) whereT is the wake period. A spectral-element
method is employed on a computational domain shown in
Fig. 1. The length scale is the cylinder diameter. The size of
the computational domain depends on the Reynolds number
and the accuracy requird8]. The domain shown gives suf-
ficiently accurate results for the purposes of this work.

U ;—rhee akl):ijcr)]Icljc?V%.C%nndIttlhoen?()lpr)r,]pt?ost(tagn]:?rat:g g‘tmggltﬁtéc;?i:; FIG. 1. Spectral-element computational mesh. The base flow is

. o ~ N . ctomputed on the full domain and stability computations are per-
uniform flow is imposedJ=(U,V)=(1,0). At the right edge formed on the full domain and on a variety of subdomains. The

subdomain outlined in bold and shown as an enlargement has in-
flow lengthL;=1.5, outflow lengthL,=4, and cross-stream height
*Electronic address: barkley@maths.warwick.ac.uk L,=1.5.
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FIG. 2. Summary of Floquet multipliers at Re=190 and Re -2

=260 (as labelegifor B near the critical value in each case. Solid
curves are from computations on the full domain. Points are from
subdomains withL;=0, L,=1.5, andL,=3 (squarey L,=2.25
(crossey andL,=1.5 (dot9. The multipliers for Re=260l_,=1.5 FIG. 3. Floquet modes at Re=190 wij+1.6. The main figure
are off the scale of the figure. shows(a portion oj the mode computed on the full domain. Insets
show modes computed on the subdomains indicafBide inflow
lengthsL,; andL,, measured with respect to the cylinder cen-poundaryL;=0 and the lateral boundariés=1.5 are the same for
ter, and their cross-flow rangd.y=<y=<L,. The base flowJ all subdomaing.All modes are plotted as spanwise vorticity con-

appearing in Eq(2) is obtained by restricting the base flow tours at the same fixed time. The spanwise vorticity contours +0.4
from the full domain to the appropriate subdomain. of the base flow are also plotted.

Boundary conditions on’ are required by Eq2). Con-
sider the standard case in whighis computed on the same g pstantial change to the spectrum—the subdomain is evi-

domain asU. Then the requirement that+u’ satisfies the - jonqy 100 small to capture all the relevant flow features that
same boundary conditions &sgives homogeneous bound- jye'the instability. In the case of Re=260, decreasigtp

ary conditions oru”: u’=(0,0,0 on all domain boundaries 55 causes only a small change to the spectrum and the
except the outflow boundary whete satisfies the analogy  syhdomain is essentially still large enough to capture rel-
of Eq. (1). One can view these boundary conditions as th&yant flow features. Decreasing the outflow lengthLtp
requirement that the perturbation be zero at the inflow and | 5 causes the spectrum in both cases to deviate wildly
lateral boundaries of the domain but that perturbations cagom the correct behavigat Re =260 the multipliers become
advect out of the domain. Based on this reasoning we imposgymplex with large magnitude and cannot be plotted on the
these homogeneous boundary conditions when computing gqgje of Fig. 2 Figs. 3 and 4 show just how well the Floguet
on subdomains. We are interested in examining perturbationg,gges are captured by the subdomain computations even

u’ that are zero on all boundaries of the subdomain exce%ough the Floquet mode on the full domain extends far
the outflow boundary. Perturbations are allowed to adveclownstream of the cylindds).

out of the subdomain. Increasing the inflow lengtt; has some effect on the

From the linearized equations the spectrum of Floquetpectrum of multipliers in the case of Re=190. However, the
multipliers « and corresponding Floquet modascan be

found [5]. Exponentially growing perturbations correspond
to multipliers outside the unit circle in the complex plane
(Ju|>1). Because the geometry is homogeneous in the span-
wise direction, Floquet modes decouple in spanwise wave
numberB. The Floquet multipliers are thus computed as a
function of 8 on a number of subdomains for Re=190 and
Re =260, just above the critical Reynolds numbers for the 3D
instabilities.

Figure 2 summarizes the study in terms of multiplier
spectra while Figs. 3 and 4 shows representative Floquet
modes. A large number of subdomains have been studied but > o
only representative cases are shown near the minimum di-
mensions necessary to capture the 3D instabilities.

Figure 2 primarily demonstrates the effect of outflow
length L, on the Floquet multiplier spectrum. The inflow
length and cross-stream height are fixed at minimal values of
Li=0 andL,=1.5. One sees that,=3 is sufficient to capture
the destabilizing Floquet mode. Increasingfurther has al- FIG. 4. Floguet modes at Re=260 wifh=7.7 using the same
most no effect. For Re=190, decreasingto 2.25 causes a conventions as Fig. 3.
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effect is very small at the critical wave number where theof a parallel wake profile and the global analysis previously
multiplier branch has largest magnitude. Increasing the infeported for the secondary instability to three dimensionality
flow length has almost no effect in the case Re=260. Increag5].
ing the cross-stream height has very little effect in either Finally, it is worth considering the stability of the down-
case. It is possible, in fact, that the cross-stream height coulstream portion of the flow. In this case the base flow is pro-
be reduced slightly from that used here without compromisjected onto the subdomain with 2.2%<25 and -4<y
ing the accuracy of the multipliers. <4. At both Re=190 and Re=260 the flow in this down-
It is reasonable to conclude that the physical region restream region is found to be very stable. The maximum
sponsible for the instability is localized within the subdo- modulus of the Floquet multipliers argi|=0.28 at Re
main in those cases where the Floquet multipliers and Flo=190, 3=1.6 andju|=0.19 at Re=2608=7.5.
quet modes from subdomains are close to those from the full In this Brief Report | have shown how a local Floquet
domain. This localization of the instability is similar to the stability analysis of small regions of the wake just behind a
transition from steady flow to vortex shedding that takescylinder are sufficient to capture both 3D instabilities ob-
place at the primary wake instability. In that case there is @erved in wake transition. The specific results are of interest
local, absolutely unstable region extending approximatelyfor future attempts to understand better the physical mecha-
three to four diameters downstred8)9], very similar to the  nisms of 3D transitiorj7,10-13 because the results set lim-
scales observed here. In fact the current computational analjts to the regions that could drive the instabilities. The gen-
sis is similar in spirit to that of Hannemann and Oef@&  eral method is of interest for future computational studies of
and can be thought of as situated between the local analysikow instabilities.
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