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It has been found by Pugh and Saffman [J. Fluid Mech. 194, 295 (1988)] that in a two-
dimensional channel, the stability of finite-amplitude steady waves to modulated waves can
depend on the boundary conditions imposed on the flow. In particular, near the limit

point in Reynolds number, stability can depend on whether the flux or the mean pressure
gradient is prescribed for the flow. Here a continuous range of intermediate boundary
conditions is defined and studied using bifurcation theory. Based only on previous numerical
solutions to the Navier-Stokes equations at constant mean flux and constant mean

pressure gradient, it is shown that the finite-amplitude steady waves must have a double-zero
eigenvalue at some intermediate boundary condition. From this a unifying picture emerges
for the dynamics near the limit point in Reynolds number and specific predictions are

made for finite-amplitude solutions to the Navier-Stokes equations. These predictions include
the existence of a homoclinic orbit and a degenerate Hopf bifurcation.

I. INTRODUCTION

In this paper we use bifurcation theory to provide in-
sight into the stability of finite-amplitude Tollmien—
Schlichting waves in two-dimensional (2-D) plane Poi-
seuille flow. While three-dimensional (secondary)
instabilities of finite-amplitude waves have received most of
the attention in recent years,"? there are aspects of the 2-D
stability problem that have not yet been completely under-
stood. In particular, it has recently been found>* that, near
the limit point in Reynolds number, the stability of steady
waves can depend on the longitudinal boundary conditions
imposed on the flow. In addition, depending on the bound-
ary conditions, modulated waves may bifurcate from the
steady waves near the limit-point. We seek to explain,
within a bifurcation-theoretic framework, the relationship
between the modulated waves and change of stability at the
limit point of steady waves.

Let us first describe the situation in more detail. Figure
1(a) shows a fixed-wavenumber bifurcation diagram for
longitudinal boundary conditions such that the flux
through the channel is time independent. This bifurcation
diagram is based on the numerical computations of Pugh
and Saffman® and Soibelman,"' but similar diagrams for
steady waves have been obtained by many authors, notably
Zahn et al.’ and Herbert.® For the wavenumber shown, the
parabolic velocity profile is linearly stable for all Reynolds
numbers. There is a branch of 2-D traveling waves that
becomes stable at the “nose” or limit point in Reynolds
number. (As we shall limit our considerations to 2-D phe-
nomena in this paper, all statements of stability implicitly
refer to 2-D stability.) These waves are seen as time inde-
pendent, i.c., steady, in a frame of reference moving with
the wave speed.

The situation is different for boundary conditions such
that the mean pressure gradient is time independent [Fig.

1(b)]. In this case, the steady waves do not stabilize at the
limit point but become unstable to second a eigenmode,
i.., a second eigenvalue becomes positive at the limit point.
The steady waves stabilize at a Hopf bifurcation on the
upper branch and issuing from this Hopf bifurcation is a
branch of modulated waves. The modulated waves are
analogous to the modulated waves in Couette-Taylor
flow;’ they are seen as quasiperiodic in laboratory-fixed
coordinates and as periodic in a frame uniformly translat-
ing with the appropriate speed.

Soibelman* has recently numerically computed the
branch of modulated waves and the qualitative character is
shown in Fig. 1(b). The branch first decreases in Reynolds
number, and presumably the modulated waves are stable.
Soibelman did not obtain the stability of the modulated
waves because of the computational expense involved; the
stability indicated in the figure is conjecture based on the
theory of the Hopf bifurcation.®® The modulated-wave
branch itself has a limit point, where the modulated waves
presumably become unstable. The fate of the modulated
waves with increasing Reynolds number is not resolved by
Soibelman’s computations. Because of the number of
modes required to obtain quantitative results at the Hopf
bifurcation and at the limit point for the modulated waves,
the Reynolds numbers for these bifurcations are not known
precisely; however, Rep~3800 is probably a good approx-
imation to the Reynolds number for the Hopf bifurcation.
(The notation for the Reynolds numbers is discussed in
Sec. 11.) Hopf bifurcations of the steady-wave branch at
higher Reynolds numbers have also been found**'® and
studied elsewhere.!® We shall not consider these bifurca-
tions here.

Our approach to understanding the behavior depicted
in Fig. 1 is to introduce an additional parameter, U, which
interpolates between the constant-flux and constant-mean

*Present address: Program in Applied and Computational Mathematics, 202 Fine Hall, Princeton University, Princeton, New Jersey 08544.

955 Phys. Fluids A 2 (6), June 1990

0899-8213/90/060955-16$02.00

© 1990 American Institute of Physics 955

Downloaded 13 Sep 2004 to 132.239.20.18. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



(a)

N~

Steady Waves
N
P
Parabolic T~ -
Profile - ==
[«
(b) 0°° Modulated

Q 4—_—5‘ Waves

FIG. 1. Schematic bifurcation diagrams based on numerical studies of the
Navier-Stokes equations in Refs. 3 and 4. The horizontal coordinate is
Reynolds number, the vertical coordinate is a norm measuring the am-
plitude of states. The streamwise wavenumber is a = 1.1, nondimension-
alized by the channel half-width; for this wavenumber the parabolic ve-
locity profile is linearly stable for all Reynolds numbers. Diagrams are
shown for two different longitudinal boundary conditions: (a) boundary
conditions such that the flux through the channel is time independent.
The solid curve denotes stable steady waves, the dashed curve denotes
unstable steady waves with one positive eigenvalue. The Reynoids number
of the limit point is Rep=~2600. (b) Boundary conditions such that the
mean pressure gradient is time independent. The notation is the same as
in (a) with the addition that short dashed lines denotes steady waves with
two positive eigenvalues and circles denote the branch of modulated
waves which bifurcates from the steady waves. Solid circles denote stable
modulated waves; open circles denote unstable modulated waves. The
norm of the modulated waves is, in general, time dependent, and the two
sets of circles are used to represent the extremes of the norm. The Rey-
nolds number of the steady-wave limit point is Rey~ 3000; the Reynolds
numbers of the other bifurcations are not known precisely (see text). The
arrows along the steady-wave branches indicate parametrized paths
treated in Fig. 3.

pressure-gradient boundary conditions.!! We argue that in
the two-parameter space, (Re,u), there is a codimension-
two bifurcation that provides the basis for a comprehensive
understanding of the dynamics near the limit point. This
method of introducing a second parameter to bring to-
gether different phenomena into a unifying scenario is one
of the most common and fruitful methods in bifurcation
analysis.'> With the parameter u there are actually three
parameters that can be considered, namely, Re, p, and
wavelength L. While we restrict our attention to flows that
are periodic in the streamwise direction, we shall not in-
vestigate the wavelength parameter explicitly. Our results
should apply to a large range of wavelengths.

As we shall show, the 2-D stability problem of steady
waves near the limit point provides a rare opportunity to
apply bifurcation theory to finite-amplitude solutions of the
Navier—Stokes equations for which analytic expressions are
not available. Based only on the numerical studies at con-
stant flux and constant mean pressure gradient, we shall be
able to piece together a complete picture for the stability of
steady waves near the limit point and for the dynamics of
the modulated waves. In so doing, we shall make specific
predictions about finite-amplitude solutions to the Navier—
Stokes equations.
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We note at the outset that we shall not strive at math-
ematical rigor; instead we shall focus on understanding the
various bifurcations involved in the problem. We work un-
der the supposition that the simplest explanation consistent
with bifurcation theory is correct.!’> We rely on assump-
tions that are probably true, yet extremely difficult to verify
directly. We make no attempt to verify these assumptions
and instead leave the ultimate test of our results to future
numerical studies of the Navier-Stokes equations.

il. PRELIMINARIES
A. Boundary conditions and Reynolds numbers

While we shall not analyze the Navier-Stokes equa-
tions directly, we do wish to give a precise meaning to the
parameter p in terms of boundary conditions for the
Navier-Stokes equations. In addition, we comment on the
variety of Reynolds numbers that it is possible to define in
plane Poiseuille flow.

Consider the 2-D Navier-Stokes equations written in
the streamfunction formulation

vy
at

where v is the kinematic viscosity. Tildes denote dimen-
sional quantities and subscripts denote differentiation. The
2-D velocity field is given by u(x,p) =V¥ XZ.

We confine our considerations to flows which are pe-
riodic in the streamwise direction x with wavelength L.
That is, we assume

+ O VY, — U V2P =y,

\Fi’ (x,y,l)= \‘ij (x + L,yst)‘

We decompose the streamfunction as @(x,y,t)
=~p + J(x,y,t), where \171, = Uo(y—y3/3h2) is the stream-
function for the parabolic velocity profile with centerline
velocity U, and J is a perturbation of this profile. At
present, U, is unspecified. Nondimensionalizing by the
channel half-width 4 and the velocity U, we obtain

av? 1
_—étil} + (d{v + 1_y2)v2¢x_¢x(v2¢y_2) =R_C V41’J!

(D

where Re=hUy/v.
In terms of the streamfunction, no-slip boundary con-
ditions at the walls are

Py(x, — L,1) =0, (2)

¥(x,1,) =0, (3)
and

¥, (x,—1,6)=0, (4)

¥,(x,1,¢) =0. (5)

These boundary conditions are not, however, sufficient to
determine 1 because (2) and (3) leave an arbitrariness in
the value of ¥ at y==*1.

We are free to add an arbitrary constant to v, and we
use this freedom to fix the value of ¢ at y= — 1. Thus we
replace (2) with the boundary condition
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¥(x,—1,£) =0. (6)

There is still an arbitrariness in ¢ at y= + 1, and the spec-
ification of ¢ here depends on the physical situation we
wish to describe.

Consider first the physical situation in which the flux Q
is prescribed for the flow. In terms of the streamfunction,
the flux Q is

O=[9]1",=19,+ ¥1",=4Uh+ (91", (D)

Under these circumstances it is convenient to let U,=3Q/
4h. Then (7) becomes

[J ]h_h=0-

Nondimensionalizing and using (6), we obtain for the
boundary conditions on ¢ at y= + 1,

¥(x,1,1)=0. (8)

Equations (4)-(6) and (8) constitute a complete set of
boundary conditions for the Navier—Stokes equations (1).
The Reynolds number is expressed in terms of the flux as

Rey=hUy/v=30/4v,

where the subscript Q emphasizes that this expression for
the Reynolds number is appropriate for flows with time-
independent flux.

The situation is as follows: the velocity U, in the def-
inition of Reynolds number needs to be specified. In an
experiment in which the flux Q is held constant, a natural
choice for this velocity is the centerline velocity of the
parabolic profile with flux Q. We then view the fluid flow as
the sum of a parabolic profile (given by \P ) with flux Q,
plus a perturbation (given by 1/)) that makes no contribu-
tion to the flux.

Consider now the physical situation in which the total
pressure drop over the streamwise length of a real channel
is maintained constant. Under our assumption of periodic-
ity in the streamwise direction, this is modeled by a con-
stant pressure drop across the period length L. Because the
change in pressure, Ap, over length L and the mean pres-
sure gradient P are simply related by

Ap 1 (x+L dp
P:—L—zz fx a ,d

we consider boundary conditions appropriate for the case
in which the mean pressure gradient is constant. A
straightforward calculation® gives the mean pressure gra-
dient in terms of the streamfunction as

1 = a v = h
Pz_ﬁ[\ljt]—h'{'ﬁ [\I”yy]—h’

2h [1/12] h— h ['pyy] h (9)

where bars denote averages over length L. Setting U=
— K*P/2v, Eq. (9) becomes

_(1/2h)[7,]”_,,+ (v/2h)[7yy]"_h=0-

Nondimensionalizing and using (6) this becomes

957 Phys. Fluids A, Vol. 2, No. 6, June 1990

Re ¢,(x,1,6)—[¥,,]L =0 (10)

Note that 1, = #, at y= + 1. In this case the Reynolds
number is expressed in terms of the mean pressure gradient
as

Rep=hUy/v=—hP/2V?,

where the subscript emphasizes that this expression for the
Reynolds number corresponds to the case of time-
independent mean pressure gradient.

Equations (4)-(6) and (10) also constitute a com-
plete set of boundary conditions for the Navier-Stokes
equations (1), and are appropriate when the mean pres-
sure gradient is fixed for the flow. The interpretation of the
Reynolds number is much the same as in the case of fixed
flux. In an experiment in which the mean pressure gradient
P is constant, we chose Uj to be the centerline velocity of
the parabolic profile with pressure gradient P. Boundary
condition (10) ensures that the perturbation ¢ makes no
contribution to the mean pressure gradient.

We now interpolate between the above two cases. To
do this we derive appropriate boundary conditions for a
hypothetical experiment in which a linear combination of
the flux and the mean pressure gradient is maintained con-
stant. That is, we suppose an experimental apparatus such
that

aQ + bP= const, (11)

where a and b are dimensional constants reflecting the
trade off between flux and pressure gradient in the appa-
ratus. (The nondimensionalized ratio of a to b is ultimately
the important quantity.) The value of the “constant” de-
termines the Reynolds number and is presumably under
experimental control.

From the preceding analysis, the left-hand side of Eq.
(11) can be evaluated in terms of the streamfunction as

~ b - bV =
aQ + bP=a[‘I’]h_h—2_h [‘I’t]h_h""ﬁ; (9,1,

—a (; Uoh) +b (_—iﬂ) +al P,

b = p bv = B
”2_,; [ ¢t]~h+ﬂ [ lpyy] —h
(12)
If we let U, be given by

Uo=(aQ + bP) [3ah + (—2bv/h)] ',
then (12) becomes
~ . p b = B bv = A
af t/}]—h_i'}_l [ ¢t]_h+5; [ ¢yy] -
Nondimensionlizing, using Eq. (6), and letting

p= — (2h*/3v)(a/b)

be the appropriate nondimensionalized ratio of a and b, we
obtain for the last boundary condition on ¥,
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3ud(x,1,t) + Re ¢ (x,1,0) —[ ¥ ,,] L, =0, (13)
The Reynolds number is given by
hU, 30 AP .
Re="0m (g7 ) (w1
Rep+ Re
7T Rer (14)
u+1

Equation (13) is the desired boundary condition expressed
in terms of the dimensionless parameter u; u =0 corre-
sponds to constant mean pressure gradient and L = « cor-
responds to constant flux. Note that the factor of 3 cannot
be eliminated from (13) without it appearing in (14). We
feel that it more naturally belongs in (13).

The interpretation of the Reynolds number in (14) is
as follows. Consider an experiment with specific values of
a, b (having nondimensionalized ratio p), and some spec-
ified value of the constant on the right-hand side of (11).
To define a Reynolds number, we need to specify a value
for Uy, and to be consistent with the definition of Reynolds
number in the limiting cases = 0 and y = «, we take Uy
to be the centerline velocity of the parabolic profile ¥ »
whose flux and pressure gradient satisfy (11). We view the
flow field as the sum of this parabolic profile, plus a per-
turbation i, whose flux and mean pressure gradient satisfy
a@ + bP=0, i.e., Eq. (13).

As has been noted previously, there 1s an arbi-
trariness in the definition of Reynolds numbers for Poi-
seuille flow. For example, in the case of steady waves, i.e.,
P(xp,t) =¢(x — ct,,0), both the flux and the mean pres-
sure gradient are constant, that is, if a steady wave satisfies
(8), then it also satisfies (10). Hence, in the case of steady
waves, there is equal justification for basing the Reynolds
number on the flux as on the mean pressure gradient. How-
ever, Reg#Rep, and in general Rey<Rep (see Refs. 14~
16). The reason is that the centerline velocity of the para-
bolic profile having the flux of a steady wave does not equal
the centerline velocity of the parabolic profile having the
mean pressure gradient of the steady wave: the value of U,
in the definition of Reynolds number depends on how one
(arbitrarily) chooses to view the flow. Moreover, steady
waves satisfy (13) for all values of u. Thus to a given
steady wave, one can assign any of an infinity of values to
the Reynolds number depending on how one chooses to
view the flow, that is, depending on what value of u one
chooses as a basis for defining the Reynolds number. In
fact, by considering constraints other than (11), e.g., non-
linear combinations of flux and pressure, it is possible to
define still more Reynolds numbers. We suggest that, in
general, the Reynolds number be based on either the in-
stantaneous or the time-averaged flux, for the flux is exper-
imentally the most accessible quantity.

In this paper we shall take the point of view that is
theoretically the simplest: Eqs. (4)-(6) and (13) consti-
tute a complete set of boundary conditions for the Navier—
Stokes equations (1). Together, (1) and its boundary con-
ditions contain two parameters, Re and u, and we seek to
understand the solutions to (1) as a function of these two

3,4,14-16
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parameters. We stress that in the two-parameter space
(Re,u) there is no ambiguity in the meaning of Reynolds
number; at each value of u, the Reynolds number has a
precise interpretation via (14).

B. Reduction to amplitude equations

In this section we discuss the relationship between the
Navier-Stokes equations (1) and the amplitude equations,
or normal forms, which we analyze in later sections. We
relegate most of the details to Appendix B. While the re-
duction to amplitude equations is, in principle, straightfor-
ward, we are interested here in finite-amplitude waves and
not small perturbations of the parabolic profile. Therefore
we must expand about a nontrivial, finite-amplitude solu-
tion for which we do not have an analytic expression. Be-
cause of this, an analytic reduction of the Navier-Stokes
equations to a set of amplitude equations is not possible.
Nevertheless, from the numerical studies of Pugh and
Saffman® and Soibelman,* and from some genericity as-
sumptions, it is possible to determine the form of the am-
plitude equations.

We first discuss the translational symmetry of the
channel, as this has important conséquences for the ampli-
tude equations that we consider. Because we restrict our
considerations to solutions periodic in the streamwise di-
rection x, the translational symmetry of the channel be-
comes the symmetry of the circle [specifically, the group of
orientation preserving rotations in the plane: SO (2)]. The
implications of this symmetry group in bifurcation has
been discussed at length.!”'® Under the assumption of pe-
riodicity, the coordinate x can be replaced by a periodic
coordinate O, and the steady waves in Poiseuille flow are
formally rotating waves, directly analogous to those in the
Couette-Taylor problem. We return to this point in Sec. V.

Steady waves obey the condition (x,p,t)
=9(x — ct,y,0), where ¢ is the wave speed. Thus by mak-
ing the boost, x' = x — ct, from laboratory-fixed coordi-
nates to coordinates moving with wave speed ¢, steady
waves are seen as time independent. Similarly, in an ap-
propriate frame of reference, the modulated waves are pe-
riodic in time. These facts derive directly from the symme-
try of the problem.!”®

Thus, in our analysis, we wish to treat the steady waves
as steady states and the modulated waves as periodic or-
bits; however, there are two problems with this. First, the
steady states and periodic orbits obtained making the ap-
propriate boosts are not isolated because there is an arbi-
trariness in the phase of the waves. Second, and more im-
portantly, we are interested in cases in which, at given
parameter values, there exists more than one steady-wave
solution and possibly a modulated-wave solution to the
Navier—Stokes equations. In general, these solutions will
have different wave speeds, so that there does not exist a
frame of reference in which all states simultaneously take
on their “simplified form.” There is a way around this
problem which is briefly outlined in Appendix B. In es-
sence, by considering the dynamics on a Poincaré section,
we are able to eliminate simultaneously the wave speed of
all waves from the dynamics.
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After eliminating the wave speed, the next step in the
reduction to amplitude equations consists of arguing that
there are only two active modes near the Reynolds number
limit point and that all other modes are slaved to these two.
This is well justified based on the numerically obtained
eigenvalues as discussed in the next section. Thus from the
symmetry of the problem, and from the number of eigen-
values near zero, we argue that the dynamics near the
Reynolds number limit point, can be captured with a pair
of amplitude equations:

A\ =F|(4,,4),
A,=Fy(4,,4,),

where 4, and A4, are real amplitudes, which, in principle,
are related to the streamfunction of the Navier-Stokes
equations. In terms of these amplitude equations, steady
waves are represented as steady states and modulated
waves are represented as periodic orbits.

The remaining step in determining the amplitude equa-
tions consists of finding the simplest expansion for F; and
F, that is consistent with the numerical results of Pugh and
Saffman® and Soibelman.* This is the subject of the next
section.

(15)

lil. DOUBLE-ZERO BIFURCATION

A. Eigenvalues

The codimension-two bifurcation central to our anal-
ysis is the double-zero (DZ) bifurcation. This bifurcation
is defined by the condition that the linearized equations
have a zero eigenvalue with algebraic multiplicity 2 and
geometric multiplicity 1. That is, after an appropriate sim-
ilarity transformation, the linearization contains the Jor-
dan block

0 1
[0 O]' (16)

This codimension-two bifurcation has been studied and
completely classified by Takens,” and Bogdanov.2"?? A
pedagogical treatment can be found in Refs. 23 and 24.
The principal observation on which our analysis rests is
that the steady waves must have a double-zero eigenvalue at
some value of p between zero and infinity.”> This can be
deduced immediately from eigenvalue spectra at u = 0 and
1 = o, and from continuity of the eigenvalues. At u = oo
the eigenvalue spectrum at the limit point in Reynolds
number is as shown in Fig. 2(a). There is a zero eigenvalue
(as there must be at a limit point) and all the other eigen-
values are negative. The eigenvalue spectrum at the limit
point when p = 0 is shown in Fig. 2(c). Here, there is one
positive eigenvalue, again a zero eigenvalue, and all other
eigenvalues are negative. If we vary u from O to « while
adjusting Re so as to remain at the limit point, i.e., so as to
maintain a zero eigenvalue, then by continuity, at some
value of u the positive eigenvalue in Fig. 2(c) must cross
zero. Therefore at some value of Re and u there must be a
double-zero eigenvalue as illustrated in Fig. 2(b).
Generically,’® the linearization at this point will contain a
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FIG. 2. (a)-(c) Location, in the complex plane, of the eigenvalues for the
steady waves. There are only two relevant eigenvalues, all others are
bounded away from zero as indicated by the shaded region in each plot.
(a) Eigenvalues for the steady waves at the limit point in Reynolds num-
ber in the case of constant-flux boundary conditions, 4t = w. (b) Double-
zero eigenvalue, indicated by the concentric circles at the origin, at the
intermediate boundary condition, g = u.. (c) Eigenvalues for the steady
waves at the limit point in Reynolds number in the case of constant-mean-
pressure-gradient boundary conditions, u = 0. (d)-(f) Paths of the two
relevant eigenvalues in (a)-(c), respectively, as functions of arclength
along paths illustrated in Fig. 1.

Jordan block of the form (16). We label the parameter
values of the DZ by u. and Re, and the streamfunction
with the double-zero eigenvalue by .. [Strictly speaking,
¥, is the streamfunction with the double zero eigenvalues
such that ¢ (x = 0,y = 0) = K, as discussed in Appendix
B.]

Much of the behavior near the limit point can be in-
ferred immediately from the eigenvalues shown in Figs.
2(a)-2(c) without resorting to normal-form calculations.
In particular, the bifurcation to a modulated wave can be
deduced directly. To see this, it is best to consider the
behavior of the two relevant eigenvalues as one moves
along the branch of steady waves from the lower branch,
around the nose, and onto the upper branch. That is, we
consider paths along the steady-wave branch, like those
illustrated in Fig. 1, and examine the corresponding paths
of eigenvalues in the complex plane. Figures 2(d)-2(f)
show the behavior of the two relevant eigenvalues for three
values of pu.

Consider first Fig. 2(e), which corresponds to u= py..
Starting on the lower branch there is one positive and one
negative eigenvalue. As one approaches the limit point, the
two eigenvalues approach zero from above and below, and
they collide in a DZ at the limit point. Generically, when
two eigenvalues (of a real system) collide on the real axis
as a parameter is varied, they will move off the real axis in
a locally parabolic path as illustrated in Fig. 2(e). This is
easily seen by examining the general quadratic equation

Dwight Barkley 959

Downloaded 13 Sep 2004 to 132.239.20.18. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



with real coefficients. We assume a left-opening parabola
because Pugh and Saffman® and Soibelman*?’ find a left-
opening parabola at y =0 and p = «. In addition, the
simplest scenario obtains when the parabola opens to the
left. The direction of the eigenvalue path is an important
feature which we return to later.

The behavior of the eigenvalues for u near u, is found
by considering perturbations to the behavior at u= yu.. We
know that the two eigenvalues will collide on the real axis,
but away from zero, for u near u. For example, with u
>l as in Fig. 2(d), the eigenvalues collide on the nega-
tive real axis. Thus the following occurs as we move along
the steady-wave branch: the positive eigenvalue crosses
zero at the limit point, and, hence, on the upper branch
both eigenvalues have negative real part. At some point on
the upper branch we expect the eigenvalues to collide and
become complex. The numerical studies of Soibelman?’ re-
veal that this indeed occurs when p = .

The case of u < p. [Fig. 2(f)] is more important. At the
limit point, the negative eigenvalue crosses zero giving two
positive eigenvalues on the upper branch. The two eigen-
values collide and become a complex-conjugate pair. Then,
because the parabola in Fig. 2(e) opens to the left, it must
do for u sufficiently near p.. Thus the eigenvalues must
cross the imaginary axis as a complex-conjugate pair. At
this point the upper branch becomes stable via a Hopf
bifurcation and modulated waves bifurcate from the upper
branch.

Thus knowing the eigenvalue spectra in Figs. 2(a) and
2(c) we are able to deduce the DZ in Fig. 2(b). From this
we know that an eigenvalue path like that of Fig. 2(e)
must exist, and thus that modulated waves must bifurcate
from the steady waves. Even if the parabola in Figs. 2(e)
opened to the right, modulated waves would still exist,
except for u > p.. Because, we already knew of the modu-
lated waves from the numerical studies of Pugh and Saff-
man and Soibelman, we seek stronger conclusions from our

analysis. For this we turn to the normal-form equations for *

the DZ.

B. Normal-form equations: Second order

In this subsection and the next, we examine the normal
form equations for the DZ. The essential idea here is the
following. We expand the amplitude equations (15) in a
finite Taylor series, and then use transformations of the
amplitudes 4, and 4, to eliminate all “nonessential” terms
from the series. By definition, the normal forms contain
only those “essential” terms that cannot be removed by
coordinate transformation.”*?* In this section we consider
the normal form equations with terms up to second order,
and in the next subsection, we include terms up to third
order.

There are two reasons why we are able to proceed in
this way for the channel problem: first, the essential terms
appearing in the normal-form equations are determined
from the linearization only, and we know the
linearization—it is Jordan block (16). Second, the normal-
form equations for the DZ are very simple and there is
enough information available from the numerical studies of
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Pugh and Saffman and Soibelman for us to evaluate, at
least qualitatively, the coefficients in the expansion. Thus,
even without explicit formulas relating the amplitudes 4,
and A4, in the normal-form equations to the steamfunction
¥ in the Navier-Stokes equations, we are able to derive the
evolution equations for 4, and 4,. From these evolution
equations we are able to gain an understanding of the so-
lutions of the Navier-Stokes equations.

The general second-order expansion of the amplitude
equations is

A\ =F\(A,,4y) =ky 14, + kpdy + kpd}
+ kA1 42 + klsA%,

A,=F)(4,,4,) =kyd + kpd, + kzzA%
+ kyyd Ay + Kpsd).

At the double zero, ky,, k;;, and k,, must be zero, i.e.,
the linearization of the amplitude equations must be in
Jordan form (16). Momentarily we will scale k;, = 1. In
addition, it is straightforward to show?’ that there is a
transformation,

A1=g1(4],43), A,=g,(4},43),

which preserves the form of the linear terms, but which
make all but two of the second-order coefficients zero.
Making this transformation, the only terms appearing in
the normal-form equations for the DZ are
1=kpp45,

A=kpd? + kydid;,
where generically k,,, k,3, and k,4 are nonzero.

By rescaling Aj, A5, and time, we can set k,=1,
ky3=1, and |ky|=1. We cannot rescale k,, to + 1, in
general, without changing the sign of time, and we do not
allow this because then the stability of states in the normal
form will be different from the stability of states in the
Navier— Stokes equations. Instead we determine the sign of
k,4 by comparing the stability of steady states in the nor-
mal form with the stability of the steady waves in the
Navier—Stokes equations. Note that there is only one bit of
information to be determined in (17): the sign of k.

Before proceeding, we must incorporate the parameter
dependence into the normal form. Equations (17) describe
the evolution of the amplitudes at the double zero only, i.e.,
for Re = Re, and u= p.. It is, however, possible to “un-
fold” the normal form and find evolution equations that
describe the dynamics at parameter values in the vicinity of
the double-zero bifurcation. The procedure is much the
same as that for obtaining (17), except that parameters are
included in the series expansion. However, there are sub-
tleties involved when parameters are included. For the
double-zero eigenvalue, expensions have been obtained by
Takens and Bogdanov so we simply give the result and
refer the reader to Refs. 23, 24, and 21. The unfolded
normal form is

1'4 1=A2,

(17)

. (18)
A 2= A'I_A'ZAZ + A% + klAlAZ’
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where we have dropped the primes and written k, for k,,.
The unfolding parameters are A, and A,. These must be
functions of Re — Re, and y — p,, though as in the case
with the amplitudes, we do not have explicit formulas re-
lating 4, and A, to Re and u. However, we expect 4, to be
approximately proportional to Re — Re, and A, to be ap-
proximately proportional to p-—pu,.

We can now determine the sign of k,. The steady states
of (18) are given by

(41,4;) = (= JA,,0).

Thus there are two steady states for 4, >0 and these steady
states coalesce at 1; = 0. These steady states correspond to
the steady wave on the upper and lower branches in Fig. 1.
To determine k;, we must find the stability of the steady
states in the normal form. The stability of the steady states
is given by the eigenvalues of the matrix

0 1
ZA:‘: —12+k1A:!: ’

where 4. = = A,

Consider first the case k;= + 1. If 4,>[A,]|, corre-
sponding to moderate Reynolds numbers, then the steady
state (4_,0) has two negative eigenvalues and hence is
stable. This steady state thus corresponds to the steady
waves on the upper branch in Fig. 1. [In both cases, Figs.
1(a) and 1(b), the upper branch is stable at large enough
Reynolds numbers.] The steady state (4 | ,0) has one pos-
itive eigenvalue and is a saddle. This steady state thus cor-
responds to the steady waves on the lower branch. For the
case ky= — 1, the stability of the steady states in the nor-
mal form can be found simply by reversing the sign of time.
In this case neither steady state is stable for A, large. Thus
only for k; = + 1 is the normal form compatible with the
stability of the steady waves in the Navier-Stokes equa-
tions. With k; = + 1 the second-order normal form is
completely determined.

We can now examine the behavior near the double
zero based on the normal form. Figure 3 summarizes the
situation and this is discussed at length elsewhere.?"?32*
The limit point, or saddle-node, bifurcations occur when
the linearization (19) has a zero eigenvalue. By inspection,
(19) has a zero eigenvalue when 4. = 0, i.e., when A;=0.
Strictly speaking, we should exclude A, = O from the set of
saddle-node bifurcations, because A; =1, =0 gives the
double-zero eigenvalue.

The locus of Hopf bifurcations is equally easy to find
from the linearization (19). A complex-conjugate pair of
the eigenvalue with zero real part occurs when

122— \//1: ﬂ.])O.

Thus Hopf bifurcations occur on a half-parabola terminat-
ing at the DZ. The frequency of the Hopf bifurcation is the
imaginary part of the eigenvalue at the bifurcation:
= y—2A4,. The DZ can be viewed as the collision between
Hopf and saddle-node bifurcations in which the frequency
of the Hopf bifurcation goes to zero.

In addition to the Hopf and saddie-node bifurcations,
homoclinic orbits (saddle-loop bifurcations) are found

(19)
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FIG. 3. Phase diagram and representative bifurcation diagrams for the
second-order double-zero normal form. DZ denotes double zero, SN de-
notes saddle-node bifurcations (i.e., limit points), H denotes Hopf bifur-
cations, and SL denotes saddle-loop bifurcations. The bifurcation dia-
grams are functions of A, at fixed values of 4, above and below the DZ.
The notation for states is the same as in Fig. 1. The locus of Hopf bifur-
cations in the phase diagram is dashed to indicate that the Hopf bifur-
cations are subcritical.

near the DZ. Saddle-loop (SL) bifurcations can be thought
of as a collision, in phase space, between a periodic orbit
and a fixed point of the saddle type. [See Fig. 6(a) dis-
cussed in Sec. V.] At the SL bifurcation, the amplitude of
the periodic orbit remains finite, while the period goes to
infinity. The SL bifurcation has the effect of destroying (or
creating, depending on the point of view) a periodic orbit.
Nothing in particular happens to the fixed point itself.
Thus the SL is a global bifurcation and no local analysis of
the steady states, except very near the DZ, can detect it.

The locus of saddle loops approaches the DZ approx-
imately parabolically. For a given value of A,, the A, dis-
tance between the saddle-loop and the Hopf bifurcations is
approximately the same as the A; distance between the
Hopf and saddle-node bifurcations. The periodic orbits are
found only in the wedge between the loci of Hopf and
saddle-loop bifurcations.

Turning then to the implications for the steady waves
in channel flow, we find that, at least local to the DZ, the
Hopf bifurcation on the upper branch approaches the limit
point parabolically and disappears in a DZ bifurcation.
The frequency of the Hopf bifurcation goes to zero at the
DZ. Thus the period of the modulated waves, as see in the
frame moving at the wave speed, goes to infinity. These
facts can be deduced from the eigenvalues in Fig. 2. In
addition, we expect that the modulated waves do not ex-
tend to very large Reynolds numbers, but terminate in a SL
bifurcation by colliding with the lower branch of the steady
waves. These are the first predictions from our analysis.

The reader should note that Fig. 3, and hence the
second-order normal form (18), does not completely agree
with the numerical computations of Soibelman shown in
Fig. 1(b). Specifically, there is disagreement in the direc-
tion of the branch of modulated waves. For the numerical
computations at constant mean pressure gradient, i.e., at
1 = 0, the Hopf bifurcation computed by Soibelman is su-
percritical, yet in the normal form with k; = + 1, the
Hopf bifurcation is always subcritical. (See Appendix A
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for a brief discussion of the terminology for supercritical
and subcritical.) While our analysis applies in the vicinity
of the DZ, it does not apply for sufficiently negative A,,
corresponding to p near zero. To resolve this we must
include higher-order terms in the normal-form expansion.

C. Normal-form equations: Third order

It is a simple matter to determine the essential terms in
a third-order expansion of the double zero. There are only
two third-order terms,”® and the normal form is

A=A,
1 2 (20)

A = —A«I_AZAZ -+ A% + klAlAZ + kZA?_k}A%AZ’

where k; is no longer taken to be of unit magnitude. In-
stead we chose a scaling such that |k;| =1. We shall see
that k; plays much the same role in the third-order expan-
sion as k, does in the second-order expansion. In fact, the
minus sign preceding the 4% 4, term is added to make the
signs of these coeflicients correspond.

Considering k, as a parameter, normal form (20) can
be viewed as an unfolding of the codimension-three bifur-
cation defined by the condition A; =4, =k, =0. This
codimension-three bifurcation is a double-zero eigenvalue
with an additional degeneracy in the higher-order terms,
i.e., k; = 0, such that the Hopf bifurcation is degenerate.?®
The theoretical treatment of this more degenerate bifurca-
tion is not as complete as in the case of the simple double
zero (18).

Rather than present in detail the dynamics of (20) as
a function of three parameters, we shall view (20) as a set
of model equations with two parameters A, and 4,, and
three coefficients k;, k,, and k3. We require k; to be suffi-
ciently small that the third-order terms are important, that
is, we are interested in small perturbations of the
codimension-three point. The parameters in the normal
form correspond to those of the problem at hand, namely,
Re and y; the three coefficients are to be determined by
matching the dynamics of (20) to that found in the nu-
merical results of Pugh and Saffman and Soibelman at
1 =0and p = «. Because k; is scaled to unit magnitude it
can be determined exactly. While we are unable to deter-
mine quantitatively k; and k,, we can determine the signs
of these coefficients and this will be all that is needed to
obtain a comprehensive picture of the dynamics near the
Reynolds number limit point.

We first determine k;, as we did in the previous section
for k,, by examining the stability of steady states. The
steady states of (20) are given by

(AI,AZ) = (Assao)’
where A, is a solution to
0= —A + A% + kA3, (21)

When A, = 0 this equation has a double root A;; = 0. This
is the limit point. The two steady states that are near zero
for A,>0 are the only two steady states of interest; the
third solution of (21) does not vanish at the multicritical
point and therefore is not relevant. For 0<A,<1/k3, the
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k>0 ky=+1 k‘a,ki-
k<0 k3=+1 k,<0 k3=—1

FIG. 4. The path, in the complex plane, of the two eigenvalues of steady
state 4_ for the third-order normal form, with different choices of k, and
k3. The paths are parametrized by A, with the direction of increasing 4,
as shown. For the cases shown, 4, =0.

two relevant steady states are 4,~ + VA,. Thus we shall
label these two steady states by 4. as before, but they are
actually solutions to (21).

The stability of these steady states is given by the ei-
genvalues of the matrix

0 1

. 22
24, + 3k, AL —A, + kAL — kAL (22)

The quickest way to determine the sign of k3, is to
consider the case A, = 0. The eigenvalues for the two states
A, and 4_ are easily computed. One finds that for suffi-
ciently small 4, (i.e., 0<A,<1/k3), A4, has one positive
and one negative real eigenvalue; therefore 4 | is a saddle
corresponding to the lower branch of steady waves in the
channel flow problem (Fig. 1). The state 4 must there-
fore correspond to the upper branch of steady waves. The
eigenvalues of A_ depend on the coefficients k; and k;.
Figure 4 shows the path of these eigenvalues in the com-
plex plane as a function of A, for different choices of k; and
ky. With the requirement that k; be sufficiently small so
that the third-order terms are important, the stability of
the steady state 4_ is determined by the sign of k;. At
sufficiently large? A,, corresponding to sufficiently large
Reynolds number, the state 4_ has two eigenvalues with
negative real part only if k;= + 1. This also holds for
A,#0. Thus we must take k3= + 1 to have a stable steady
state in the normal form corresponding to the stable upper
branch of steady waves in Fig. 1.

We can now determine the sign of k; by comparing the
eigenvalue paths for the normal form and with that of
steady waves in the channel problem. We know from the
numerical computations of Pugh and Saffman® and
Soibelman**’ that at 4 =0 and & = oo the path of eigen-
values is a left-opening parabola as shown in Figs. 2(d)
and 2(f). It is thus reasonable to assume that this is also
the case for all intermediate . As Fig. 4 shows, we must
have k;> 0 in the normal form to have a left-opening pa-
rabola. Hence we require k; to be positive.
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This leaves only k, to be determined. The sign of k, is
found by matching the direction of the periodic-orbit
branch in the normal form to the direction of the modu-
lated wave branch found by Soibelman [Fig. 1(b)]. First,
the steady state 4_ of the normal form undergoes a Hopf
bifurcation when

—*/1,2 + klA — —-k3A2_ =0,
(23)
24 _ + 3k4* <O,

These conditions ensure that (22) has a complex-conjugate
pair of eigenvalues with zero real part.

The direction of the periodic-orbit branch near the
Hopf bifurcation is found in the following way: we take the
bifurcation point given by (23), where 4_ satisfies (21),
and make a coordinate transformation which brings A_ to
the origin. We then make a further transformation to ex-
press the amplitudes in polar form. At a Hopf bifurcation,
the leading order terms in the evolution equations will be

A ,=aA3,

A 9=,
where A, and A, are the amplitudes in polar form, w?
= —(24_, + 3ky4> )) is the square of the imaginary
part of the bifurcating eigenvalue, and a is the coefficient
that determines whether the bifurcation is supercritical or
subcritical: if a>0 the bifurcation is subcritical and the
periodic orbit branch lies on the high-4, side of the Hopf
bifurcation. If @ <O the bifurcation is supercritical, and at
least near the bifurcation, the periodic-orbit branch lies on
the low-A, side of the bifurcation (see Appendix A).

The computations are straightforward but lengthy, so
we shall not reproduce them. The result is that we obtain
an expression for a in terms of the coefficients of the nor-
mal form,

a=(1/80%) (k; + 3k,4,). (24)

We can now determine the sign of k,. Soibelman has found
that the Hopf bifurcation is supercritical at u = 0. There-
fore we require the Hopf bifurcation in the normal form to
be supercritical for sufficiently negative A,, corresponding
to ¢ near zero. This means that ¢ must be negative for
sufficiently negative A,. The only way to achieve this is to
require that k, be positive (note k; > 0). Thus the signs of
all coefficients of the normal form are determined.

The situation is basically as follows. In the vicinity of a
double-zero bifurcation with k;~0, there are a variety of
possible scenarios depending on the coefficients &, k,, and
k3 in the normal form. There is, however, only one scenario
that is consistent with the following facts: (i) the upper
branch of steady waves stabilizes at large enough Reynolds
number, (ii) the path of eigenvalues is a left-opening pa-
rabola as in Fig. 2, and (iii) the Hopf bifurcation is super-
critical at yu = 0. This scenario, which obtains for k; >0,
k,>0, and k3= + 1, provides the simplest description of
the steady and modulated waves which is consistent with
bifurcation theory. We examine this scenario in the next
section.
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FIG. 5. Phase diagram and representative bifurcation diagrams for the
third-order double-zero normal form. The notation is the same as in Figs.
1 and 4, with the following additions: DH denotes degenerate Hopf bi-
furcation and SNP denotes saddle-node-of-periodic-orbits bifurcation,
i.e., the limit point of the periodic-orbit branch. In the phase diagram,
supercritical and subcritical Hopf bifurcations are indicated with solid
and dashed lines, respectively. The bifurcation diagrams are functions of
A, at three values of 1,: (), A, above the DZ; (B), A, between the DZ
and the DH; (y), 4, below the DH.

IV. RESULTS

Figure 5 summarizes our results, based on the third-
order normal-form expansion, for the dynamics near the
limit point in Reynolds number. We show both the two-
parameter phase diagram (also called a bifurcation set)
and representative bifurcation diagrams. The parameters
shown are A, and A, of the normal-form equations, but we
expect that A, is approximately proportional to Re — Re,,
and that A, is approximately proportional to u — u,, where
Re, and p, are the parameter values of the DZ. Thus the
phase diagram is essentially the two-parameter space
(Re,u) with Re the horizontal parameter and p the verti-
cal parameter. The bifurcation diagrams are slices through
the phase diagram at three representative values of A,.
These bifurcation diagrams are essentially Reynolds num-
ber bifurcation diagrams for three different boundary con-
ditions.

We first describe the situation in detail and then re-
count exactly the predictions arrived at through our anal-
ysis. Consider first bifurcation diagram (y), which corre-
sponds to u near zero, which in turn corresponds to
constant-mean-pressure-gradient boundary conditions. Bi-
furcation diagram (y) is essentially that of Fig. 1(b), ex-
cept that in (y) the branch of modulated waves terminates
in a saddle-loop bifurcation by colliding with the lower
branch of steady waves. Recall that the fate of the modu-
lated waves in Fig. 1(b) was not determined by the nu-
merical computations of Soibelman.

Consider next bifurcation diagram (B). This bifurca-
tion diagram is a slice through the phase diagram at a value
of u above the degenerate Hopf (DH) bifurcation. The
modulated-wave branch is born unstable in (8) and it ter-
minates as before in a saddle-loop bifurcation with the
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lower branch of steady waves. What has occurred in going
from diagram (y) to diagram (f) is that the Hopf bifur-
cation has changed from supercritical to subcritical, and
consequently, there is no longer a limit point (SNP) for
the modulated-wave branch. The DH bifurcation is dis-
cussed briefly in Appendix A. For the third-order normal
form, the DH occurs when the right-hand side of Eq. (24)
equals zero, that is, when 4, = — k/3k;.

As one increases the parameter u further, both the
Hopf and saddle-loop bifurcations approach the limit point
of the steady-wave branch and together disappear at the
DZ bifurcation. For values of u above the DZ the situation
is as in bifurcation diagram (a), which is the same as Fig.
1(a). The steady-wave branch stabilizes at the limit point
and there are no other bifurcations in the vicinity of the
limit point.

Thus we have the desired comprehensive picture of the
dynamics as a function of the two parameters Re and pu.
We expect Fig. 5 to be in qualitative agreement with the
phase diagram for the Navier-Stokes equations, although
some quantitative variation is to be expected. For example,
we know that the Reynolds number of the limit point var-
ies slightly as a function of u (see caption, Fig. 1), whereas
the limit points in Fig. 5 occur at a fixed value of A,.
Detailed, quantitative, predictions are simply beyond the
scope of our treatment: we cannot predict the Reynolds
number or boundary-condition parameter for any of the
bifurcations, we can only predict their existence.

The predictions that we make, i.e., the features of Fig.
5 not contained in previous numerical computations, are
the following.

(1) Existence of the homoclinic orbit for the modu-
lated waves. This is perhaps the most important prediction
because it applies at p =0, i.e., constant mean pressure
gradient, and this is one of the most frequently investigated
boundary conditions for Poiseuille flow. There are two
other predictions that are a direct result of the existence of
the homoclinic orbit.

(a) At the saddle-loop bifurcation, the wave speed of
the modulated wave must equal the wave speed of the
steady wave on the lower branch. This is simply because, at
the saddle-loop bifurcation, there is a reference frame in
which simultaneously the modulated waves are seen as a
closed orbit and the lower-branch steady wave is seen as a
fixed point.

{b) The period of the modulated waves goes to infinity
in a well-prescribed way. Namely, the period of the mod-
ulated waves T, as seen in the frame moving at the wave
speed, goes as T ~ — log(Reg; — Re), where Reg; is the
Reynolds number of the saddle-loop bifurcation (see Ref.
23). This scaling law will be difficult to verify in practice
because near the homoclinic orbit the modulated waves
have a strong relaxational character. That is, in the moving
frame, the modulated waves are seen as periodic orbits that
spend a long time in a pseudosteady state (approximately
the lower-branch steady wave) and then undergo a com-
paratively fast burst. Periodic states of this kind, i.e., very
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far from harmonic, require many modes if they are to be
computed with a steady code of the kind used by Soibel-
man.

(2) Existence of the degenerate Hopf bifurcation on
the upper branch of steady waves. This is an important
result in that it is a statement about the nonlinear stability
of finite-amplitude waves for boundary conditions that
have not yet been investigated numerically. The existence
of this DH bifurcation implies the disappearance of the
limit point for the modulated-wave branch (SNP). There
is a scaling law for the disappearance of the SNP, namely
the locus of limit points meets the locus of Hopf bifurca-
tions parabolically. This parabolic behavior is indicated in
Fig. 5 (see also Appendix A).

(3) Existence of the double-zero bifurcation itself. At
the double zero, the loci of Hopf and saddle-loop bifurca-
tions terminate. The loci of both bifurcations approach the
DZ parabolically. Moreover, near the DZ we expect that,
in the Reynolds number bifurcation diagrams, the saddle-
loop bifurcation will be approximately twice as far from
the limit point, as measured in Reynolds number, as the
Hopf bifurcation is from the limit point. Finally, the fre-
quency of the Hopf bifurcation will go to zero as the DZ is
approached.

V. DISCUSSION AND CONCLUSION

We have constructed a complete phase diagram from
knowledge of the situation just at the extreme boundary
conditions u = 0 and g = «. What has made this possible
is the fact that all the dynamics near the limit point can be
captured with just two amplitude equations, and in the
corresponding two-dimensional phase space, the possible
scenarios are greatly limited. Ultimately, the translational
symmetry of the channel is responsible for allowing the
dynamics to be captured in a two-dimensional phase space.
Therefore we begin our discussion by noting the important
implications of the channel’s symmetry.

The modulated waves lie on a torus in the full phase
space of the Navier-Stokes equations and, in general, it
would not be possible to describe accurately the dynamics
of these waves with only two (continuous-time) amplitude
equations. In particular, the homoclinic orbits (saddle-
loop bifurcations) which we have described would, in the
absence of symmetry, imply the existence of complex dy-
namics, i.e., horseshoes.>»2%3%3! Hence at least three am-
plitudes would, in general, be necessary to capture the dy-
namics in the vicinity of this bifurcation. However, it is
straightforward to prove that, owing to the symmetry of
the channel, if a point lies on both the stable and unstable
manifold of the saddle (lower-branch steady wave), then
the unstable manifold is contained within the stable man-
ifold and complex dynamics does not occur. This is illus-
trated in Fig. 6(a) where we show the saddle-loop bifur-
cation in the case of symmetry. This homoclinic orbit can
be captured by just two differential equations. It is for this
reason that we expect the double-zero normal form to pro-
vide an accurate description of the dynamics near the Rey-
nolds number limit point, and it is for this reason that
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FIG. 6. (a) Saddle-loop bifurcation for channel flow in the case of trans-
lational symmetry. The saddle point (lower steady state) corresponds to
the lower-branch steady wave; the upper steady state is stable and corre-
sponds to the upper-branch steady wave. (b) Homoclinic orbit expected
for channel flow in the case of broken translational symmetry. Complex
dynamics occurs in (b) but not in (a).

continuous-time amplitude equations can provide a quali-
tatively exact interpolation of the Poincaré map in Appen-
dix B. Simply put, because of the translational symmetry of
the channel, the modulated waves behave as periodic orbits
rather than as generic orbits on a torus. (This is a well-
known result; e.g., Rand'®).

An interesting situation arises if the translational sym-
metry of the channel is broken. Specifically, consider the
case in which the translational symmetry is broken by a
periodic perturbation with wavelength L in the streamwise
direction. For small perturbation of this kind we can ex-
pect the homoclinic orbits to persist, but they will become
transverse. This implies the existence of horseshoes and
complex dynamics as illustrated in Fig. 6(b). Note that
because trajectories cannot cross, this situation cannot be
captured with a pair of continuous-time amplitude equa-
tions. Figure 6(b) must instead be viewed as a Poincaré
section of fundamentally three-dimensional dynamics. (In
the absence of symmetry, the Poincaré map of Appendix B
cannot be exactly interpolated by a pair of differential
equations. )

What is particularly interesting about periodic geome-
tries is that such geometries have recently been considered
by Karniadakis et al.3 In these studies, geometry has been
used as a “‘parameter” to unfold the subcritical nature of
the primary instability occurring in Poiseuille flow. That is,
Karniadakis et al. have found that in certain periodic chan-
nels, the primary instability is supercritical. This implies
that for some value of the “geometric parameter” the pri-
mary instability is degenerate, i.e., on the borderline be-
tween subcritical and supercritical. It then would appear
that by varying both the geometric parameter and the
boundary-condition parameter u presented here, it might
be possible to bring together the bifurcation to modulated
waves and the degenerate primary instability. We are not
certain at this time whether such a situation is actually
possible; however, if this situation does occur, then arbi-
trarily close to this bifurcation there will be transverse ho-
moclinic orbits, i.e., there will be complex dynamics arbi-
trarily close to the steady laminar state.

There is a second aspect of the problem’s symmetry
worthy of note and this concerns the relationship of the
steady and modulated waves studied here to the rotating
and modulated waves found in the Couette-Taylor (CT)
problem.7 As noted at the outset, because we restrict our
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FIG. 7. Schematic representation of two possible bifurcations from steady
(or rotating) waves to modulated waves. Four wavelengths of the bifur-
cating steady wave are shown at the top. The modulated waves are shown
at five instants in time over one period. The representations are similar to
those in Ref. 18, and correspond to observations in the reference frame
moving at the wave speed. The modulated wave in (a) is superharmonic
and has the same wavelength as the steady wave. The modulated wave in
(b) is subharmonic and has four times the wavelength of the steady wave.
Note that in a “box” of length 4L, the steady wave has a fourfold sym-
metry. This symmetry is broken in (b) but not in (a).

attention to solutions that are periodic in the streamwise
direction x, steady waves in the channel are formally ro-
tating waves as in the CT problem. The bifurcation from
steady to modulated waves in Poiseuille flow is thus for-
mally the same as the bifurcation to modulated waves in
CT. The modulated waves studied here are, however, of a
special type: they are superharmonic, that is, they are com-
posed of the fundamental wavenumber and its harmonics.
These waves have the same wavelength as the steady waves
[see Fig. 7(a)]. Contrast these waves with the subharmonic
modulated waves generally observed in the CT problem.
Figure 7(b) shows a simple illustrative example; other ex-
amples can be found in Refs. 7 and 18. While modulated
waves in Poiseuille flow will also be subharmonic in the
general case, Pugh and Saffman and Soibelman considered
only superharmonic bifurcations of steady waves, so that
the only modulated waves they could possibly detect were
superharmonic. From our analysis, however, we see that
the particular modulated waves that bifurcate near the
limit point issue from a double-zero bifurcation, and thus
that they must be superharmonic. Basically, the reason is
that the modulated waves arise from the interaction of two
bifurcating eigenvalues. For each eigenvalue the corre-
sponding steady-state bifurcation, i.e., the limit point above
and below the DZ, is not subharmonic.>? Hence we expect
that under generic conditions the Hopf bifurcation arising
from the interaction of these eigenvalues will likewise not
be subharmonic. We do not offer a proof here and leave a
more detailed discussion of this for future work.

The final point we make regarding the symmetry of the
channel is that there is reflection symmetry (i.e., Z,) in the
spanwise coordinate y, which we have not yet addressed.
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First note that the boundary conditions that we have de-
rived for y¥(x,y,t), specifically (6) and (13), are not, in
general, reflection symmetric. However, this is simply a
result of our choice for the overall (arbitrary) normaliza-
tion of ¢. Renormalizing ¢ (x,y,t) by adding a function
only of time, K(¢), the boundary conditions on ¥ can be
made reflection symmetric. It is clear that the velocity field
satisfies symmetric boundary conditions.

We have ignored the reflection symmetry because it
plays no significant role in the problem. The only way this
symmetry might enter is that the steady waves might have
so-called shift-and-reflect symmetry,** that is, the waves
might be invariant under the transformation: evolve for
time 7/2, where T is the period in the laboratory frame,
and reflect in y. The shift-and-reflect symmetry can only be
of importance if this symmetry breaks in the vicinity of the
double-zero bifurcation. The numerical computations of
Pugh and Saffman and Soibelman would have detected this
symmetry breaking if it existed, and yet it was not re-
ported. Thus we are justified in ignoring the reflection sym-
metry in our analysis.

We turn now to a different issue. The computations of
Pugh and Saffman’ and Soibelman* were motivated by the
desire to find nontrivial solutions of the Navier-Stokes
equations at Reynolds numbers below that of the limit
point for the steady-wave branch. The modulated waves
detected by Pugh and Saffman were seen as a possible can-
didate for such solutions. While our analysis cannot com-
pletely rule out the possibility of the modulated waves ex-
tending below the steady-wave limit point, we can rule out
any simple scenario. That is, if there are no other bifurca-
tions of the modulated waves prior to the SNP (the limit
point for the modulated-wave branch), then it is straight-
forward to show that the SNP must occur at a Reynolds
number greater than that of the steady-wave limit point.
That is, in Fig. 5, the locus of SNP’s cannot cross the locus
of SN’s. The reason is that the modulated waves form a
barrier which separates the upper and lower steady waves
and prevents them from meeting at the limit point. Hence
the modulated-wave branch must turn around prior to the
two branches of steady waves meeting at the limit point.
We stress that while this result is intimately related to the
fact that the dynamics can be captured in a 2-D phase
space, the argument can be formulated strictly in topolog-
ical terms without assumptions regarding the dimensional-
ity of the phase space in which the modulated and steady
waves exist. > Therefore, while we know directly from the
computations of Soibelman that the modulated waves do
not extend below the steady-wave limit point, our analysis
explains why this is to be expected. Moreover, our analysis
shows that even at parameter values not considered by
Soibelman, e.g., other wavelengths, the modulated waves
bifurcating near the limit point are not good candidates for
solutions extending to low Reynolds numbers.

Finally, we comment on the wavelength parameter L,
which we have not included explicitly in our analysis.
First, the (Re,u) phase diagram in Fig. 5 is structurally
stable and should hold for many values of L. In particular,
Fig. 5 is based on numerical computations at a = 27wh/
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L=1.1, which is near the well-known ‘“nose” of the
neutral-stability surface in (Re,a,E) space as studied by
Herbert.® Hence we expect Fig. 5 to hold for a range of
values of L near the nose. Second, while for some values of
L the phase diagram for the Navier-Stokes equations
might not be that shown in Fig. 5, we anticipate that in
many of these cases the phase diagram will be simple dis-
tortions of Fig. 5. In particular, we expect the location of
the DZ and DH to be functions of L. For some values of L
these bifurcations might move either all the way up to
1 = o or all the way down to u =0, in which case these
bifurcations disappear from the phase diagram. We remark
also that by varying all three parameters, Re, yu, and L, it
might be possible to find the codimension-three point cor-
responding to A; = A, = k; = 0 in the third-order normal
form. It would be quite interesting if such a point could be
found.

In conclusion, we have proposed a comprehensive pic-
ture for the stability of the steady waves and for the dy-
namics of modulated waves near the Reynolds number
limit point in 2-D plane Poiseuille flow. Through an anal-
ysis of the normal-form equations for the double-zero ei-
genvalue, we have arrived at the simplest description of the
behavior near the limit point that is consistent both with
the numerical computations of Pugh and Saffman® and
Soibelman,* and with bifurcation theory. It is possible,
however, that the simplest possibility does not obtain in
practice and that a more complicated scenario holds. It is
therefore important that our predictions be checked by
numerical computations of the Navier-Stokes equations.
We hope that such computations will be forthcoming.
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APPENDIX A: DEGENERATE HOPF BIFURCATION

There is some variation in terminology for subcritical
and supercritical bifurcations,*® so in this appendix we de-
scribe briefly what is meant by these terms in this paper
and in most of the dynamical systems literature.®1"23%¢ We
examine the degenerate, codimension-two situation at
which a bifurcation changes from supercritical to subcrit-
ical.

Consider first the case for the Hopf bifurcation in the
plane. In polar coordinates, the normal form is

F=—Ar+ ar,

0 =w + cA + b2

The # equation does not contain 6, and can be considered
separately. Bifurcation diagrams are shown in Fig. 8 for
a= % 1. These may also be viewed as pitchfork bifurcations
of equilibria; the terminology for supercritical and subcrit-
ical applies to such bifurcations as well.
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FIG. 8. Bifurcation diagrams for (a) supercritical Hopf bifurcation and
(b) subcritical Hopf bifurcation. Arrows indicate the stability of the
steady state r=0.

Everywhere except at the bifurcation point, the stabil-
ity of the equilibrium =0 is determined by linear analysis.
At the bifurcation point, however, the stability of this equi-
librium is determined by the higher-order terms, i.e., by the
sign of a. If the equilibrium is asymptotically stable at the
bifurcation point, then the bifurcation is supercritical. If the
equilibrium is asymptotically unstable at the bifurcation,
that is, if the equilibrium is asymptotically stable after the
transformation t— —t, then the bifurcation is subcritical.
Note that at transcritical and saddle-node bifurcations, the
equilibrium is neither asymptotically stable nor asymptot-
ically unstable, and it makes no sense to speak of criticality
(super or sub) for these bifurcations.

The following point is crucial: the criticality of a bifur-
cation is not determined by whether the bifurcating
branches increase or decrease with the bifurcation
parameter—the definition of criticality is independent of
the problem parametrization.37 The situation is directly
analogous to that in equilibrium thermodynamics, where,
for example, the order of a phase transition is independent
of whether the temperature T or inverse temperature 3 is
considered as the parameter. Subcritical bifurcations are
analogous to first-order transitions and supercritical bifur-
cations to second-order transitions.

While the direction of the bifurcating branches is not
determined in an absolute sense, the direction is deter-
mined with respect to the stability of the bifurcating equi-
librium: if the bifurcation is supercritical, then the bifur-
cating solutions have the same stability as the original
equilibrium and lie on the side of the bifurcation point
corresponding to the positive eigenvalue. If the bifurcation
is subcritical, then the opposite holds.

In higher-dimensional systems the criticality of a bi-
furcation is determined by the stability in the bifurcation
direction only, 1.e., by the stability along the center mani-
fold only, and not by the overall stability of the bifurcating
solutions. For example, in the three-dimensional system,

b =—Ar+ar,
0 =w + cA + b7,
z =z,

The criticality of the bifurcation at A =0 is determined
from the r equation only, and while none of the solutions
are stable due to instability in the z direction, the bifurca-
tion is supercritical if a <0.

We now discuss the codimension-two bifurcation at
which the criticality of the Hopf bifurcation changes. We
refer to this bifurcation as the degenerate Hopf (DH) bi-
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FIG. 9. Phase diagram and representative bifurcation diagrams for the
degenerate-Hopf bifurcation. DH denotes the degenerate Hopf bifurca-
tion, H denotes Hopf bifurcations, and SNP denotes saddle-node-of-
periodic-orbits bifurcations. Supercritical and subcritical Hopf bifurca-
tions are indicated with solid and dashed lines, respectively.

furcation. This bifurcation is important to the 2-D channel
problem (Secs. III C and 1V).

The 7 equations for the degenerate Hopf normal form
is

F=—Ar+ AP + kP, (A1)

The coefficient @ in the Hopf normal form has been re-
placed by the parameter A, and a fifth-order term has been
added. As with the Hopf bifurcation, the essential behavior
is contained solely in the 7 equation and we need not con-
sider the 6 equation.

The phase diagram for & > 0, which corresponds to the
situation of interest in the channel problem, is shown in
Fig. 9 . Hopf bifurcations occur at A; = 0. They are sub-
critical if 1,>0 and supercritical if 1, <0. At A, =0 the
bifurcation is, by the above definition, subcritical in the
case k> 0, but because this is determined by the fifth-order
term, we call the bifurcation degenerate or critical.

It is straightfoward to compute the nontrivial solutions
of (Al). There is one unstable periodic orbit for 1,>0,
and there are two periodic orbits, one stable and one un-
stable, for

—A3/4k <A1 <0, Ay<O.

On the curve A; = —A3/4k the two periodic orbits collide
in a saddle-node-of-periodic-orbits (SNP) bifurcation.
Thus the change in criticality of a Hopf bifurcation is as-
sociated with a SNP bifurcation, and the locus of SNP
bifurcations has a quadratic tangency with the locus of
Hopf bifurcations at the DH.

APPENDIX B: REDUCTION TO AMPLITUDE
EQUATIONS

In this appendix we briefly outline how, for the prob-
lem at hand, it is, in principle, possible to reduce the dy-
namics of the streamfunction ¢ appearing in the Navier—
Stokes equations (1) to the dynamics of two amplitudes.

Assume that for a large class of ¥(x,p,?) including, but
not exclusive to, steady and modulated waves, there exists
a K such that

a
P(x=0y=0,t)=K= g (x=0,y=0,t) #0.
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(b)

FIG. 10. Diagram illustrating the reduction of the streamfunction ¥ in the
Navier-Stokes equations to a pair of real amplitudes, 4, and 4,. (a)
Tliustration of the Poincaré section used to eliminate the wave speed from
the dynamics. The Poincaré section is transverse to the time evolution of
the streamfunction. The points ¥ (x,p), ¥+ U (x,p), etc., are succes-
sive crossings of the section in one direction. (b) Diagram illustrating the
center manifold on which the asymptotic dynamics takes place. The co-
ordinates of the center manifold are centered on the state .. The ampli-
tudes of all other modes are slaved to the amplitudes, a, and a,, of the
modes 9, and ,. Specifically, the long-time behavior of the amplitude a;
is given by A(a,,a;). (¢} Illustration of the interpolation of the discrete
time amplitudes, a'®, a'"+ !, etc,, by the continuous-time amplitude
A(?). In the figure, a™ = (a{",a§™), A1) = [4,(8),4;(1)], ete.

Then the hypersurface = given by = = {¢/|4(0,0,) =K}
can be used as a Poincaré section for the dynamics [see Fig.
10(a)]. There is nothing special about the point
(x=0,y=0), it is simply chosen for concreteness and some
other point could be chosen as needed. The Poincaré map
I1, taking points on = to points on Z, is given by

L™ (x,y) — "+ V(x,p),

where ¢(") (xy)= P(xpt = T,), with T, the nth time
from r=0 such that

P(x=0,y=0,=T,)=K,

id 0,y=0,t=T 0
E(x_ )y'_‘ ’t— n)> .

The condition that the time derivative be positive ensures
that the crossings of 2 in one direction only are considered.
[Rather than considering a section transverse to orbits gen-
erated by the flow of time, one can consider a section trans-
verse to orbits generated by the symmetry group SO(2),
and in this way, collapse to a single point all states that lie
on the same group orbit. We choose to consider a Poincaré
section transverse to the time flow because such a section
can also be used in the absence of symmetry, as in Sec. V.]
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Thus we reduce the dynamics of the Navier-Stokes
equations to the dynamics of the map II, and in so doing
we remove time explicitly from the problem. In particular,
we simultaneously eliminate the wave speed from the dy-
namics of the steady and modulated waves: steady waves
are isolated fixed points of I1 and modulated waves lie on
an isolated invariant circle for the map. Note that while the
Poincaré section in Fig. 10(a) is shown as two dimen-
sional, the section defined by = = {|(0,0,t) =K} is ac-
tually infinite dimensional.

The next step is the reduction from the infinite-
dimensional Poincaré map to a map of just two amplitudes.
For this we need to expand states on the Poincaré section
in a set of basis functions. Because we are interested in
bifurcations of finite-amplitude waves, we need to consider
a coordinate basis for 1 that is centered, not on the point
¥ (x,y) =0, but on the nontrivial state ¥, specified in Sec.
III A. Note that if ¥.(x=0,y=0) =K; however, if K+#0,
then ¥(x,y) =0 is not on the Poincaré section.

Given an orthonormal set of basis functions
{1(x,y),¥(x,p),...}, each of which satisfies ¢¥(x=0,
y=0)=0, we can expand the streamfunctions on the Poin-
caré section 1/:(")(x,y) as

¥ =t + 2 a"hix),

where a{™ is the amplitude of mode ¢; at the nth crossing
of the section. The Poincaré map II, then takes the form of
a set of modal equations:

a"tV=Mal™, ai",..), i=1,2,3,...

As discussed in Sec. I1I, there are two eigenvalues for the
steady waves that are near zero. All the other eigenvalues
are bounded away from zero and have negative real part.
For the map I, this means that there are two eigenvalues
near -+ 1 and all other eigenvalues are inside, and bounded
away from, the unit circle. Because of this, we choose the
basis functions ; and 1, to span the two-dimensional
eigenspace of the two eigenvalues near + 1. The time
scales of all the other modes are fast in comparison with
the time scales of the i, and ¢, modes, and thus the higher
modes are slaved to the ¥, and 1, modes. Hence, as regards
the long-time behavior of the system, it is possible to ex-
press the amplitudes of the higher modes as functions of
the amplitudes a; and a,:

agn) =h3(a§n), aén) ),

a‘(*n) =h4(a§"), agn))’

The situation is illustrated in Fig. 10(b). Technically, there
is a two-dimensional center manifold®!"**?4* coordinated
by the amplitudes a; and a,. Substituting for a;, ay,..., we
obtain
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1
a{"* V=11, [a{",a{" hy(a{" a{"),...]

=10,(a{",a{"),
(B1)
1
a{" V=1, [a{",a{" hy(al™,aiM),...]

= ﬁZ(agn),agn) )’

so that the dynamics is contained entirely in the two am-
plitudes a@; and a,. (When parameter dependence is con-
sidered, the center manifold is four dimensional, but this in
itself presents no difficulties. )

The next stage of the reduction is to bring the equa-
tions for a; and a, into normal form. However, rather than
consider normal-form equations for the map, we consider
continuous-time normal-form equations. The situation is
that, in the vicinity of the degenerate fixed point of interest
in this paper, it is possible to approximate the map to any
desired accuracy (Ref. 24, p. 311) with a system of differ-
ential equations

A\ =F(4,4,),
A,=F(4,,4,),

where the amplitudes 4, and A4, are continuous functions
of time. The interpolation of the discrete dynamics on the
center manifold by continuous amplitudes is illustrated in
Fig. 10(c). The amplitudes 4; and 4, approximate the
amplitudes @, and a, in the following sense: if the multi-
critical point is at the origin and if

A, (t=T,)=al”,
A2(t= Tn) =a§n),
then

1
A(t=T,, D)=a"*" + ¢,

1
A (1=T,, )=a;""" + ¢,

where €, and €, go to zero with some power of
|4,| + |4,|. Hence, rather than consider discrete normal-
form equations in terms of the amplitudes a; and a,, we
consider continuous normal-form equations for the ampli-
tudes 4, and A4,. From a practical point of view, the center-
manifold reduction and the subsequent transformation of
the map into normal form are both accurate to some order
in the distance away from the degenerate point. Continu-
ous normal forms are constructed to approximate the map
normal form to within this same order of
approximation.*?!

This method of studying bifurcations of maps by
means of interpolating flows is a standard approach in bi-
furcation theory. One typically must worry about the dy-
namics near homoclinic orbits, because at homoclinic or-
bits, arbitrarily small perturbations can lead to important
qualitative changes in dynamics. However, in the case of
the channel, the translational symmetry rules out differ-
ences between the map and continuous normal forms that,
in the absence of symmetry, occur near homoclinic orbits
(Sec. V). Thus, in describing the steady and modulated
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waves in the plane channel, it is particularly germane to
study continuous normal forms rather than normal forms
for maps.
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