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Results are reported from a three-dimensional computational stability analysis of flow
over a backward-facing step with an expansion ratio (outlet to inlet height) of 2 at
Reynolds numbers between 450 and 1050. The analysis shows that the first absolute
linear instability of the steady two-dimensional flow is a steady three-dimensional
bifurcation at a critical Reynolds number of 748. The critical eigenmode is localized
to the primary separation bubble and has a flat roll structure with a spanwise
wavelength of 6.9 step heights. The system is further shown to be absolutely stable
to two-dimensional perturbations up to a Reynolds number of 1500. Stability spectra
and visualizations of the global modes of the system are presented for representative
Reynolds numbers.

1. Introduction
The separated flow generated as fluid passes over a backward-facing step is of

interest for a variety of reasons. First, separated flows produced by an abrupt change
in geometry are of great importance in many engineering applications. This has driven
numerous studies of the flow over a backward-facing step during the past 30 years
(e.g. Goldstein et al . 1970; Denham & Patrick 1974; Armaly et al . 1983; Adams &
Johnston 1988). Also, the backward-facing step is an extreme example of separated
flows that occur in aerodynamic devices such as high-lift airfoils at large angles of
attack. In these flows separation may be created by a strong adverse pressure gradient
rather than a geometric perturbation, but the flow topology is similar. Secondly, from
a fundamental perspective, there is a strong interest in understanding instability and
transition to turbulence in non-parallel open flows. Transition mechanisms in parallel
flows such as plane channels and pipes have received substantial attention (e.g. Bayly,
Oszag & Herbert 1988 and references therein; Butler & Farrell 1993; Hamilton, Kim
& Waleffe 1995). While many questions remain, these basic flows are understood
considerably better than the non-parallel flows arising in more complex geometries.
In this context the flow over a backward-facing step has emerged as a prototype
of a non-trivial yet simple geometry in which to examine the onset of turbulence
(Avva 1988; Kaiktsis, Karniadakis & Orszag 1991, 1996; Akselvoll & Moin 1993;
Le, Moin & Kim 1997). Finally, from a strictly computational perspective, the steady
two-dimensional flow over a backward-facing step is an established benchmark in
computational fluid dynamics (e.g. Ghia, Osswald & Ghia 1989; Gartling 1990). New
computational studies such as the highly accurate stability computations presented
here will expand the database for this benchmark problem.
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The two-dimensional, absolute, linear stability of this flow has been examined
extensively and is discussed in several publications (Gartling 1990; Gresho et al . 1993;
Fortin et al . 1997). Computational studies have established that the two-dimensional
laminar flow is linearly stable with respect to two-dimensional perturbations up to
a Reynolds number of at least Re = 600. (As discussed in § 2, several definitions of
the Reynolds number are used in the literature. Appropriate reference scales for this
problem are the upstream centreline velocity U∞ and step height h; all cited results
are expressed in these units.) However, additional computational evidence supports
the existence of a local convective instability (again to two-dimensional disturbances)
for a sizable portion of the domain at Reynolds numbers above 525 (Kaiktsis et al .
1996).

Denham & Patrick (1974) conducted experiments on laminar flow over a backward-
facing step with an expansion ratio of 3. Velocity profiles and reattachment lengths
of the primary recirculation zone were measured in the steady two-dimensional
regime for Reynolds numbers up to 344. Denham & Patrick also describe transient
three-dimensional flows within the primary recirculation zone following perturbations
(obtained by tapping the channel) at Re = 344. Experiments by Armaly et al . (1983)
on air flow in a backward-facing step geometry with nominal expansion ratio of
approximately 2 provide quantitative measurements of two- and three-dimensional
flows over a large range of Reynolds number, from about 50 to 6000. In addition to
providing data on separation and reattachment points, streamwise velocity measure-
ments are reported for several Reynolds numbers throughout the range of the study.
Below Reynolds number 300 the flow is essentially spanwise invariant, although some
deviation from two-dimensionality necessarily exists near the lateral sidewalls of the
channel (see below). Above Re = 300 there is a measurable deviation from two-
dimensionality. At about the same Reynolds number a secondary separation bubble
is observed on the upper wall of the channel (the wall opposite the step).

Ghia et al . (1989) computed two-dimensional solutions of the backward-facing
step flow throughout the laminar regime and found good agreement with the two-
dimensional flows observed by Armaly et al . (1983). They discuss two mechanisms for
the onset of three-dimensionality based on available information. They postulate that
instability of the two-dimensional flow could result from a Taylor–Görtler instability
after the formation of the secondary separation bubble on the upper wall because the
main flow is then subject to destabilizing concave curvature. They also consider, but
reject, the possibility that the sidewall boundary layer contributes to three-dimensional
transition. Kaiktsis et al . (1991) studied the onset of three-dimensionality using direct
numerical simulations, primarily for the case of a spanwise-periodic domain. They
reported both two- and three-dimensional instability (unsteadiness) at approximately
the same Reynolds number: Re ' 525. However, Kaiktsis et al . (1996) later showed
that this two-dimensional instability was convective rather than absolute. They report
that the three-dimensional instability occurs at the ‘boundaries between the primary
and secondary recirculation zones with the main channel flow’.

Williams & Baker (1997) have conducted three-dimensional simulations in a do-
main with lateral sidewalls having the same expansion and aspect ratio (spanwise
length Lz to step height h) used by Armaly et al . (1983), and they reproduce the
laminar three-dimensional flows observed experimentally. They find deviations from
two-dimensionality near the sidewalls at Reynolds numbers where Armaly et al .
(1983) report two-dimensional flows and note that ‘the transition from two- to three-
dimensional flow is not an abrupt change but rather a continuous penetration of the
three-dimensional flow, fed by a wall jet, from the sidewall to the central symmetry
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plane’. The implication is that the three-dimensionality observed in the experiments
results from an extrinsic effect induced by the lateral boundary conditions, and thus
will probably depend on the system aspect ratio. The observed three-dimensionality
does not follow from a fundamental hydrodynamic instability of a two-dimensional
flow.

Thus in spite of the numerous investigations of flow over a backward-facing step
available in the literature, some of the most basic questions for this flow remain
open: in the ideal problem with no sidewalls, at what Reynolds number does the
flow first become linearly unstable, what is the nature of this instability, and where in
the flow does it originate? These are the questions we wish to address. We focus on
the accurate determination of the initial intrinsic three-dimensional instability. This is
similar in spirit to the work of Kaiktsis et al . (1991) which attempted to quantify the
transition to three-dimensionality in backward-facing step flow via direct numerical
simulations. Our approach is a computational bifurcation analysis of the flow. We will
show that the primary instability for the backward step flow is a three-dimensional,
steady bifurcation.

Our presentation is organized as follows. In §§ 2 and 3 we formulate the problem and
describe our numerical methods. In § 4 we report the results of our stability analysis
for Reynolds numbers up to 1050, and in § 5 we discuss these results in the context
of experiments and transition to turbulence for the flow over a backward-facing step.

2. Problem formulation
Consider the motion of a viscous fluid contained between two fixed plates with a

step change in separation distance at the origin. We take the flow direction to be
such that fluid moves toward the larger gap, i.e. a backward-facing step. The fluid is
assumed to have constant density ρ and constant kinematic viscosity ν. The Reynolds
number is Re ≡ UrefLref/ν, where the reference scales Lref and Uref for length and
velocity are specified below.

The fluid motion is governed by the incompressible Navier–Stokes equations,
written in non-dimensional form as

∂u

∂t
= N (u)− ∇p+

1

Re
∇2u in Ω, (2.1a)

∇ · u = 0 in Ω, (2.1b)

where u(x, t) is the velocity field, p(x, t) is the static pressure, Ω is the computational
domain, and N (u) represents the nonlinear advection term:

N (u) ≡ −(u · ∇)u. (2.1c)

Figure 1 illustrates the computational domain under consideration and also serves
to define the geometric parameters for the problem. We consider a step of height h
and take the edge of the step as the origin of our coordinate system. Fluid arrives
from an inlet channel of height αh and flows downstream into an outlet channel of
height (1 + α)h. In this study we fix α = 1, giving an expansion ratio (outlet to inlet)
of 1 + 1/α = 2. The inflow and outflow lengths Li and Lo should be large enough
that the results are independent of these parameters. At the inlet, Li = h is sufficient
for the range of Reynolds numbers we consider (Kaiktsis et al . 1991; Williams &
Baker 1997). The required outflow length Lo varies with Reynolds number. As part
of our convergence study (see § 3.3.1 below) we found acceptable values to lie in the
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Figure 1. Flow geometry for the backward-facing step. The origin of the coordinate system is at
the step edge. In this work we take the ratio of inlet height to step height as α = 1, so that the
expansion ratio is 1 + 1/α = 2.

range 15h 6 Lo 6 55h. Finally we take the system to be homogeneous in the spanwise
direction and we take the system to be infinitely large in this direction, i.e. Lz = ∞,
by considering all spanwise Fourier modes (see § 3).

Boundary conditions are imposed on the flow as follows. At the inflow boundary
(x = −Li, 0 6 y 6 αh) we impose a parabolic profile: u = 4y(αh−y)/(αh)2, v = w = 0.
Along the step and all channel walls we impose no-slip conditions. At the outflow
boundary (x = Lo, −h 6 y 6 αh) we impose a standard outflow boundary condition
for velocity and pressure:

∂xu(x, t) = (0, 0, 0), p(x, t) = 0. (2.2)

Along all other boundaries the pressure is forced to satisfy the high-order Neumann
boundary condition given by Karniadakis, Israeli & Orszag (1991).

Several different choices of non-dimensionalization appear in the literature. Table 1
provides a representative list of reference scales, Lref and Uref , and the corresponding
Reynolds number in the case α = 1. The step height h is a natural length scale for
defining the problem geometry and measuring quantities like downstream separation
points, and it is the most common choice for Lref . Other common length scales used
are the downstream channel height (1 + α)h or, if the incoming flow is turbulent, the
momentum thickness of the upstream boundary layer. Two different velocity scales
are commonly used: the maximum upstream centreline velocity U∞ and the average
upstream velocity U:

U =
1

αh

∫ αh

0

u(y) dy.

Note that U = (2/3)U∞ for parabolic inflow velocity. In the present work we take
Lref = h and Uref = U∞, giving the Reynolds number as

Re ≡ U∞h
ν
. (2.3)

This definition of Reynolds number is independent of α. All quantities cited from
the literature (Reynolds numbers, separation points, velocities, eigenvalues, etc.) are
rescaled using this non-dimensionalization.

3. Computational methods
Our computations consist of two parts. First, we obtain steady two-dimensional

solutions from either time-dependent simulations or Newton methods. Second, we
determine relevant bifurcation points along the steady branch of solutions via two- and
three-dimensional linear stability analysis. The method follows that used previously
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Authors Lref Uref Reα=1

Denham & Patrick (1974) h (2/3)U∞ (2/3)U∞h/ν
Armaly et al . (1983) 2αh (2/3)U∞ (4/3)U∞h/ν
Kaiktsis et al . (1991) h (4/3)U∞ (4/3)U∞h/ν
Gresho et al . (1993) (1 + α)h (2/3)U∞ (4/3)U∞h/ν
Adams & Johnston (1988) h U∞ U∞h/ν
Present study h U∞ U∞h/ν

Table 1. Comparison of reference scales used in various studies. The most common choice is the
last one: Lref = h (step height) and Uref = U∞ (upstream centreline velocity). Different scalings lead
to different definitions of the Reynolds number, tabulated for α = 1.

by Mamun & Tuckerman (1995), Barkley & Henderson (1996), and Barkley &
Tuckerman (1999).

All of the calculations were carried out using a non-conforming spectral element
program (Prism, Henderson 1994). In the spectral element method a two-dimensional
domain Ω is represented by a mesh of K elements. Within each element both the
geometry and the solution variables, in this case u(x, t) and p(x, t), are represented
using Nth-order (Legendre) polynomial expansions. Figure 2 shows the basic compu-
tational domains used for simulations of the backward-facing step flow over the entire
range of Reynolds numbers. Non-conforming elements allow local mesh refinement
in regions like the step corner yet preserve the block structure of the calculations.
Computational domains with various refinement levels and outflow lengths were used
at different Reynolds numbers and will be discussed in § 3.3.1 below. Beyond the
details of the polynomial basis and the treatment of non-conforming elements in the
mesh, the method follows a standard Galerkin finite element procedure to discretize
equation (2.1). Henderson & Karniadakis (1995) discuss further details of the method
and solution techniques, along with various validation studies for the particular code
employed here.

For the most part the method we use to study bifurcation problems does not depend
on any particular spatial discretization so we can describe the relevant algorithms
in the following abstract way. Let u(t) be the n-dimensional vector containing the
discrete representation of the velocity field u(x, t). Discretizing the Navier–Stokes
equations (2.1) gives a system of differential algebraic equations schematically of the
form

du

dt
= N(u) + Lu, (3.1)

where L and N(·) are linear and nonlinear operators respectively. For linear stability
and steady-state calculations we also require equations describing the linear evolution
about some given reference state U. These equations take the form

du

dt
= (NU + L)u, (3.2)

where NU is the linearization (Jacobian) of the operator N about state U. More
specifically, let U + u be an infinitesimal perturbation to a steady flow U . Equations
for the evolution of u are obtained by replacing the nonlinear advection term in the
Navier–Stokes equations with the linearization

NU (u) ≡ −(u · ∇)U − (U · ∇)u.
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Figure 2. Computational domains used in the present study. Subscripts label external dimensions
(specifically outflow length Lo). Each domain is divided into K elements. Where necessary, lower-case
letters label the degree of internal mesh refinement: the M3a mesh has K = 83 elements and the M3b

mesh has K = 203 elements. Within each element the solution and geometry are represented by N2

polynomial coefficients. Two subsections of mesh M4 are expanded to show the internal distribution
of quadrature points for polynomial order N = 7. To simulate a three-dimensional flow the solution
is decomposed into M Fourier modes in the periodic spanwise direction, each computed on the
same two-dimensional grid.

The boundary conditions for the perturbation u are the same as those for the base
flow U except that u = 0 at the inlet. Therefore U + u satisfies the same boundary
conditions as U .

Our primary tool is a method for evolving some given state forward in time. Define
the operators A and AU as follows:

Au(t) ≡ u(t) +

∫ t+T

t

(N(u) + Lu) dt′, (3.3)

AUu(t) ≡ u(t) +

∫ t+T

t

(NU + L)u dt′. (3.4)

A gives the nonlinear evolution of u(t) over time interval T . It also represents our
simulation code as a black box for integrating the Navier–Stokes equations: given
a velocity field u(t), it provides the solution at a later time u(t+ T ) = Au(t). The
operator AU gives the analogous linear evolution of u(t) about some given reference
state U. In practice both equations (3.1) and (3.2) are integrated using the third-
order semi-implicit splitting scheme described by Karniadakis et al . (1991). For the
remainder of this section, however, we will only refer to the operators A and AU
rather than the time-dependent Navier–Stokes equations that they represent.

3.1. Steady-state calculations

A steady-state or time-independent solution U of (3.1) satisfies U = AU or (A−I)U =
0, where I is the n×n identity matrix. Since A is nonlinear and n is large, this equation
must be solved iteratively. Let Uk ≡ U(t+kT ) be a sequence of states that evolve from
the initial condition U0. The simplest method for finding the steady-state solution U
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is to use fixed-point iteration:

Uk+1 = AUk. (3.5)

If all eigenvalues µi of AU satisfy |µi| < 1, then the steady-state solution U is linearly
stable and the sequence converges, Uk → U, for most initial conditions. This is
equivalent to performing time-integration. To accelerate convergence, once the initial
(fast exponential) transients decay we switch to a Newton iteration:

(AUk
− I)uk = (A− I)Uk,

Uk+1 = Uk − uk.

}
(3.6)

Each Newton iteration requires an inversion of the linear operator (AU − I). This is
accomplished with a generalized minimum residual (GMRES) iterative method (Saad
& Schultz 1986).

For moderate Reynolds numbers (up to Re ≈ 800) our steady-state calculations
for the backward-facing step flow consist of only a few explicit steps followed by
Newton iterations. For the definition of the operators A and AU we use T equal
to a typical time step (∆t = 5× 10−3). For larger values of the Reynolds number
(Re > 800) we typically find that the number of GMRES iterations necessary to
invert (AU − I) becomes so large that simple fixed-point iteration (3.5) requires less
computation time. The Stokes preconditioning method of Mamun & Tuckerman
(1995) does not work in our case because our numerical operators derive from a
third-order splitting scheme (Karniadakis et al . 1991) which does not impose exact
incompressibility of the flow. The divergence of the velocity field is of order ∆t3,
which is acceptable in direct simulations or in our Newton’s method with ∆t small.
However, in Mamun–Tuckerman preconditioning ∆t is large and so the divergence of
the flow becomes very large and the numerical method fails. What this implies for the
present study is that our method for computing steady states works well up to and
slightly above the Reynolds number for the primary three-dimensional instability of
the flow (§ 4.1). However our method is not well suited for larger Reynolds numbers,
for example those which must be attained for two-dimensional linear instability of
the flow (§ 4.3). We are able to obtain steady two-dimensional flows between Reynolds
number 800 and 1500 only by fixed-point iteration (3.5), effectively time integration.
This is feasible since the flows we consider are globally two-dimensionally stable, but
the convergence is very slow due to the smallness of the leading two-dimensional
eigenvalues (§ 4.3).

3.2. Stability analysis

For the linear stability calculations we need to solve the eigenvalue problem AU ũ = µũ,
where µ is an eigenvalue of the operator AU and ũ is the corresponding eigenmode.
For a time-independent base flow U, the eigenvalues σ+ iω of the linearized Navier–
Stokes operator NU + L are related to the eigenvalues µ via µ = exp((σ + iω)T ). An
instability occurs if σ > 0 and the resulting bifurcation may be either steady (ω = 0)
or oscillatory (ω 6= 0).

Again we turn to iterative methods. Let u1 be some initial guess for the dominant
eigenmode of AU . To begin we generate the Krylov sequence

u1, u2 = AUu1, u3 = AUu2, . . . , um = AUum−1.

These vectors form a Krylov subspace that can be represented as the n × m matrix
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X = 〈u1, u2 . . . um〉. Next we execute the block power iteration

Xk+1 = AUXk. (3.7)

Because Xk is a Krylov subspace, each iteration of (3.7) requires only a single
matrix-vector multiplication to generate the next element of the sequence. Computing
an orthonormal basis for the space Xk after each iteration gives estimates for the
dominant eigenvalues and eigenmodes of AU . Any absolute global instability will
necessarily be found by this method as long as u1 is not exactly orthogonal to
the unstable mode of the system. Not only is this very unlikely (and essentially
impossible in the presence of random round-off errors), but in addition we often
effectively generate several different choices for u1 at the same Reynolds number by
using different meshes.

For the backward-facing step problem we use a subspace dimension m typically
between 20 and 80 and obtain highly accurate leading eigenvalues after O(100)
subspace iterations. Typically 200 subspace iterations are required to obtain the four
leading eigenvalues accurately. In defining the operator AU for these calculations we
use an evolution time of T = 5. For more details and additional applications see
Edwards et al . (1994), Mamun & Tuckerman (1995), Schatz, Barkley & Swinney
(1995), and Barkley & Henderson (1996).

Our primary concern here is the three-dimensional stability of steady two-dimen-
sional flows, and in this case the eigenmodes take a special form. Because the system
is homogeneous in the spanwise direction, we can decompose general perturbations
into Fourier modes with spanwise wavenumbers β:

(u, p) =

∫ ∞
−∞

(û, p̂) eiβz dβ.

At linear order, modes with different |β| are decoupled. It follows directly from the
linearized Navier–Stokes equations that any eigenmode of AU with a given β must
be of the following form:

ũ(x, y, z) = (û(x, y) cos βz, v̂(x, y) cos βz, ŵ(x, y) sin βz),

p̃(x, y, z) = p̂(x, y) cos βz,

}
(3.8)

or an equivalent form obtained by translation in z. Restricting attention to modes
with a particular β reduces the full three-dimensional stability problem at any given
Reynolds number to a one-parameter family of problems for the Fourier components
(û, v̂, ŵ) of the eigenmode ũ(x, y, z). These Fourier components are computed on a
two-dimensional domain with β appearing in the linearized equations as an additional
parameter. Linearizing the equations in this way also frees us from the erroneous
effects of imposing periodic boundary conditions with an incorrect length, since β
can be varied continuously. Our stability calculations therefore produce a family of
eigenvalues µ(β), or equivalently σ(β) + iω(β), for a discrete set of fixed Reynolds
numbers.

As a final note, the steady flows and eigenmodes can be computed on different
grids and with different levels of refinement, i.e. a given base flow U can always be
interpolated onto an appropriate mesh for the stability calculations. In practice we use
the same domains for both the steady flow and stability computations, but frequently
use different polynomial orders. In presenting results we use the notation Nb and Ne

to denote the polynomial order used in the base flow and eigenvalue computations.
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(a)

(b)

(c)

(d )

0 5 10 15 20 25 30 35
x/h

Figure 3. Visualization of the steady two-dimensional base flows at (a) Re = 150, (b) 450, (c)
750 and (d ) 1050. Each image shows the separation streamlines associated with the primary and
secondary recirculation zones. Shaded regions correspond to vorticity magnitude in the range
0 6 |ωh/U∞| 6 2. Note the appearance of a separation bubble on the upper wall at Re ' 300
(between the (a) and (b)). The dashed lines on the right indicate the outflow boundary of the
computational domain. For (d ) Lo = 45h and the outflow boundary is outside the range shown.

3.3. Convergence tests

Flow past a backward-facing step is a deceptively difficult problem to fully resolve,
especially at large Reynolds number. The combined effects of the geometric singularity
at the step corner and the convective instability of the core flow can produce and then
amplify numerical errors that mimic an intrinsic temporal flow instability. Gresho
et al . (1993) illustrate the minimum resolution requirements at Re = 600 for a variety
of methods. In this section we outline our own convergence tests for both the base
flow and stability calculations to establish that the numerical results we present are
well-resolved.

3.3.1. Base flow

There are two central issues in checking convergence of the base flow calculations:
external dimensions of the grid (Li and Lo) and the degree of internal refinement.
External dimensions can be determined from a simple parameter study, but the
unstructured nature of the discretization makes the internal refinement study more
difficult to organize. Below we highlight only representative tests near the three-
dimensional critical Reynolds number, although we did perform a large number of
calculations to test both domain size and resolution over the full parameter range.

Figure 3 shows an overview of our base flow calculations in terms of steady-state
vorticity fields and separation streamlines at various Reynolds numbers, and provides
a qualitative picture of how the base-flow structure evolves with increasing Re. At
moderate Reynolds number the steady flow consists of a primary separation bubble
extending from the step and a secondary separation bubble that first appears on
the upper wall at Re ' 300. This secondary separation bubble was first reported by
Armaly et al . (1983) and has been confirmed in numerous computational studies (e.g.
Ghia et al . 1989; Gartling 1990; Kaiktsis et al . 1991; Williams & Baker 1997).

The skin-friction coefficient, Cf , passes through zero exactly at the boundaries of
the separation zones. This quantity provides a sensitive measure of the overall grid
resolution. In the present case the skin-friction coefficient can be defined as

Cf ≡ − 2ν

U2∞

∂u

∂y
ny,

where ny accounts for the direction of the outward normal to the fluid: ny = 1
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Figure 4. Computed skin-friction coefficients at Re = 750 along (a) the upper wall and (b) the
lower wall of the channel. Solid circles (•) mark the three downstream locations where Cf(xj) = 0.
Open circles (©) indicate results from a coarse grid, M3a with Nb = 7, while the solid lines (—)
indicate results from a fine grid, M3b with Nb = 7. Note the oscillations in the coarse-grid solution
near Cf(x2); this is typical of a high-order method on an under-resolved grid.

on the upper wall and ny = −1 on the lower wall. Although this quantity is only
evaluated along the walls, its downstream distribution obviously depends on the
dissipation of momentum in the core part of the flow. Figure 4 shows the computed
distribution of Cf for both a coarse and fine grid calculation at Re = 750. The
coarse and fine grids are based on the M3a and M3b meshes, respectively, shown in
figure 2. Both calculations were run with a fixed polynomial order of Nb = 7. Even
though the spectral-element method does not impose continuity of derivatives at
element boundaries, continuous velocity gradients are obtained for sufficiently high
polynomial order. This is evidenced by the fact that our Cf distributions appear
continuous in the downstream direction. Oscillations in the solution along the upper
wall suggest that the flow is ‘under-resolved’ on the coarse grid. These oscillations
disappear upon grid refinement and the entire distribution converges to a smooth
curve. Both solutions agree extremely well in the regions of the flow where Cf varies
slowly.

To further quantify the base flow calculations, we track the position of separation–
reattachment points in the domain as a function of Reynolds number, i.e. the set of
locations along the walls where Cf(xj) = 0. Figure 4 indicates the location of these
points for Re = 750 based on the converged fine-grid solution. Since the extent of the
primary and secondary separation zones varies with Reynolds number, the location
of these points provides another good test of domain size and appropriate resolution.
In particular it indicates the minimum external dimensions of the computational
domain required to enclose the separation zones.

Figure 5 compares calculations on a variety of grids over the entire range of
Reynolds number considered in our study. Our basic criterion for choosing Lo is to
locate it five or more step heights downstream of the reattachment point x3. We have
overlaid results for grid pairs Mk and Mk+1 in figure 5, with at least one overlap



Stability analysis of flow over a backward-facing step 177

x/h

x1

x2 x3

1500

Re

0 10 20 30

M1

Coarse
Fine

1000

500

40

M2 M3 M4

Figure 5. Separation–reattachment points in the backward-facing step flow as a function of
Reynolds number. This figure compares results for several meshes with different geometries and
internal levels of refinement. Dashed lines mark the location of the downstream boundary (Lo) for
each mesh, with the vertical extent indicating the valid range in Re for each.

point for each consecutive grid pair. On the scale of the plot these overlaid points
can barely be distinguished, thus showing that the computed reattachment points are
insensitive to Lo for the indicated Reynolds number range for each mesh. Consistent
with the sensitivity of Cf shown in figure 4, the location of the separation point x2

does show some sensitivity to the degree of internal refinement, with x2 shifting just
slightly downstream on the finer grid.

The results in figure 5 agree well with published computational data. Below
Re = 300 the computed primary separation length also agrees with the experimental
data of Armaly et al . (1983), although those experiments were performed with and
expansion ratio of 1.94 rather 2. We also find that the secondary separation zone first
appears at Re ' 300, as reported by Armaly et al . (1983). At larger Reynolds num-
bers the primary separation length does not agree with the experimentally measured
values because the experimental flow is three-dimensional. This effect is well docu-
mented by Williams & Baker (1997). However, our results do agree well with other
two-dimensional computations in this regime. In particular, Gartling (1990) reports
from highly resolved computations that at Re = 600 these points occur at x1 = 12.2,
x2 = 9.7, and x3 = 21.0. The corresponding values from our fine-grid calculations
are: x1 = 11.91, x2 = 9.5, and x3 = 20.6, giving a discrepancy of only about 2%.
Discrepancies at this level may be attributed to the slightly different inflow boundary
conditions used in each calculation.

Based on our convergence study we chose the following strategy to generate grid-
independent base flows. First we performed a quick scan of Reynolds number using
relatively coarse grids but with an appropriate Lo. Then we introduced internal
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Nb Ne σ1 σ2 σ3 ω3 σ′1
7 5 0.000129 −0.012811 −0.014109 0.031406 0.005919
7 7 0.000042 −0.012898 −0.014236 0.031633 0.004985
9 7 0.000033 −0.012966 −0.014234 0.031615 0.004927
9 9 0.000030 −0.012972 −0.014247 0.031615 0.004903

Table 2. Dependence of eigenvalues on polynomial order. Parameters Nb and Ne indicate the
independent polynomial order of the base flow and eigenmode. Three leading eigenvalues computed
on the mesh M3b at Re = 750, β = 0.9 are given; the first two eigenvalues σ1 and σ2 are real, the
third is complex: σ3 ± iω3. The leading eigenvalue σ′1 computed on the M4 mesh at Re = 1050,
β = 1.5 is given in the last column.

refinement and recomputed these flows to generate fine-grid solutions at a few
Reynolds numbers bracketing points of interest, e.g. the primary bifurcation.

3.3.2. Tests of stability calculations

To quantify the precision of eigenpairs (µ, ũ) produced by subspace iteration we
compute the residual

r = ‖AUũ− µũ‖,
where ‖·‖ is the standard L2 vector norm and the eigenmodes are scaled so that
‖ũ‖ = 1. In most cases we continue iterating until r < 10−6 for one or more eigen-
modes, although in calculations that generate several modes the residuals for the
dominant ones are orders of magnitude smaller than this. For practical purposes
these can be considered exact eigenvalues of the operator AU so that the true accu-
racy is determined by how well the numerical operator AU approximates the linear
stability operator for the continuous problem.

Since accurate eigenvalue computations are predicated on having an accurate base
flow U, the grid requirements (external dimensions and level of internal refinement)
are dictated to a large degree by the base flow considerations discussed previously.
However, we frequently use a lower polynomial order for the stability computations,
particularly when scanning a large range of spanwise wavenumbers for a fixed
base flow.

To demonstrate the accuracy of the eigenvalue computations, we present in table 2
results as a function of base flow and eigenmode polynomial order, Nb and Ne.
We give the leading eigenvalues at Re = 750, β = 0.9, values extremely close to the
primary instability, and also at Re = 1050, β = 1.5, values near those giving the largest
growth rate found in our study. In all cases the residual satisfies r < 10−8 for the
leading eigenvalues σ1 and σ′1, and satisfies r < 10−6 for the other eigenvalues. The
eigenvalues have converged to an absolute accuracy of less than 10−4 at the highest
resolution (Nb = Ne = 9). The relative error of σ1 in table 2 is large (because σ1 ≈ 0),
but the absolute error is small and sufficient to determine the primary instability to
high precision.

As an additional check for systematic errors in our computations, we computed
the leading eigenvalue at Re = 600 for β = 0, i.e. the two-dimensional stability
problem. With Nb = Ne = 9 using mesh M3b we find σ = −0.006288. Gresho
et al . (1993) obtained a leading eigenvalue σ = −0.006277 at this Reynolds num-
ber using a different formulation and different inflow and outflow lengths for the
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backward-facing step geometry.† Such good agreement with an independent cal-
culation – a relative difference less than 0.2% – gives us further confidence in our
results.

Finally, as a test of the effect of outflow length on the stability computations we
have computed the leading eigenvalue at Re = 1050 for β = 0 and Nb = Ne = 9 using
two outflow lengths. For the M4 mesh (outflow L0 = 45) we obtain σ = −0.002896.
For a similar mesh with outflow L0 = 55 we obtain σ = −0.002904, thus verifying
that, just as for the base flow, L0 = 45 gives a well-resolved result at this Reynolds
number.

Our stability computations follow a similar protocol to that used for obtaining
converged base flows. We initially compute eigenvalue branches using a moderate
resolution. Typically we use the M3b mesh with polynomial orders Nb = 7 and Ne = 7.
Once the approximate location of a bifurcation point is known, we repeat the
calculations in that vicinity at higher resolution, up to polynomial order Nb = Ne = 9.

4. Results
4.1. Parameter dependence

We begin by summarizing our findings for the dependence of eigenvalues on Reynolds
number and spanwise wavenumber β. Figure 6 shows the real part of the leading
eigenvalues (those with largest real part) as a function of β for three values of
Reynolds number encompassing the primary instability. The eigenvalue curves are
symmetric with respect to a change in sign of β and only portions with β > 0
are plotted. Figure 7 shows the leading part of the spectrum at Re = 750, β = 0.9
(parameter values near the primary instability), and serves to illustrate where the
eigenvalues plotted in figure 6 lie in the complex plane.

The three eigenvalue plots in figure 6 have much the same general character.
There are two local maxima in the leading branch: one at β ≈ 0.15 and the other
at β ≈ 0.9. Between these local maxima the two real eigenvalues join to form a
complex-conjugate pair over a small range in β. For Re = 750 and Re = 1050 the
leading eigenvalues become complex again at larger spanwise wavenumbers. There is
also a separate branch of complex eigenvalues (also seen in figure 7) with real part
comparable to that of the purely real eigenvalues. These complex eigenvalues do not
become positive in the range of Reynolds number studied and thus play no active
role in the instability of the flow. We have investigated wavenumbers larger than
those shown in figure 6 and find no evidence of other eigenvalues that would give
rise to instabilities in this Reynolds number range. Note that we have not plotted
in figure 6 eigenvalues associated with damped downstream channel modes seen in
figure 7. They are not relevant to linear instabilities at these Reynolds numbers.

From figure 6 it can be seen that the primary linear instability for the backward-
facing step occurs just below Re = 750. The instability is three-dimensional with
a spanwise wavenumber of β ≈ 0.9. To determine the bifurcation point precisely
we have computed the leading eigenvalues at Re = 750 and Re = 735 for several
values of β near 0.9. From cubic polynomial fits to the eigenvalue data we find the
local maximum in the eigenvalue branches at these two Reynolds numbers. We then

† The value quoted is the mesh D value from Gresho et al . converted to our units. Their result is
reported as a positive number in inverse diffusive time units, whereas we report eigenvalues with the
opposite choice of sign in inverse advective time units. To convert to our non-dimensionalization
their reported value σ = 15.06489 must be made negative and multiplied by ν/4hU∞ = 1/2400.
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Figure 6. Leading eigenvalues at (a) Re = 450, (b) Re = 750 and (c) Re = 1050 as function
of spanwise wavenumber. The real part σ of eigenvalues σ + iω is plotted. Circles denote real
eigenvalues (ω = 0) and crosses denote complex eigenvalues (ω 6= 0). These results have been
obtained on the M3b mesh with polynomial orders Nb = 7, Ne = 7.
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Figure 7. Stability spectrum at Re = 750 for β = 0.9: ◦, real eigenvalues; ×, complex eigenvalues
associated with the step; ∗, complex eigenvalues associated with modes of the downstream channel
(see § 4.2). These latter eigenvalues depend on the outflow length Lo used in the computation. These
results have been obtained on the M3b mesh with polynomial orders Nb = Ne = 7.
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Figure 8. Neutral stability curve for backward-facing step flow. Everywhere in the shaded region
the flow is linearly unstable to three-dimensional perturbations over a finite band of wavelengths.
The points have been obtained on the M3b mesh with polynomial orders Nb = Ne = 7, and the
curve is a fit to these data.

linearly interpolate between the maxima to find the Reynolds number and spanwise
wavenumber at which the maximum crosses zero. We have done this for outflow
lengths of Lo = 35 and Lo = 45 and several polynomial orders up to Nb = Ne = 9.
From these data we find the critical values for the primary instability to be Rec = 748
and βc = 0.91, to within an uncertainty of 1%. The critical spanwise wavelength is
2π/βc = 6.9 step heights.

The critical Reynolds number that we find for the flow without lateral sidewalls
is considerably larger than the Reynolds number at which Armaly et al . (1983)
first report observing three-dimensional motions. In our units, Armaly et al . (1983)
observed significant three-dimensionality at Re = 300. Kaiktsis et al . (1991) report
stable three-dimensional flows starting at Reynolds numbers of about 525 in spanwise-
periodic simulations, and Williams & Baker (1997) find, in simulations with lateral
sidewalls, some degree of three-dimensionality even below Re = 300. There are several
reasons for these discrepancies which we discuss fully in section § 5.

In figure 8 we plot the neutral stability curve for the backward-facing step flow
up to Reynolds number 1000. Everywhere to the right of the curve the flow has at
least one positive eigenvalue and is therefore linearly unstable. Points along the curve
were obtained by locating the zero crossings of eigenvalue branches as a function of
β for several fixed Reynolds numbers between 750 and 1000. The neutral stability
curve becomes more complicated just above Re = 1000 because a complex-eigenvalue
portion of the leading branch crosses the imaginary axis (this can be seen in figure 6(c)
for Re = 1050, β ∼ 0.5). However, this is far above the primary instability.

4.2. Eigenmodes

We turn now to the structure of the linear mode that destabilizes the basic two-
dimensional flow. Figures 9 and 10 show the leading eigenmode at Re = 750, β = 0.9.
This is essentially the critical eigenmode. The spanwise-velocity contours of figure 10
clearly show that the bifurcating mode is localized to the primary recirculation
region downstream of the step. The instability involves neither the bulk flow nor
the secondary separation bubble to any significant degree. While the exact size and
shape of the primary recirculation zone depends on the global flow properties, the
three-dimensional instability is driven by this local part of the flow field.

The cross-channel velocity (y-velocity) in the critical eigenmode is quite small
everywhere (figure 9); the spanwise velocity component is particularly strong just
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Figure 9. Three-dimensional flow structure of the critical eigenmode at Re = 750 and β = 0.9.
Contours indicate the strength of the streamwise velocity component and vectors show the (v, w)
flow pattern in each cross-sectional plane: x = 1.2, 6.2 and 12.2.
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Figure 10. Sections of the critical three-dimensional eigenmode. Upper plot show (u, w) velocity
vectors in the plane y = −0.65 (indicated by a triangle at the right of the lower plot). The lower
plot contains w velocity contours (in the plane z = λ/4) with solid and dashed contours indicating
the sign of w.

behind the step edge and at the downstream reattachment point (x1 ' 13.2). The
secondary flow generated by the instability can best be described as a flat roll lying
within the primary recirculation zone. This flow is qualitatively similar to the transient
secondary flow sketched by Denham & Patrick (1974) following perturbations to the
two-dimensional flow at Reynolds number 344. However, the spanwise wavelength
of 6.9h is considerably smaller than that reported by Denham & Patrick (1974). We
make further comparison with experiment in section § 5.

Figure 11 shows the modes associated with the next three largest eigenvalues in the
spectrum at Re = 750 and β = 0.9 (see table 2 and figure 7). The next real eigenmode
(corresponding to σ2 ' −0.013) plotted in figure 11(a) is localized to the secondary
separation region on the upper wall. The separation and reattachment points on the
upper wall are located at x2 ' 10 and x3 ' 25, respectively. This secondary mode is
also a flat roll. Thus, the two largest real eigenvalues correspond to similar physical
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Figure 11. Structure of the next three eigenmodes at Re = 750 and β = 0.9: (a) real eigenmode
corresponding to eigenvalue σ2; (b) and (c) real and imaginary parts of the complex eigenmode
corresponding to eigenvalues σ3 ± iω3. In each case the upper plot show (u, w) velocity vectors in
the y-plane indicated at the right of the lower plot. The lower plot contains w velocity contours in
the plane z = λ/4.

modes but are associated with quite different regions of the flow. The first complex
mode is displayed in figure 11(b, c) in terms of its real and imaginary parts. The
dynamics associated with this mode is a periodic oscillation between the two states.
While it is principally associated with the primary recirculation region, this mode does
extend into the upper recirculation region as well. The flow has a more complicated
spatial structure with several ‘rolls’ within the primary recirculation region: the sign
of the spanwise velocity component changes two (figure 11b) and three (figure 11c)
times.

Finally, for completeness we show in figure 12 one of the channel modes whose
eigenvalues are plotted in figure 7 (the one with right-most eigenvalue). As is evident
from the spectrum, numerous similar modes are found in our computations. However,
these modes are irrelevant to the linear instability of the step flow and we do not
consider them further.

4.3. Two-dimensional stability

The results of § 4.1 show that up to a Reynolds number of 1050 the two-dimensional
flow over the backward-facing step is linearly stable with respect to two-dimensional
perturbations, that is, all eigenvalues at β = 0 have negative real part. The question
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Figure 12. Structure of the channel eigenmode corresponding to the channel eigenvalue with
largest real part. Only the real part of the complex eigenmode is plotted.

arises of when the flow becomes linearly unstable two-dimensionally. This has been a
point of some controversy in previous computational studies of the two-dimensional
flow (see Gresho et al . 1993). While this is not the focus of our study and our
numerical methods have not been designed to study large Reynolds numbers for this
flow, we have nevertheless continued the two-dimensional stability computations to
Re = 1500, twice the critical value for the onset of three-dimensional instability. The
flow remains linearly stable to two-dimensional perturbations and moreover shows no
evidence of any nearby two-dimensional bifurcation. Because accurate computations
become very demanding at large Reynolds numbers and because there is no evidence
that an instability is at hand, we cannot report a threshold for two-dimensional
instability but only a lower bound for this threshold.

In figure 13 we plot, as a function of Reynolds number, the two leading eigenvalues
from strictly two-dimensional stability computations, i.e. modes of the form

ũ(x, y) = (û(x, y), v̂(x, y), 0), p̃(x, y) = p̂(x, y). (4.1)

Eigenvalues for all Reynolds numbers greater than 1050 have been computed with
outflow length Lo = 55 and with polynomial order N = 9. For lower Reynolds num-
bers, shorter domains have been used consistent with convergence studies in § 3.3.
Recall (§ 3.1) that the two-dimensional base flows above Re = 800 are computed by
time integration to a steady state. While this computational method is slow, it has the
advantage here of confirming that all of the steady two-dimensional flows we have
computed are globally stable with respect to two-dimensional perturbations.

The two eigenvalue branches approach one another at Re ≈ 1250. Generically,
as the point of intersection is approached, the eigenvalues will either coalesce in a
complex conjugate pair or will instead remain real and undergo avoided crossing. We
find that the leading eigenvalues plotted in figure 13 remain real.

The eigenvalues have been plotted on a logarithmic scale to show the approximate
exponential dependence of the eigenvalues on Reynolds number (taking into account
the exchange of identity through the avoided crossing). The plot shows that if the
trend continues, these eigenvalues will reach zero only at infinite Reynolds number.
We do not argue that this is what actually happens, but we can state that up to
the Reynolds number that we have been able to attain in our calculations, there is
no two-dimensional instability of the flow and moreover that there is no evidence of
any two-dimensional bifurcation close to these Reynolds numbers. To ascertain the
primary two-dimensional bifurcation for this flow, other numerical methods will need
to be employed.
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Figure 13. Leading two-dimensional eigenvalues. The two branches (denoted by different symbols)
remain real as they approach and recede from one another through the avoided crossing at
Re ≈ 1250.

5. Discussion
A detailed comparison between our linear stability calculations and either previous

experimental work or direct numerical simulations is complicated by several factors.
Among these are the existence of a strong convective instability within the core
flow, the variety of geometries used in previous studies (expansion ratio, aspect ratio,
sidewalls, no sidewalls), different upstream flow conditions, and so forth. Of these
effects, the convective instability within the core flow is the most problematic as it
renders the system particularly sensitive to upstream conditions, including free-stream
noise and external perturbations. The flow may amplify selective components of these
perturbations to produce apparent three-dimensionality and unsteadiness well before
the onset of any absolute instability. The combined effects of these discrepancies
mean that there is no single experiment or computation with which we can make a
detailed comparison. In the following we compare our results with data available in
the existing literature and try to indicate what further work might help clarify the
nature of the absolute instability.

5.1. Comparison with previous work

We begin by comparing our results with the experimental work of Armaly et al .
(1983) and the related computations by Williams & Baker (1997) in a system with a
nominal expansion ratio of 2 and aspect ratio Lz/h = 37. In both the experiments and
computations the span of the channel terminated at a solid wall on both sides. These
investigators found that below Re = 300 the flow is essentially spanwise invariant
while above Re = 300 there is evidence of three-dimensionality in the flow. The value
Re = 300 does not necessarily indicate a critical point. Williams & Baker (1997) note
that some deviation from two-dimensionality exists near the sidewalls of the channel
below Re = 300, and neither study attempted to pinpoint the value of Re at which
significant three-dimensionality along the span first appeared in the system. Even the
characterization of ‘significant’ is arbitrary.

The first question to address is whether these results indicate a fundamental three-
dimensional instability at a lower Reynolds number, as these observations are well
below the critical value Rec = 748. The source of the discrepancy is almost certainly
the effect of sidewalls in the experiments and simulations. Williams & Baker (1997)
provide evidence that, in the presence of sidewalls, three-dimensionality in these flows
(also observed in the experiments of Armaly et al.), is caused by a sidewall jet. In fact,
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both studies indicate that three-dimensionality is limited to the region within a few
step heights of the sidewalls while the bulk flow remains largely spanwise-invariant
at these low Reynolds numbers. This type of extrinsic effect is produced by the three-
dimensional geometry of the laboratory setup, and it will surely depend on the aspect
ratio of the system. It does not represent a fundamental instability of the nominally
two-dimensional separated flow.

There is further computational evidence that the sidewalls play an important role.
In the three-dimensional simulations of Kaiktsis et al . (1991) using spanwise-periodic
boundary conditions, sustained three-dimensionality was first found at a much higher
Reynolds number, Re ' 525, than was found in the numerical studies with sidewalls by
Williams & Baker (1997). Interestingly, Kaiktsis et al . (1991) used a spanwise-periodic
domain of length 2π, almost exactly the critical wavelength λc = 6.9h determined by
our analysis. However, even without sidewall effects the onset of three-dimensionality
in the work of Kaiktsis et al . (1991) is still below Rec. There are two possible
explanations for this.

The first is that the states observed by Kaiktsis et al . (1991) follow from am-
plification of numerical noise due to poor resolution in the form of a convective
instability. In later work, Kaiktsis et al . (1996) show this to be the source of the
sustained two-dimensional dynamics observed by Kaiktsis et al . (1991) at Re = 600.
Our computations are free from any such effects in that we determine only global
absolute instability thresholds. However, we have performed preliminary nonlinear
calculations of the three-dimensional flow, i.e. direct numerical simulations, that do
confirm the existence of a strongly three-dimensional convective instability. These
dynamics are poorly understood.

The other possible explanation for sustained three-dimensionality below Rec is that
the instability is subcritical. From our linear computations we cannot know whether
or not stable, nonlinear, three-dimensional states exist below the linear stability
threshold. Whether or not this is the case, the simulation results of Kaiktsis et al .
(1991, figures 11 and 24) indicate strong three-dimensionality primarily in the region
downstream of the separation zone, and bear little qualitative resemblance to the
critical eigenmode. Therefore it seems unlikely that their results provide any evidence
of a subcritical bifurcation due to the absolute instability of the flow. This is an
interesting point, but further computational work is required to assess whether or not
the three-dimensional bifurcation is subcritical.

In addition to the question of critical Reynolds number, there is the character of
the secondary flow following the bifurcation. Denham & Patrick (1974) conducted
experiments on laminar flow in a channel with a 3 : 1 expansion ratio for Reynolds
numbers up to 344. It has been noted (Ghia et al . 1989; Williams & Baker 1997) that
the relatively short inlet channel in these experiments resulted in a slightly shortened
primary recirculation zone. Despite this, and the fact that the expansion ratio used by
Denham & Patrick (1974) is larger than ours, we can still make a useful comparison
because they report a transient three-dimensional flow qualitatively similar to that
of the critical eigenmode. Experimentally, the flow at Re = 344 was perturbed by
tapping the channel. The observed transient flow consisted of horizontal eddies within
the recirculation zone. Moreover, this transient flow was found to be the forerunner
of waves and then eddies that appear as the Reynolds number is further increased,
though none of this behaviour was described in detail. Denham & Patrick (1974)
sketch only two pairs of secondary eddies over the channel span Lz ' 20h, from
which we conclude that the size of these eddies is larger that the critical wavelength
λc = 6.9. It is not clear, however, how precise the sketch is. Recall also that there are



Stability analysis of flow over a backward-facing step 187

two peaks in the eigenvalue spectra in figure 6, and at lower Reynolds numbers the
small-β peak actually corresponds to a larger eigenvalue, i.e. a slower decay rate. It
is therefore possible that Denham & Patrick (1974) have observed evidence of these
three-dimensional modes. Other researchers have also reported dynamics within the
primary recirculation region, but it is not clear how to connect these flows to the
eigenmode.

5.2. Instability mechanisms

Our stability calculations are unambiguous with regard to the critical Reynolds
number, wavelength, and flow structure associated with the absolute instability. Here
we address the question of why the flow amplifies this particular type of perturbation.

One obvious a priori candidate is the Kelvin–Helmholtz instability of the shear
layer emanating from the step edge. Although the Kelvin–Helmholtz instability is
important at higher Reynolds number and as a source of amplification in the context
of convective instability, it plays no role here because the three-dimensional instability
is absolute. Furthermore, because of the relative thickness of the shear layer at these
Reynolds numbers, and the stabilizing effect of the walls, it is difficult to excite any
shear layer response in this parameter range.

Armaly et al . find that three-dimensionality first appears close to the Reynolds
number at which the upper separation bubble forms. Ghia et al . (1989) postulate
that once the secondary separation bubble forms, the main flow is subjected to
a destabilizing concave curvature resulting in a three-dimensional, Taylor–Görtler-
type instability. This is an interesting speculation. However, from our linear stability
computations we can also rule this out. We find not only that the two-dimensional
flow remains linearly stable long after the formation of the upper separation bubble,
but also that when instability does set in, it is not of the form of streamwise vortices
within the main flow as would be expected by this mechanism.

We argue that the essential mechanism is still centrifugal in nature but is associated
with the closed streamlines in the primary recirculation zone near the solid boundaries.
The basic inviscid condition for a centrifugal instability is Rayleigh’s criterion (e.g.
Drazin & Reid 1981) and its generalization by Bayly (1988). Physically, in a flow
with closed streamlines one expects instability to arise if there is an outward decrease
in the magnitude of angular momentum. To investigate this, let η ≡ −∂|r × u|2/∂r,
where r = (x− xc, y− yc) with (xc, yc) the centre about which the angular momentum
is defined. We take this to be the point where the velocity vanishes, but in fact the
results shown below depend only weakly on the choice of (xc, yc) for any reasonable
choice. The flow is (inviscidly) centrifugally unstable where η > 0.

Figure 14(a) shows the regions inside the primary recirculation zone where η is
significantly positive for the two-dimensional flow at the critical Reynolds number.
The regions where the magnitude of the angular momentum decreases significantly
radially outwards are just behind the step face and just upstream of the re-attachment
point. (All along the bottom wall and the step face η is small and positive. For clarity
we do not show regions where η is less than 0.5% of the maximum value of η = 0.13.)
The regions shown in figure 14(a) are those for which the inviscid Rayleigh criterion
predicts three-dimensional instability. Note that these are indeed the regions in which
the magnitude of spanwise perturbation velocity is largest. See figure 14(b).

Intuitively the regions where the perturbation field has a significant three-dimen-
sional component are where one would expect centrifugal effects to be most important.
The streamlines have large curvature and the presence of walls dictates an outwardly
decreasing momentum. The centrifugal instability pushes fluid away from the centre
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Figure 14. (a) Regions (black) where the magnitude of the angular momentum decreases away
from the centre (marked with a cross) of the primary recirculation zone for the two-dimensional
flow at Reynolds number 750. Specifically, the regions are shown where η is greater than 0.5% of
its maximum value. Also shown are representative streamlines. (b) Contours of the magnitude of
the spanwise velocity component w in the critical eigenmode. The separating streamline of the base
flow is also shown.

of rotation, and the presence of the walls forces it to flow along the span to form the
flat roll structure observed in the eigenmode. The spanwise length scale is not directly
related to the step height but instead depends on the length of the separation bubble
within which these three-dimensional eddies are generated.

The centrifugal mechanism is fundamentally three-dimensional in nature. This
explains our finding that the backward-facing step flow does not become unstable
two-dimensionally even at Reynolds numbers of twice the critical value for the onset
of the three-dimensional instability. Some other mechanism would need to come into
play at larger Reynolds numbers in order for this flow to become two-dimensionally
unstable. For example, the upper separation bubble may become globally unstable
(Hammond & Redekopp 1998; Alam & Sandham 2000). The flow will certainly
become linearly unstable at Re = 2 × 5772 (e.g. Bayly et al . 1988) when flow in the
downstream channel becomes unstable (the factor of 2 accounts for the difference
between the Reynolds number used in this paper and the Reynolds number which
applies to the downstream channel).

6. Conclusion
We have shown that the primary bifurcation of the steady, two-dimensional flow

over a backward-facing step with a 2:1 expansion is a steady, three-dimensional
instability. We have computed the critical Reynolds number and spanwise wavelength
of the instability to high precision and find Rec = 748 and λc = 6.9 in non-dimensional
units based on the step height and the centreline velocity of the inflow. We have further
determined the band of unstable wavenumbers for Reynolds numbers up to 1000.
These data will be particularly useful in future numerical work as they allow the
precise selection of appropriate spanwise domain lengths.

We have found that the critical eigenmode consists of a flat roll localized to the
primary recirculation region located behind the step edge. Thus, at the linear level,
the instability does not arise in either the secondary recirculation zone on the wall
opposite the step or the core flow between the primary and secondary recirculation
zones. From this we have been able to rule out a Taylor–Görtler-type instability of the
main flow as the source of three-dimensionality in experiments, but have argued that
centrifugal instability is responsible for generating secondary flow with the separation
zone.

Finally, we have examined the two-dimensional stability problem, and while we have
not found a two-dimensional bifurcation from the steady flow, we have established
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a lower limit for such a bifurcation of Re = 1500, considerably above the critical
Reynolds number for three-dimensional instability. This establishes the fundamental
role of three-dimensionality for separated flows similar to this one.

Following on from this work and the work of Kaiktsis et al . (1996), future studies
should be conducted to examine three-dimensional convective instabilities of the
backward-facing step. In the same way it would also be important to extend this
work to nonlinear stability computations and determine whether the bifurcations are
supercritical or subcritical.
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