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Results are reported from a highly accurate, global numerical stability analysis of the 
periodic wake of a circular cylinder for Reynolds numbers between 140 and 300. The 
analysis shows that the two-dimensional wake becomes (absolutely) linearly unstable 
to three-dimensional perturbations at a critical Reynolds number of 188.5 & 1.0. The 
critical spanwise wavelength is 3.96 k 0.02 diameters and the critical Floquet mode 
corresponds to a 'Mode A' instability. At Reynolds number 259 the two-dimensional 
wake becomes linearly unstable to a second branch of modes with wavelength 0.822 
diameters at onset. Stability spectra and corresponding neutral stability curves are 
presented for Reynolds numbers up to 300. 

1. Introduction 
The aim of this paper is to quantify an important step in the sequence of instabilities 

leading to turbulence in the wake of a circular cylinder. Specifically, we present results 
from a highly accurate, global stability analysis of the two-dimensional von Karman 
vortex street and identify precisely the secondary linear instability leading to three- 
dimensionality in this flow. 

The system considered is an infinitely long circular cylinder placed perpendicular 
to an otherwise uniform open flow. The sole parameter for this system is then 
the Reynolds number: Re = U,d/v, where U,  is the free-stream velocity, d is the 
cylinder diameter, and v is the kinematic viscosity. Changes in the wake dynamics 
as a function of Re are typically quantified using either force or shedding frequency 
measurements. In non-dimensional form, the vortex shedding frequency f is known 
as the Strouhal number: S t  = f d / U , .  Figure 1 shows a plot of Strouhal number over 
the range of Reynolds number that includes the first few important wake instabilities. 

For low values of the Reynolds number, the flow is steady and two-dimensional. At 
Re1 = 46 the flow undergoes a supercritical Hopf bifurcation (the primary instabilitv) 
that leads to a two-dimensional oscillatory flow: the well-known von Karman vortex 
street. Both numerical stability calculations by Jackson ( 1987) and experiments by 
Mathis, Provansal & Boyer (1987) confirm the critical values for this instability. For 
a range of Re above this bifurcation, the wake is laminar and perfectly time-periodic 
with a unique relation between Reynolds number and vortex shedding frequency. 
What is not well understood is the subsequent sequence of bifurcations leading to 
turbulence in this system. It is known that there are no further two-dimensional 



216 D. Barkley and R. D. Henderson 

; I I 
I I 

I 
I Rel=46+1 
I I 
I I I 
I )  I I 8 1  I , I 1  t I L I 1  I I 

bifurcations in the flow dynamics prior to the secondary instability at Rez, the critical 
point for the bifurcation giving rise to three-dimensionality. However, exact details 
of the secondary instability and subsequent transitions leading to turbulence are not 
clear owing to several conspiring factors. 

On the experimental side, there is considerable scatter in the observed values 
of Reynolds number for the transition to three-dimensionality, with values of Re2 
ranging from about 140 to 190. Roshko (1993)  and Williamson (1996b) review 
many of the recent experimental findings. Factors such as cylinder roughness, 
free-stream turbulence amplitude, blockage, and end effects all tend to shift tran- 
sition of the laminar wake to lower values of Re. Even in facilities with seem- 
ingly large cylinder aspect ratios, end conditions have a dramatic effect across 
the entire span. This has made it difficult to separate the effects of extrinsic 
three-dimensionality present in experiments from intrinsic three-dimensionality that 
arises from the stability properties of the natural wake. By controlling end ef- 
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fects, it is possible to produce a relatively good approximation to flow past an 
infinitely long cylinder in the laboratory as demonstrated with various techniques by 
Williamson (1989) and Hammache & Gharib (1991). The data shown in figure 1 
are for such conditions. Three-dimensionality first appears in these measurements 
at Re = 180, but precise details of the transition cannot be determined from the 
experiments. 

On the computational side, direct numerical simulation of transition in the wake 
is a demanding calculation that has only become practical with recent advances 
in algorithms and computer performance. Karniadakis & Triantafyllou ( 1992) and 
Tomboulides, Triantafyllou & Karniadakis ( 1992) conducted the earliest computa- 
tional studies of the three-dimensional cylinder wake, finding that the two-dimensional 
wake is unstable to three-dimensional disturbances at Re = 200. In these calcula- 
tions they observed a period-doubling bifurcation at Re = 300 and proposed that 
the wake might follow a period-doubling cascade leading to turbulence. Recently, a 
number of additional computational studies have appeared which examine the three- 
dimensional flow that develops over this same range of Reynolds number (Zhang 
et al .  1995; Mittal & Balachandar 1995; Thompson, Hourigan & Sheridan 1996). 
However, in none of these numerical studies was an attempt made to determine the 
onset of the secondary instability precisely because of the computational expense of 
such calculations using direct simulations. Noack, Konig & Eckelmann (1993) and 
Noack & Eckelmann ( 1994a,b) have performed a Floquet stability analysis, similar 
in spirit to the one reported here, using a Galerkin projection onto a moderate 
number of analytically determined modes. They find a bifurcation leading to three- 
dimensionality that is qualitatively, though not quantitatively, in agreement with our 
computations. 

We report here fully resolved Floquet stability calculations of the time-periodic 
wake of the circular cylinder throughout the transition regime 140 < Re < 300. 
Because our goal is an accurate stability calculation for an infinitely long cylin- 
der in an open flow, a significant portion of the paper is devoted to numerical 
convergence studies. The stability computations reported provide the first direct 
and highly accurate determination of the critical Reynolds number and the criti- 
cal spanwise wavenumber for the secondary instability of the von Karman wake, 
and the computations allow a direct visualization of the structure of the critical 
eigenmode (Floquet mode) that drives this instability. In addition, our calculations 
provide stability spectra throughout the transition regime and thus allow an accu- 
rate determination of the bands of unstable spanwise wavenumbers above the onset 
of three-dimensionality. We show that our results are supported by experimental 
flow visualization and numerous measurements at Reynolds numbers slightly beyond 
transition. However, because the onset of three-dimensionality in experiments is 
at present somewhat unclear, our primary concern is to present accurate computa- 
tions directly from the Navier-Stokes equations for which we can provide definitive 
answers. 

2. Computational methods 
Our numerical computations consist of two parts. First we obtain solutions for 

flow past a circular cylinder from time-dependent simulations of the Navier-Stokes 
equations on two-dimensional domains. Next we determine the stability of these 
solutions via Floquet stability analysis. 
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2.1. Time-dependent simulations 
The fluid flow is governed by the incompressible Navier-Stokes equations : 

aU 1 1 
- = -N(u)  - -Vp + -V2u Re 
at P 

in Q, (2.la) 

V . u = O  inQ,  (2.lb) 
where u = (u,v, w )  is the velocity field, p is the static pressure, p is the fluid density, 
Re is the Reynolds number, and fz is the computational domain. Without loss of 
generality we take the numerical value of p = 1 since this simply sets the scale for p. 
N(u) represents the nonlinear advection term : 

N(u) = (u * V)u.  (2.lc) 

Equations (2.1) are written in non-dimensional form: lengths are scaled by the cylinder 
diameter, d ,  and velocities are scaled by Urn, the magnitude of the free-stream velocity, 
i.e. u at infinity. 

Time-dependent simulations based on these equations in two dimensions (w = 0, 
a /&  = 0) are carried out using a spectral element program (Prism, Henderson 1994). 
In the spectral element method, the domain Q is represented by a mesh of K elements 
and within each element both the geometry and the solution variables, in this case 
velocity and pressure, are represented using Nth-order tensor-product polynomial 
expansions. We use the Gauss-Lobatto Legendre polynomials as a basis for the 
numerical solution. The meshes used in our study are shown in figure 2 and are 
discussed in detail in 9 2.3. A high-order time-splitting scheme was used to integrate 
(2.1). The splitting scheme replaces this system with an advection equation and a 
sequence of elliptic Helmholtz-type equations, each of which can be discretized using 
a weak Galerkin formulation. We solved the resulting linear systems directly using 
a static condensation algorithm tailored to the unique structure of spectral element 
matrices ; all arithmetic was carried out in 64-bit precision. Henderson & Karniadakis 
(1995) discuss details of the method and solution techniques, along with various 
validation studies for the particular code employed here. 

Boundary conditions for the velocity and pressure fields are required along the 
exterior of Q, which can be divided into three sections: Too is composed of the left, 
upper, and lower boundaries; To is composed of the right (outflow) boundary; and 
r b  is the surface of the cylinder. Boundary conditions at Trn and To define the flow 
far from the cylinder. Along Tm we enforce uniform flow (u  = 1,  v = 0), while along 
To we use a standard outflow boundary condition for the pressure and velocity: 

p = 0, au/ax  = 0, au/ax = 0. (2.2) 

At the surface of the cylinder, rb, the flow satisfies no-slip boundary conditions. 
Boundary conditions for the pressure, other than along To, can be generated by 
requiring the computed flow to satisfy the normal component of the momentum 
equation along the boundaries. This is the high-order Neumann boundary condition 
suggested by Karniadakis, Israeli & Orszag (1991) and shown to control divergence 
errors normally associated with splitting methods for incompressible flows. 

Wake flows for our stability calculations were obtained from simulations with 
Reynolds numbers in the range 140 < Re < 300. In all cases, the simulations were 
run sufficiently long to obtain asymptotic, time-periodic velocity fields. These periodic 
solutions were then stored for use in our stability calculations by saving 32 velocity 
fields (snapshots) equally spaced over one period. The periodic flow can be obtained 
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at any time from the 32 velocity fields, via Fourier interpolation in time, to within 
the overall accuracy of the simulations. 

2.2. Floquet stability analysis 
Let U ( x ,  y ,  t )  be the two-dimensional wake (base flow) of period T whose stability is 
sought. An infinitesimal three-dimensional perturbation u’(x, y ,  z ,  t )  to this base flow 
evolves according to the linearized Navier-Stokes equations : 

SU’ 1 1 
- = -DN(u’) - -Vp’ + -V2J  
at P Re  

in 52, (2 .34  

V * u ‘ =  0 in 52, (2.3b) 
where p’ is the perturbation to the pressure and DN(J) is the linearized advection 
term : 

(2.3c) 

The boundary conditions on the perturbed velocity are: u’ = 0 along Tm and Tb; 
along To we again use an outflow boundary condition as in (2.2). Thus, the perturbed 
flow U + u’ satisfies the same boundary conditions as the base flow. 

By defining the operator L so that L(u’) is the right-hand-side of the linearized 
equation ( 2 . 3 ~ )  subject to the incompressibility constraint (2.3b), we can write the 
evolution equation for infinitesimal perturbations compactly as 

DN(u’) = (u’ * V) U + ( U  * V) u’. 

du’ 
- = L(u’). 
at 

(2.4) 

The operator L(u’) is T-periodic because DN(J) is, through the base flow U ,  and 
therefore (2.4) is of Floquet type. Solutions of this equation can be decomposed 
into a sum of solutions of the form: ii(x,y,z,t)exp(ot), where the i i (x ,y , z , t )  are also 
T-periodic functions. These functions are the Floquet modes of the operator L. The 
complex numbers CT are the Floquet exponents, although for Floquet problems one 
typically considers instead the Floquet multipliers ,u = exp (a T). 

Stability of the base flow U is determined by the spectrum of multipliers or 
eigenvalues of the operator L. Floquet multipliers inside the unit circle in the 
complex plane (lpl < 1 )  correspond to exponentially decaying solutions (Re CT < 0), 
while multipliers outside the unit circle ([PI > 1 )  correspond to exponentially growing 
solutions (Rea > 0). An instability is signalled by a multiplier crossing the unit 
circle, and because we consider the full flow field subject to inflow-outflow boundary 
conditions, these instabilities are global and absolute (Huerre & Monkewitz 1990). 

A further simplification is possible because the system is homogeneous in the 
spanwise direction z .  General perturbations to the velocity field can be expressed as 
the Fourier integral 

(2.5) 

do 

u’(x,y,  z ,  t )  = s:, 2(x,V,P, t)eVz dp, 

and similarly for p’.  Because equations (2.3) are linear, modes with different 
not couple. In fact, perturbations of the form: 

(2.6) 
u’(x, y, z ,  t )  = (fi cos pz, 6 cos pz, I% sin p z )  

remain of this form under equation (2.3). Floquet modes i i (x ,y ,z ,  t )  will then necessar- 
ily be of this same form. Because the three velocity components (fi,6,1%) and pressure 

p’( x, y ,  z, t )  = fi cos P. 
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I;  depend only on x, y, and t ,  the full three-dimensional stability problem at any 
fixed Reynolds number can be reduced to a one-parameter family of two-dimensional 
stability problems. To analyse the stability of the von Karman vortex street we solve 
the reduced problem by computing the Floquet multipliers, p, and corresponding 
modes, is, as a function of the two parameters R e  and p. 

To find the Floquet modes of the system (2.4) corresponding to multipliers near 
the unit circle, we use a method similar to that used by Goldhirsch, Orszag & Maulik 
(1987), Amon & Patera (1989), and Mamun & Tuckerman (1995). This technique is 
also described by Schatz, Barkley & Swinney (1995). We first construct an operator 
representing the evolution of the linear system (2.3), or equivalently (2.4), over one 
period T :  

= A(u:), 

where uk = u ’ ( x , y , z ,  to + n T )  is the perturbation after n periods. The operator A 
is then equivalent to the linearized Poincare map associated with the periodic base 
flow. The eigenvalues p of A are precisely the Floquet multipliers of L and the 
eigenfunctions is(x,y,z,to) of A are the Floquet modes at some instant in time to, 
where to depends on the phase of the base flow U implicit in the definition of A. 
Floquet modes is at other times can be found by a further integration of (2.4). 

The action of A on a perturbation is obtained by integrating the linearized equa- 
tions (2 .3)  using essentially the same methods as for the full Navier-Stokes equa- 
tions (2.1). Two principal changes are required. First, the nonlinear operator N ( u )  is 
replaced by the linear operator DN(u’). The base flow U appearing in this operator 
is obtained at each time step by Fourier interpolation in time from the 32 stored 
velocity fields obtained as described in the previous section. Second, we replace the 
operator V everywhere in (2.3) by (dldx, LJ/dy,  -ip), and compute the three velocity 
components (a, 6, G) and pressure j on two-dimensional domains. 

We use subspace iteration to obtain the eigenvalues of A with largest magnitude. 
Watkins (1993) gives a thorough review of similar methods for large eigenvalue 
problems. The iteration is performed on a Krylov subspace of dimension between 8 
and 20, initialized either from a random starting vector or an eigenmode computed 
at nearby parameter values. The iteration yields converged eigenvalues after 6 to 25 
iterations of the operator A. Because the leading eigenvalues are well-separated over 
the range of R e  considered, no preconditioning was necessary to achieve this rate of 
convergence. The accuracy of the eigenvalues is addressed in the following section. 

2.3. Convergence tests 
Approximation errors in the base flow and stability calculations can be considered 
separately. For the base flow computations we verified that our results were mesh- 
independent to a high degree of precision and that our two-dimensional wake results 
reproduced the best experimental data available. For the stability calculations we 
again checked for mesh independence and in addition estimated the precision of 
eigenvalues in terms of a calculable residual. 

We tested the base flow and Floquet multipliers for sensitivity to domain size and 
resolution using the family of meshes shown in figure 2. In the spectral element 
method one generally follows a p-type finite element approach, first constructing a 
mesh of elements that gives a good approximation to the flow and then increasing 
the polynomial order of the local basis functions within each element to produce a 
converged solution. With the exception of M3,  each mesh is an exact subset of the 
largest mesh M6, differing only in the three domain size parameters: li (inflow), 1, 
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FIGURE 2. Family of spectral element meshes used for convergence studies. Arrows indicate 
schematically the comparisons made to test for blockage (solid arrows: Ml-M2-M3), outflow 
boundary effects (short-dashed arrows : M2-Ms-M6), and base flow dependence (long-dashed arrows: 
M1-M2-M4-Ms).  Each element shown contains N 2  - 16 to 100 mesh points. 

M I  M2 M3 M4 M5 M6 

K 170 266 224 302 314 362 

I ,  8 16 16 8 16 16 

l h  8 22 28 8 12 22 

1, 25 25 25 35 35 45 

TABLE 1. Defining parameters for the sequence of meshes M,-M6 used to check the influence of 
domain size and resolution on the base flow and stability calculations; K is the number of elements; 
I , ,  l h ,  and l , ,  are the inflow, crossflow, and outflow domain size parameters. 
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N At S t  -Cpb C D  c; c; 
4 1 x 0.1936 0.9705 1.3922 0.0300 0.4839 

6 1 x lo-? 0.1955 0.9267 1.3389 0.0288 0.4601 

8 1 x 0.1954 0.9326 1.3442 0.0293 0.4655 

10 5 x 0.1954 0.9326 1.3442 0.0293 0.4656 

TABLE 2. Convergence of global quantities with polynomial order N on mesh A 4 3  at Re = 190. 

(outflow), and l h  (crossflow). Table 1 lists the number of elements and domain size 
parameters for each mesh. After establishing some basic trends with an initial pass 
through the entire range of Reynolds number, we performed a detailed study of the 
flow at Re = 190. The study consisted of the following three steps. 

First, we monitored convergence of the base flow with respect to polynomial order 
N on a fixed computational mesh: M3. This was done by computing values of the 
following global quantities : Strouhal number S t, base pressure coefficient Cpb ,  mean 
and fluctuating drag coefficients, CD and Cb, and fluctuating lift coefficient CL. Our 
results for mesh M3 are given in table 2, showing convergence to four digits for order 
N > 8. The convergence is dominated by convergence of the flow in the near wake, 
as this region is the most sensitive to spatial resolution. Since all our meshes are 
identical in the near-wake region, we concluded that at Re = 190 a polynomial order 
of N 2 8 was sufficient to resolve the flow in the near wake for any of our meshes. 

Next, we checked the computational domain size (blockage and outflow boundary 
effects) by comparing the shedding frequency and vorticity distribution of converged 
solutions on the different meshes. Shedding frequency is a sensitive indicator of 
blockage effects; the shedding frequency increases with decreasing lh because of 
an effective upward shift in the local Reynolds number as the incompressible flow 
accelerates past the cylinder. We found no difference in shedding frequency for the 
meshes with l h  > 22 over the range of Reynolds number from 140 to 300. The 
magnitude of vorticity at the centre of the wake vortices was used to check resolution 
of the flow downstream from the cylinder and to monitor the influence of the outflow 
boundary conditions on the flow upstream. Figure 3 shows the local extrema of 
vorticity for meshes of increasing outflow length, confirming that even the shortest 
mesh M z  produces the correct wake to within 5 cylinder diameters of the outflow 
boundary. 

Finally, we compared our simulation results with established experimental values 
over the entire range of Reynolds number. The comparison of Strouhal number is 
shown in figure 1. In figure 4 we show a comparison of the base pressure coefficient, 
defined as c p b  = ( P b  - p m > / i p ~ & ,  where Pb is the time-averaged pressure at the 
base (180" from the front) of the cylinder and p m  is the static pressure at infinity. 
c p b  provides a sensitive characterization of drag on a bluff body. Figures 1 and 4 
show clearly that our two-dimensional base flow calculations accurately reproduce 
the experimental measurements up to the point of transition. 

For the stability computations we first address convergence of the eigenvalues 
under our iterative method for a fixed set of mesh parameters. At each iteration we 
compute the residual: 

, (n)  = I[A(a(n)) - (?t)-(n) P u I0  
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FIGURE 3. Variation of the local maximum in vorticity magnitude as a function of distance 
downstream from the cylinder for meshes Mz, M5, and Mh with symbols as indicated. Horizontal 
lines show the distance from the centre of the cylinder to the outflow boundary on each mesh. 

Iteration Ir r 

7 1.00660 7.04 x lo-' 

8 1.01014 8.88 x 

9 1.01035 9.11 x 

10 1.01049 3.20 x 

11 1.01049 1.15 x lop5 

TABLE 3. Convergence of the dominant eigenvalue /* on mesh A 4 5  with Re = 190, p = 1.6. 

where p(') and i'') are the approximate eigenvalues and normalized eigenmodes 
( ~ ~ i ~ ' ) ~ ~  = 1)  of A after the nth iteration, and 1 1  - 1 1  is the standard L2 vector norm of 
the approximately 3 x K x N x N values representing i. As long as r(') is small, p,ln) 
will be an accurate eigenvalue of the operator A. Table 3 shows the convergence of 
eigenvalues as a function of iteration number for computations on the M5 mesh with 
order N = 8. The first iterations are not shown as they produce wholly inaccurate 
values of p. 

In the eigenvalue computations we also tested for convergence with respect to 
polynomial order and sensitivity to domain size. The length scale of the eigenmodes 
is closely related to that of the corresponding base flow, and we found that they 
converged at roughly the same rate with respect to polynomial order. Again, order 
N 3 8 gives well-converged results. Because the eigenmodes decay very rapidly away 
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FIGURE 4. Variation of base pressure coefficient with Reynolds number from experiments and 
computations of two-dimensional flow: 0, Williamson & Roshko (1990); 0, Norberg (1994); +, 
two-dimensional flow calculations performed as part of the current study (the solid line is a curve 
fit to the simulation data). The first few important wake instabilities are as labelled in figure 1. 
Note the sharp change in the slope of the base pressure curve at Re;. 

from the wake, the location of the external boundaries only has a minimal effect on 
the stability calculations. For example, we projected the converged base flow from the 
M 5  mesh at Re = 190 onto each of the meshes M1, Mz,  and M4. Because each of these 
meshes is an exact subset of the Ms mesh, the resulting base flows are identical in the 
overlapping regions. The dominant eigenvalue computed for each base flow agrees 
with that for the M5 case to 6 significant figures. Thus, the eigenvalue computations 
depend significantly on domain size only through the base flow and it is sufficient 
to perform the stability computations on the smallest mesh, M I ,  using base flows 
computed on larger meshes. 

Based on these tests, we chose the following protocol for our study near the critical 
Reynolds number for the secondary instability. Base flows are computed on mesh M2 
using order N = 8 basis functions. These base flows are then projected onto mesh M1, 
on which stability calculations are carried out also using polynomial order N = 8. 
The eigenvalue iterations are halted when the residual falls below We believe 
these results to be uniformly accurate to 0.2% in all global quantities. 
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FIGURE 5. Dependence of the dominant Floquet multiplier p on spanwise wavenumber for values 
of Re indicated. The multipliers are real and positive. The value p = 1 corresponds to the onset 
of instability. As Re increases, the most unstable mode gradually shifts to a higher wavenumber 
(smaller wavelength). The cross size used to mark data points is chosen to indicate the accuracy of 
the multipliers (see text). 

3. Results 
In this section we show how the Floquet multipliers behave as a function of 

Reynolds number and spanwise wavenumber. Our main objective is to determine the 
precise values of Re and wavenumber p (or wavelength I = 27c/p) for which the two- 
dimensional wake is linearly unstable. Following this we present flow visualizations 
of the destabilizing Floquet modes that lead to three-dimensionality in the wake. 

3.1. Parameter dependence 

Figure 5 shows the dependence of the dominant Floquet multiplier (multiplier of 
greatest magnitude) on spanwise wavenumber p for several values of the Reynolds 
number. Multiplier branches are symmetric with respect to a change of sign in and 
only p 2 0 is plotted. The dominant multiplier is real and positive over the parameter 
range shown. Recall that the Floquet multiplier p is related to the temporal exponent 
D via p = exp(oT),  where T is the wake period, so that lpl = 1 corresponds to zero 
exponential growth of linear modes. 

Owing to time-translation symmetry there is a Floquet multiplier p = 1 at p = 0, 
regardless of the value of Re. This is because any autonomous time-periodic flow has 
a neutrally stable Floquet mode of the form IzT cc dU/dt  (see e.g. Guckenheimer & 
Holmes 1983). This mode 'points' along the periodic orbit. A two-dimensional mode 
corresponds to p = 0, and ijT is two-dimensional because the base flow U is. We 
verified that the neutral Floquet modes obtained from our computations at p = 0 are 
indeed of this form. 

The behaviour of the multipliers away from p = 0 depends on Re as shown. For 
Re = 140, the multiplier decreases monotonically as a function of p. At Re = 170, the 
multiplier branch has a local maximum at finite p. This maximum grows and shifts to 
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FIGURE 6. Floquet multiplier branches as a function of spanwise wavenumber fl  at the critical 
Reynolds number Rez = 188.5. At each value of p, the two multipliers of greatest magnitude are 
plotted. Filled circles indicate real, positive multipliers; hollow circles indicate complex-conjugate 
pair multipliers. The solid curve is repeated from the figure 5. Dashed curves are not exact but give 
some indication of subdominant multiplier branches. 

a slightly higher wavenumber as Re is increased, reaching p = 1 at the critical values: 
Re2 = 188.5, p 2  = 1.585. Our determination of the precise critical values is discussed 
below. Note that the critical Floquet mode for the onset of secondary instability 
is on the same branch of multipliers as the neutral mode owing to time-translation 
symmetry. For Re > Re2 there is a band of wavenumbers for which p > 1. There are 
no further instabilities at higher p for the Reynolds numbers shown in figure 5. We 
return to the issue of high-wavenumber instabilities below. 

The results shown in figure 5 are from parameter scans in which both the base flow 
and stability computations were run on the small (MI) mesh with polynomial order 
N = 6. However, we performed fully resolved computations at selected parameter 
values to confirm that these results are accurate to within about 1%. The cross 
size used to mark data points was chosen to indicate the accuracy of the multipliers. 
Except where noted, all further results presented are from fully resolved computations 
using the protocol described in 52.3. 

Figure 6 shows additional details of the Floquet multiplier spectrum at the sec- 
ondary instability: Re = Rez. The solid curve is repeated from the preliminary 
calculations shown in figure 5. Note that the fully resolved computations here agree 
closely with this curve. Other multiplier branches are shown with dashed curves. We 
did not resolve the details of these multiplier branches and the dashed curves are only 
meant to give some indication of their behaviour. At any given value of p there are 
no other multipliers between the branches shown and thus the dominant branch of 
Floquet multipliers is well separated from other multipliers for wavenumbers up to 
2.5. We did not attempt to compute deeper into the multiplier spectrum, i.e. smaller 
IPI- 

The wake is quite stable two-dimensionally at the secondary instability. This follows 
from the fact that at p = 0 the first multiplier, other than that due to time-translation 
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FIGURE 7. Dominant Floquet multipliers as a function of spanwise wavenumber at Reynolds 
numbers Re = 230, Re = 259, and Re = 280. For clarity, only a portion of the spectrum 
(6.5 < a < 9.3) at Re = 259 is plotted in the vicinity of the local maximum: p = 1, = 7.64. Filled 
circles indicate real, positive multipliers; hollow circles indicate complex-conjugate pair multipliers. 
Branches of real multipliers at both low and high a are connected by solid lines. 

symmetry, has a value p = 0.52 corresponding to a linear perturbation that decreases 
by a factor of about 2 each wake period. We did not attempt accurate computations of 
the second multiplier branch at #? = 0 for other values of Re, but in general we found 
that over the range of our computations ( R e  < 300) the wake is two-dimensionally 
stable. The value p = 0.52 is in agreement with the result of Noack & Eckelmann 
( 1 9 9 4 ~ )  that Ipl = 0.6 throughout the range 50 < Re < 300. The two-dimensional 
stability of the cylinder wake over this range of Reynolds number can also be inferred 
from previous direct numerical simulations (e.g. Karniadakis & Triantafyllou 1989, 
1992). 

Figure 7 shows the behaviour of the dominant Floquet multiplier over a wider 
range of spanwise wavenumbers. It can be seen that at Re = 220 the multipliers 
remain small in magnitude for all p larger than about 2.5, and hence the only unstable 
wavenumbers for R e  = 220 and lower R e  are those shown in figure 5. In the range 
3 5 p 5 8 the dominant multipliers are complex and we did not attempt to resolve 
the details of these multiplier branches. For #? 2 8 the dominant multiplier is again 
real and positive. We verified that as #? becomes large ( p  > 12) this multiplier goes 
to zero as lnp  - -p2. This scaling is to be expected because the viscous term 
(i?'/d? = -b2) begins to dominate the linearized equations when #? - Re'". Once 
this viscous-dominated regime is reached, no further instabilities are possible for 
larger #?. 

As the Reynolds number is increased above 220, the maximum in the real multiplier 
branch at #? z 8 grows, reaching p = 1 at Re', = 259 & 2, as shown in figure 7.  The 
associated wavenumber is #?; = 7.64k0.06 corresponding to a spanwise wavelength of 
2; = 0.822 0.007 cylinder diameters. For larger Re there are two bands of unstable 
wavenumbers, as shown for the case R e  = 280. 
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FIGURE 8. Curves of neutral stability for the cylinder wake. Everywhere in the shaded regions there 
exist exponentially growing three-dimensional modes of the two-dimensional wake. The critical 
Reynolds number for the long-wavelength region is Re2 N 188.5. The short-wavelength region is a 
separate instability with a critical Reynolds number of Re; N 259. 

The multiplier branch at Re = 259 was determined by fully resolved computations. 
However, as with figure 5, the spectra shown in figure 7 at Re = 220 and Re = 280 
are from computations in which both the base flow and stability computations were 
run on the small ( M I )  mesh with polynomial order N = 6. 

Figure 8 shows two curves of neutral stability for the wake. By convention we plot 
spanwise wavelength A = 2n/P as a function of Reynolds number. Everywhere along 
a neutral curve there exists a multiplier p = 1 and to the right of these curves the 
cylinder wake is linearly unstable to three-dimensional perturbations. Points along 
the neutral curves were found by computing multipliers at parameter values in the 
vicinity of p = 1, and then interpolating to find p = 1. The curves plotted in figure 8 
are polynomial fits through these points. 

The critical values Rez and 22 = 2n/p2 for the onset of three-dimensionality were 
determined by two methods. First, stability computations were performed at Re = 187 
and at Re = 190 for /3 = 1.4,1.5,1.6, and 1.7. From these data a two-dimensional fit 
(first order in Re and third order in p )  gives critical values: Re = 188.6, A = 3.967 (or 
/3 = 1.584). As a second, largely independent determination of the critical values, the 
four points on the neutral curve at Re = 190 and Re = 200 (figure 8) were fit with a 
second-order polynomial and from this fit the critical point of the neutral curve was 
found to be: Re = 188.5,A = 3.954 (/3 = 1.589). The two methods are not entirely 
independent, however, because both use some of the same data at Re = 190. We took 
the critical values to be: Re2 = 188.5 & 1.0 and A2 = 3.96 &- 0.02 (p2 = 1.585 k 0.010), 
where the error bounds are conservative and based on our overall estimation of the 
errors in the flow fields and stability computations and how these propagate in the 
interpolations used to find critical values. Stability computations at Re = 188.5, 
p = 1.585 give p = 0.9972. 

The minimum Reynolds number and associated wavelength for the crossing of the 
high-wavenumber branch of multipliers was determined similarly, though we did not 
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strive for as great a precision in this case. From stability computations at R e  = 257 
and R e  = 260 we find Re’, = 259 f 2 and 4 = 0.822 & 0.007 (p i  = 7.64 & 0.06), where 
again the error bounds are quite conservative. Stability computations at R e  = 259, 
p = 7.64 using the protocol described in $2.3 give p = 0.992. As a final check we 
repeated the computations at R e  = 259, p = 7.64 with higher spatial resolution 
( N  = 10) and obtained p = 0.995. 

3.2. Critical Floquet modes 
We turn now to a description of the critical Floquet modes driving the three- 
dimensional instability in the cylinder wake. First, recall from equation (2.6) that the 
Floquet modes have a simple z-dependence: 

i i (x, y ,  z ,  t )  = (6  cos p z ,  0 cos pz, I;i sin pz) ,  (3.1) 

from which the form of their vorticity follows: 

(3.2) 

The origin of z here is arbitrary and any translation of (3.1) or (3.2) along the span 
is also a Floquet mode. 

To visualize the instability, we consider a superposition of the two-dimensional 
wake U and the critical Floquet mode ii at Re = Rez, p = pz. This superposition 
takes the form U + ii, and should mimic the three-dimensional flow close to the 
onset of the instability. In the norm discussed earlier, 1151J 2: 0.01 llUll so that 
the superposition represents about a 1% perturbation to the base flow. Figure 9 
shows the resulting three-dimensional wake at one instant in time, visualized as 
surfaces of constant streamwise vorticity and spanwise vorticity magnitude. The 
spanwise vorticity is dominated by the primary von Karman vortices, the effect of 
the Floquet mode being a spanwise-periodic perturbation to these vortices at the 
critical wavelength Az = 2n/Pz N 4 diameters. Linking the von Karman vortices are 
thin patches of streamwise vorticity due entirely to the destabilizing Floquet mode. 
From equations (3.1) and (3.2) it follows that the streamwise and spanwise vorticity 
are out of phase in the z-direction, i.e. points of zero streamwise vorticity are aligned 
with points of maximum deformation in the von Karman vortices and vice versa. 
As discussed in the next section, this three-dimensional flow strongly resembles what 
Williamson (1988) refers to as ‘Mode A’ vortex shedding. 

While figure 9 clearly illustrates the full three-dimensional form of the instability, 
many details can be better seen in figure 10 where the streamwise vorticity tX(x, y ,  t )  
and spanwise vorticity t z ( x , y , t )  are plotted over one half-period of the Floquet 
mode. Spanwise vorticity in the growing mode is an order of magnitude stronger than 
streamwise vorticity. An important observation from figure 10 is that streamwise 
vorticity is generated close to the cylinder and rapidly injected into the wake. It 
originates as a vorticity dipole in the region between the separating shear layers 
and moves outward, emerging at the edge of the wake around x/d 2: 2. The thin 
patches of streamwise vorticity that develop do not persist more than a few diameters 
downstream in the Floquet mode. Also, the dipole component farthest from the 
centreline rapidly decays so that by the time it reaches x / d  2: 4 only a single sign of 
streamwise vorticity remains at a given spanwise location. When superimposed on 
the two-dimensional base flow, a pair of counter-rotating streamwise vortices would 
appear to emerge from the near wake, while the dipole structure would remain largely 
hidden inside the recirculation zone. 

It can be seen that the spanwise vorticity dipole aligns roughly with the centre of 
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FIGURE 9. Superposition of the critical Floquet mode on the von Karman vortex street. The grey 
tubes are isocontours of spanwise vorticity magnitude, 15, +&I. The critical Floquet mode gives rise 
to a spanwise-periodic deformation of the primary von Karman vortices. Linking these vortices are 
thin regions of positive (red) and negative (blue) streamwise vorticity, l\-. The inset shows a view of 
the same structure from above. Data for this figure were taken from image ( a )  of figure 10. 
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each von Karman vortex, but that the downstream component is slightly stronger. To 
the extent that the flow after transition is well-approximated by our superposition, 
this means that vortex lines associated with each von Karman vortex will be displaced 
primarily in the downstream direction. 

Finally, we note that the critical Floquet mode has the spatio-temporal symmetry 

ii(x-,y,~, t )  = ii(x, - y , z ,  t + T/2 ) ,  
C(X, y ,  Z, t )  = -C(X, -y, Z ,  t + T/2), 
$(x, y ,  Z, t )  = S(X, -y, Z,  t + T/2). 

( 3 . 3 )  

This is the same symmetry present in the two-dimensional wake (with w = 0) at these 
values of the Reynolds number. This can be seen in figure 10 where image ( e )  is 
simply a y-reflection of image (a). Thus, the only symmetry broken at the bifurcation 
point Re? is translational symmetry along the axis of the cylinder. 

We now consider briefly the critical Floquet mode associated with the short- 
spanwise-wavelength instability originating at the critical point Re;. For reasons 
given in 54.2, this mode is unstable at onset and so we do not describe it in the 
same detail as the long-wavelength mode just considered. Instead we focus just on 
the differences between the two modes. Although the vorticity of the critical mode at 
Re; has the same general dipole form as the critical mode at Rez, there are important 
differences in the structure and spatio-temporal symmetries of the two modes. In the 
next section we also discuss how these differences relate to the physical instability 
mechanisms described by Williamson ( 19964, but here we limit ourselves to what 
may be observed directly from the linear stability calculations. 

Figure 11 shows a qualitative comparison of the two modes with the largest linear 
growth rate within each unstable wavelength band at Re = 259. The mode in 
figure 1 l(a) is the (unstable) long-wavelength mode corresponding to a maximum 
in the multiplier spectrum at A = 3.28d. This mode is a good representative of all 
modes within the long wavelength band. Figure l l (b )  shows the critical mode at 
Re;, which has a spanwise wavelength of A; = 0.82d. At this Reynolds number the 
high-wavenumber peak in the multiplier spectrum is almost an exact fourth harmonic 
of the low-wavenumber peak; this is not true at other values of the Reynolds number. 
Figure 11 allows us to compare, in broad terms, the character of the two instabilities. 

One important difference between the two modes is clearly seen in the figure. The 
magnitude of the long-wavelength mode is peaked around the core of the von Karman 
vortices, just as is the spanwise vorticity dipole shown in figure 10. In contrast, the 
short-wavelength mode is much more concentrated in the ‘braid regions connecting 
the von Khrman vortices. This general structure for the short-wavelength mode is 
consistent with what Williamson (1988) refers to as ‘Mode B’ vortex shedding. 

The second important difference between the two modes cannot be seen in figure 11. 
As previously stated, the long-wavelength Floquet mode at the critical point Re2 obeys 
the symmetry in (3 .3) .  This is true for all the modes on the long-wavelength (short- 
wavenumber) branch. The critical mode at Re; corresponds to a different type of 
symmetry breaking. It obeys the spatio-temporal symmetry 

(3.4) 

All modes on the short-wavelength 

i i i ( x , y , z , t )  = ii(x,-y,z + A;/2,t + T/2), 

G(x,y,z,  t )  = E ( X ,  - V , Z  + n;/2, t + T / 2 ) .  
a(x, y ,  Z ,  t )  = --t7(x, -y, z + 4 / 2 ,  t + T/2 ) ,  

This is also a symmetry of the base flow. 
(high-wavenumber) branch have this symmetry. 
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FIGURE 11. Qualitative comparison of the structure of the most unstable long- and short-wavelength 
modes at  Re; 'v 259. Contours of lii are shown for the Floquet modes with spanwise wavelength 
( a )  1 = 3.28d and ( b )  1 = 1; = 0.82d. Although the base flow vorticity is not shown, (a) is largely 
concentrated in the spanwise vortex cores while ( b )  is stronger in the braid regions connecting the 
vortex cores. 
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4. Discussion 
While linear theory is limited in how far it may be applied beyond the onset 

of an instability, it nevertheless provides invaluable information for understanding 
and interpreting observations from physical experiments. Quantities such as critical 
parameter values (e.g. Reynolds number and wavelength) can be compared directly 
with experimental observations, and the most dangerous linear modes often capture 
the essential structure of the flow observed in the nonlinear physical system. In the 
present case, we find an excellent correspondence between the predictions of our 
linear stability calculations and recent experimental work over a fairly wide range 
of Reynolds number above Rez.  Although precise quantitative comparison with 
experiment is difficult for reasons we outline below, the calculations and experiments 
together present a consistent picture of secondary instability in the wake. 

4.1. Critical Reynolds number 
From our linear stability analysis we determined the critical Reynolds number for 
the secondary instability of the two-dimensional von Karman vortex street to be 
Re2 = 188.5 & 1.0. By definition, this is the minimum value of the Reynolds number 
such that the Floquet spectrum includes a neutrally stable mode (1pl = 1) with a 
non-zero wavenumber. If perturbed by an infinitesimal amount, this mode neither 
grows nor decays. A direct comparison with experimental estimates of the critical 
Reynolds number is complicated by important factors that require some elaboration. 

Most important is the degree to which a flow created in the laboratory approximates 
the ideal conditions of flow past an infinitely long cylinder. It has been found that 
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the experimental techniques used to control end effects have an important influence 
on the wake dynamics even for seemingly large-aspect-ratio systems. Miller & 
Williamson ( 1994) and Williamson ( 199621) suggest that contamination from end 
effects is responsible for the large scatter in values of the critical Reynolds number 
observed in previous experimental work (140 to 190). In comparing with experiment, 
it is appropriate to consider only studies where end effects are well-controlled and the 
wake remains relatively ‘clean’ up to the point of transition. 

The second complication is related to the nonlinear form of the bifurcation. In 
a separate publication (Henderson & Barkley 1996), we show that the secondary 
instability is weakly subcritical: there is a small range of bistability between the two- 
dimensional flow and the three-dimensional flow bifurcating from Rez. This bistability 
results in a hysteresis during the transition between the two states near. Rez, depending 
on whether the control parameter (Re) is increased or decreased. Hysteresis is shown 
clearly in the experimental data of Williamson (1988) and Leweke & Provansal(l995). 
Strictly speaking, the critical point is physically unreachable because it is absolutely 
unstable to finite-amplitude perturbations. Even low-amplitude disturbances, always 
present in experiments, can trigger three-dimensional transition at Re < Re2 and 
produce an apparent scatter in the critical Reynolds number that corresponds to the 
onset of the linear instability. Although this hysteresis effect is much more delicate 
than potentially large-scale effects due to end conditions, it is a consideration in 
interpreting experimental results for Reynolds numbers in the range 180 to 190. 

Another consideration in comparing experiments to our linear stability calculations 
is the technique commonly used to estimate the ‘critical’ Reynolds number in exper- 
iments. The appearance of three-dimensionality in the physical wake is associated 
with a significant drop in shedding frequency (see figure 1). The point where this 
drop occurs is generally reported as the critical or, more appropriately, the transition 
Reynolds number. However, at the secondary instability the leading Floquet multi- 
plier is real and positive and as a result no new temporal frequency is introduced. 
Based on our computations, we conclude that this is not a linear effect of the insta- 
bility, but is brought about by strongly nonlinear phenomena observed at Re 2: Re2 
and above. These include, most notably, the occurrence of ‘vortex dislocations’ in 
the near wake as discussed by Williamson (1992). Other complex changes in the 
Strouhal-Reynolds number relationship are discussed by Leweke & Provansal ( 1995), 
Zhang et al. (1995), and particularly in the context of the critical Reynolds number 
by Williamson ( 1996~) .  

With these points in mind, we note the following recent experimental estimates of 
Rez. In an investigation of oblique and parallel vortex shedding with low turbulence 
levels and careful control of end effects, Williamson (1989) finds the onset of three- 
dimensionality in the wake at Re = 180. In more recent work, Miller & Williamson 
(1994) use ‘end suction’ to control spanwise contamination due to end effects and 
extend the ‘laminar’ shedding regime to Re m 194. Leweke & Provansal (1995) report 
measurements for the wake of a ring, which for large aspect ratios behaves much like 
a straight cylinder but without end effects. For such configurations they find a drop 
in shedding frequency at Re m 185, and report an upper stability limit for laminar 
periodic shedding that never exceeds Re = 190 for a variety of ring aspect ratios. In 
spite of the difficulties outlined above, we feel these results are in excellent agreement 
with the critical Reynolds number of Re2 2: 188.5 determined from our linear stability 
calculations. 

We wish to re-emphasize that, owing to the various effects elaborated above, one 
cannot precisely determine the critical point Re1 of the linear instability either by 
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observing the onset of three-dimensionality in flow visualization or by measuring 
changes in the shedding frequency. To estimate the critical point accurately, one 
should instead measure the decay rate of disturbances at parameter values prior to 
the onset of the instability and extrapolate to find the parameter value corresponding 
to zero decay rate (see e.g. Schatz et al. 1995). In effect, this is the procedure for 
measuring eigenvalues (decay rates) in the physical system and is analogous to the 
numerical method for analysing the leading behaviour in the eigenvalue problem. 

Finally we note that Noack & Eckelmann (1994a.b) find Rez 2: 170 from a numerical 
Floquet stability analysis. While this value is about 10% below the actual value, they 
are able to compute this result by examining the stability of a low-dimensional 
dynamical system obtained by Galerkin projection of an analytical basis composed 
of relatively few (order 10‘) spatial modes. In comparison, our calculations involve 
order lo4 spatial degrees of freedom. Zhang et al .  (1995), in both finite difference 
calculations and experiments in a water tunnel, are able to induce (using a small wire 
in the near wake) a three-dimensional flow at Re  = 170 with a wavelength similar 
to that found in the low-dimensional model. They suggest that somehow the low 
resolution of the model indicates the instability of this particular mode. Based on our 
findings, we can only say that such a mode would be stable in the natural wake. 

4.2. Spatial structure of the three-dimensional $ow 

Williamson ( 1988) identifies two modes of three-dimensional vortex shedding after 
transition, characterized by the streamwise vorticity inferred from laser-induced fluo- 
rescent dye visualization : a relatively long-wavelength, regular pattern (‘Mode A’) for 
Reynolds numbers in the range 180 < Re < 230, and a finer-scale, irregular pattern 
(‘Mode B’) that emerges for Re  between 230 and 260; above Re = 260 the finer-scale 
mode appears to dominate. The development of each mode is associated with a 
distinct change in measurable quantities such as the shedding frequency, discussed 
above, and the base pressure coefficient (see figure 4) .  Leweke & Provansal (1995) 
note additional changes in measured spanwise correlations at Re  = 180 and Re = 260. 
The value of Reynolds number where these changes occur is naturally associated with 
the two critical points, Rez and Re;, of the neutral stability curves shown in figure 8. 
The neutral stability curves also provide a framework for discussing the development 
of the three-dimensional flow above the onset of the secondary instability and are 
reproduced in figure 12, along with experimental wavelength measurements over the 
same range of Reynolds number. 

A qualitative comparison is possible between the three-dimensional structure of 
the flow that bifurcates from Re1 and ‘Mode A’ observed in experiments. As stated 
above, the secondary instability is only weakly subcritical. Therefore, the linear 
approximation obtained by superimposing the base flow and critical Floquet mode is 
reasonably faithful to the saturated nonlinear state. Of course, this approximation will 
be best for Re  = Rez and at short times during the transition process. Experimental 
results presented by Williamson (1992, figure 2 )  represent the ideal case for comparison 
- images taken from water towing-tank runs near the critical point Re2 just as three- 
dimensionality first appears. Indeed, the flow obtained in this way exhibits the same 
spatial structure as the critical Floquet mode presented in figure 9. 

A more quantitative comparison between the shedding modes and our stability 
computations can be made in terms of the spanwise wavelengths observed in ex- 
periments. Since most experimental observations are made under steady operating 
conditions, these wavelengths reflect the final three-dimensional state after transition 
and not the instability itself. Again, the best comparison between our calculations 
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FIGURE 12. Comparison of the regions containing linearly unstable modes with the dominant 
spanwise wavelength observed in experiments: 0, Wu et al. (1994); A, Mansy et al.  (1994); 0, 
Williamson (1996~) ;  0, critical points from our linear stability calculations. The solid line gives an 
indication of the wavelength with the largest linear growth rate up to Re = 280. With the exception 
of Williamson (1996a), these measurements are taken in the near wake under steady operating 
conditions and do not correspond to the onset of the instability. 

and experiments near the critical point Re2 can be made in cases where three- 
dimensionality first starts to appear. Wavelengths measured this way by Williamson 
(1996~) fall close to the most unstable modes shown in figure 12, quoted as A = 4.01 
diameters at Re = 192, in excellent agreement with our computations. It would 
seem that linear stability theory gives a rather complete description of the bifurcation 
corresponding to ‘Mode A’ in the wake. 

Comparison in the case of ‘Mode B’ is more problematic. The critical Floquet 
mode at Re’, is localized to the near wake, decaying quickly to zero beyond x 2: 6 
diameters. Near the cylinder, a linear superposition of this mode and the two-. 
dimensional wake does resemble ‘Mode B’, both in terms of qualitative structure 
and the symmetry of streamwise vorticity reported by Williamson (1996b). Still, a 
detailed comparison between experiments and linear stability calculations in this case 
is questionable for the following reason. The three-dimensional flow that bifurcates 
from the two-dimensional wake at Re’, is necessarily unstable whether the bifurcation 
is subcritical or supercritical. This is because the two-dimensional wake is already 
unstable to ‘Mode A’ at this Reynolds number and the three-dimensional branch 
that bifurcates inherits this instability. Any bifurcation from Re‘, will not reach 
an equilibrium consisting purely of ‘Mode 3 because it is also unstable to longer- 
wavelength perturbations. Even if ‘Mode B’ is dominant, the physical wake could 
consist of some mix of modes from both unstable regions over the range of Reynolds 
numbers contained in figure 12. 

Clearly the flow arising from the bifurcation to ‘Mode B’ involves nonlinear 
interactions beyond the scope of our linear approximation. In particular, it is 
not possible to explain why ‘Mode B’ is observed experimentally below Re;. We 
stress, however, that the transition from ‘Mode A’ to ‘Mode €3’ is tied to the linear 
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stability of ‘Mode A’ and not directly to the linear stability of the two-dimensional 
wake. It is not inconsistent that ‘Mode A’ undergoes transition to ‘Mode B’ prior 
to Re;. Furthermore, the existence of a three-dimensional flow with non-zero A 
implies the existence of smaller scales generated by nonlinearity: once ‘Mode A’ is 
established, the three-dimensional flow necessarily includes wavelengths in the ‘Mode 
B’ range. 

The differences between ‘Mode A’ and ‘Mode B’ considered at the end of $3 are 
consistent with the deductions of Williamson (1996~) in which he finds that the two 
modes observed experimentally have different symmetries and speculates that they 
arise from different physical mechanisms. In particular he suggests that ‘Mode A’ is 
an instability of the vortex cores, while the observed wavelength of ‘Mode B’ indicates 
an instability of the ‘braid‘ regions. This is clearly consistent with the structure of the 
two Floquet modes shown in figure 11. Vorticity modes with these same symmetries 
were also found in earlier studies of three-dimensionality in plane wakes by Meiburg 
& Lasheras (1988) and Lasheras & Meiberg (1990). 

Direct numerical simulations of transition performed by Thompson, Hourigan & 
Sheridan (1994, 1996) support the possibility of co-existing modes with different 
length scales and provide additional qualitative agreement with the linear growth 
rates predicted by our calculations. At Re = 250, they report that the first organized 
three-dimensional structure to appear from a low-amplitude, broad-band disturbance 
has a wavelength of A = rc diameters (the longest wavelength included in their 
calculation); only after this state has developed does a new structure emerge with a 
shorter wavelength of A x: 1 diameter. Even in this final state, visualization of the 
three-dimensional flow shows that the streamwise vortex spacing is A/d  x: 1 in the 
near wake while A / d  x: 71 appears further downstream. DNS calculations by Zhang et 
al. (1995) show similar length scales at this Reynolds number. However, neither of 
these studies reports growth rates during the transition between two-dimensional and 
three-dimensional states that we might compare to directly. 

Limited experimental data is available for comparison over a wider range of 
Reynolds number. Mansy, Yang & Williams (1994) have made accurate measurements 
of spanwise wavelengths using a scanning laser anemometer to extract velocity maps 
of the near wake. They find that A x: 3 to 4 diameters for 180 < Re < 240, with a 
shorter wavelength, A x: 1 diameter, appearing above Reynolds number 240. Most 
of their long-wavelength data above Re  = 188 fall within the upper unstable region 
in our stability diagram (labelled ‘A’ in figure 12), and all of their short-wavelength 
data between Re  = 260 and Re = 300 fall within the lower unstable region (labelled 
‘ B  in figure 12). Measurements by Wu et al. (1994) using hydrogen bubble flow 
visualization all fall in the lower unstable region for Re > 260. 

While the issue of wavenumber selection after transition is beyond the scope of a 
linear analysis, we note the following. The general trend reported by Mansy et al. 
(1994) is that wavelength decreases with Reynolds number as A / d  - Re-‘’2. In the 
range of Reynolds number reported here there is a more subtle variation. For ‘Mode 
A’, experimental values of A are very near the short-wavelength side of the ‘A’ band. 
In contrast, measurements for ‘Mode B’ tend to lie near the long-wavelength side of 
the ‘ B  band. The point of maximum growth rate of ‘linear modes shifts to shorter 
wavelengths (larger wavenumbers) with increasing Reynolds number for the unstable 
modes corresponding to ‘Mode A’ in figure 5, whereas the point of maximum growth 
rate shifts to longer wavelengths (smaller wavenumbers) with increasing Reynolds 
number for the ‘Mode B’ unstable modes in figure 7. In both cases, the point of 
maximum growth rate is asymmetrically located within the unstable bands in a way 
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consistent with the experimental trends. It is not clear at what precise value of Re 
the trend reported by Mansy et al. begins. 

The development of streamwise vorticity in the wake is a striking feature of the 
three-dimensional flow discussed at some length by a number of researchers (e.g. 
Williamson 1988, 1996a.b; Wu et al. 1994, 1996; Mittal & Balachandar 1995). 
During transition, the presence of streamwise vorticity is simply a consequence 
of the three-dimensional structure of the Floquet mode driving the instability; it 
may be more appropriate to discuss simply the three-dimensional vorticity field of 
the perturbation. Experimental flow visualization clearly shows the presence of a 
strong three-dimensional vorticity field downstream of the cylinder. This is linked to 
the growth in amplitude of the global mode (Floquet mode) controlling the three- 
dimensional structure of the flow. Our computations show that all three vorticity 
components are generated very close to the cylinder, and in fact originate inside 
the recirculation zone. This underscores the fact that the development of three- 
dimensionality in the wake is driven by a near-wake absolute instability. 

The numerical studies discussed above (Thompson et al. 1994, 1996; Zhang et al. 
1995) have managed to reproduce the long- and short-wavelength instabilities pre- 
dicted by our calculations and observed in experiments. Direct numerical simulations 
will no doubt serve to improve our understanding of the physical mechanisms behind 
these instabilities. However, simulations are problematic in that they restrict the flow 
dynamics by imposing spanwise periodicity. Periodic boundary conditions reduce the 
flow to a discrete set of spanwise wavenumbers, in a sense mimicking a closed system 
with a new fundamental length scale : the periodic length. Computational results 
depend strongly on the imposed periodic length. In particular, the original study by 
Karniadakis & Triantafyllou (1992) was for a spanwise length of L = n/2 diameters. 
The effect such restrictions has on the wake dynamics is not clear, and it is difficult 
to draw quantitative conclusions from the three-dimensional simulations. 

4.3. Bevond the secondarv instability 
We conclude with some remarks on subsequent bifurcations and in particular on 
possible scenarios leading to chaos in the cylinder wake. Because no new temporal 
frequency is introduced by the secondary instability, and because the only symmetry 
broken is translational symmetry along the cylinder axis, the bifurcation to a three- 
dimensional flow would appear to be simple from a dynamical systems viewpoint. 
Thus a natural question is: “What is the scenario leading to complex dynamics in the 
cylinder wake?” 

Numerical studies by Karniadakis & Triantafyllou ( 1992) and Tomboulides et 
al. (1992) suggest that further increases in Re result in a gradual sequence of 
period-doubling bifurcations leading to chaos. These bifurcations are marked by 
the appearance of subharmonic fluctuations in the wake. In the context of period- 
doubling, the term subharmonic refers to fluctuations in time over the set of frequencies 
f /2“ for integers n > 0, where f is the dominant vortex shedding frequency. If this 
is the case, it should be possible to measure experimentally a clean progression of 
subharmonics as each period-doubling occurs. Recent measurements by Williams, 
Mansy & Abouel-Fotouh (1996) have identified a subharmonic fluctuation at Re = 

300, but have not established that this forms the beginning of a period-doubling 
cascade. Other experimentally measured frequency spectra (e.g. Williamson 1988, 
1989; Leweke & Provansal 1994, 1995) are, in fact, broad-band at Reynolds numbers 
just above Re?. This would suggest to the contrary that the flow becomes complex at 
the onset of three-dimensionality. 
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Leweke & Provansal (1994, 1995) have proposed a transition scenario, based on the 
complex Ginzburg-Landau equation, that captures the experimental spectra quite well 
and supports intrinsically complex dynamics just beyond the secondary instability. 
However, in this scenario the secondary instability is of the Benjamin-Feir type (a zero- 
wavenumber instability) while both our computations and experimental observations 
show that the instability occurs at a finite spanwise wavenumber. While it is intriguing 
that a simple nonlinear model equation may capture the essential dynamical features 
of this complex flow, the scenario proposed by Leweke & Provansal lacks a finite- 
wavenumber instability and some modification of their model is necessary. 

The question remains open as to whether the appearance of complex dynamics 
in the cylinder wake is gradual or abrupt, i.e. are the broad-band spectra seen in 
experiments the result of intrinsically complex (chaotic) dynamics in the wake at 
Reynolds numbers just beyond the secondary instability, or are they due to small, 
random fluctuations? Accurate knowledge of the linear stability properties of the 
wake should allow future studies, either computational or experimental, to address 
this question with greater precision than has been possible in the past. This and 
other interesting questions about the wake dynamics beyond the secondary instability 
remain to be answered. 
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