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Secondary instability of flow past a circular cylinder is examined using highly accurate numerical
methods. The critical Reynolds number for this instability is found to beRec5188.5. The secondary
instability leads to three-dimensionality with a spanwise wavelength at onset of 4 cylinder
diameters. Three-dimensional simulations show that this bifurcation is weakly subcritical. ©1996
American Institute of Physics.@S1070-6631~96!00906-1#

The von Kármán vortex street generated by flow past a
circular cylinder is, at low Reynolds numbers and under
ideal conditions, a perfectly time-periodic, two-dimensional
flow. This periodic state develops from steady flow at the
primarywake instability, now well-characterized and known
to correspond to a supercritical Hopf bifurcation.1,2 Subse-
quent instabilities in the cylinder wake have been given at-
tention only recently and they are still not adequately under-
stood. In this Brief Communication we discuss the use of
highly accurate computational methods to explore thesec-
ondary instability in the cylinder wake. This is a global
three-dimensional instability of the two-dimensional, time-
periodic vortex street. From a combination of linear and non-
linear computations we derive quantitative data about the
bifurcation ~such as critical Reynolds number and critical
spanwise wavelength! as well as insight into the qualitative
nature of the transition.

Our computational approach is summarized as follows.
First we perform direct simulations of the incompressible
Navier–Stokes equations to obtain 2-D wake flows for
140<Re<300, whereRe is the Reynolds number defined
by Re[U`d/n; U` is the free-stream velocity far from the
cylinder, d is the cylinder diameter, andn is the kinematic
viscosity. For the 2-D simulations we use a spectral element
method with high resolution on large computational do-
mains: meshes have 170 to 300 elements and a polynomial
basis of sixth to tenth order. The unsteady solution is inte-
grated until it reaches an asymptotic time-periodic state
U(x,y,t), that is U(x,y,t1T)5U(x,y,t) where T is the
wake period~one shedding cycle!. These periodic flows are
then stored for use in our stability calculations.

The second step of our method is a Floquet stability
analysis of 3-D disturbances to the 2-D wake. Consider an
infinitesimal perturbation of the 2-D flow given by

u~x,y,z,t !5U~x,y,t !1u8~x,y,z,t !. ~1!

Ignoring terms quadratic inu8, the evolution of perturbations
is determined by the Navier–Stokes equations linearized
aboutU:
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where p8 is the perturbation to the pressure that enforces
¹•u850.

Floquet theory applies to linear differential equations
with time-periodic coefficients, in this case Eq.~2! with co-
efficients given byU. In the absence of degeneracies, the
general solution can be expressed as a sum of solutions of
the form ũ(x,y,z,t)exp(st), wheres is a Floquet exponent
and each Floquet modeũ is a T-periodic function. Stability
of U is characterized by the spectrum of Floquet multipliers,
m[exp(sT): exponentially growing perturbations corre-
spond to multipliers outside the unit circle in the complex
plane (umu.1).

Because the cylinder is homogeneous in the spanwise
directionz, the Floquet modes must be of the form

ũ~x,y,z,t !5~ ûcosbz, v̂cosbz, ŵsin bz!, ~3!

or an equivalent form obtained by translation inz, whereb
is the spanwise wave number andû, v̂, andŵ are functions
of (x,y,t) only. In this way the 3-D stability problem for
fixed Re reduces to a one-parameter family of 2-D stability
problems that depend onb. We integrate Eq.~2! using a
method similar to that used to computeU, and employ a
Krylov method to find the dominant Floquet multiplier and
corresponding Floquet mode as a function of the parameters
Re and b. A more detailed description of our numerical
method is described in Ref. 3.

Figure 1 shows the dependence of the dominant Floquet
multiplier on spanwise wave numberb for values ofRe
encompassing the secondary instability. For eachRe there is
a Floquet multiplierm51 at b50 because autonomous
time-periodic flows always have a neutrally-stable Floquet
mode of the formũT } ]U/]t.4 This is a 2-D mode (b50)
becauseU is a 2-D flow. ForRe5140, the leading multiplier
decreases monotonically as a function ofb. At Re5170,
this multiplier branch has a local maximum at finiteb. The
height of this maximum grows and shifts to a slightly higher
wave number asRe increases, reachingm51 at the critical
values for the secondary instability:Rec5188.5,bc51.585.
The critical wavelengthlc52p/bc corresponds to almost
exactly 4 cylinder diameters. These values compare quite
well with experimental observations discussed in the com-
panion article by Williamson.5 For Re.Rec there is a band
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of unstable wave numbers corresponding tom.1. By com-
puting this band at different values ofRe we obtain the
neutral-stability curve shown in Fig. 2.

We now turn to the nonlinear classification of the sec-
ondary instability. For this we consider the normal form for a
pitchfork bifurcation of a discrete-time dynamical system:

An115mAn1a1An
31O~An

5!, ~4!

whereAn corresponds to the~real! amplitude of the bifurcat-
ing flow at periodn anda1 is called the Landau constant. If
a1,0, the instability is asupercritical ~soft! bifurcation. If
a1.0, the instability is asubcritical ~hard! bifurcation: tran-
sition is discontinuous and hysteretic.

To determine the nonlinear character of the secondary
instability, we performed direct simulations nearRec using
the full 3-D Navier–Stokes equations. The most precise and
direct way to analyze the nonlinear growth of the critical
mode is to follow the evolution of initial conditions of the
form U1ũc , whereũc is a Floquet mode atbc . Moreover,
because the Navier–Stokes equations preserve the subspace
of 3-D solutions spanned by wave numbersmbc for integers

m, it is sufficient to retain only these modes when the initial
condition lies in this subspace. In our simulations we re-
tained all modes withumu<M516.

We define the amplitudeAn of the 3-D flow aftern
periods~shedding cycles! by

An[F 4

pd2U`
2 E

V
uûcu2dVG1/2, ~5!

whereV is the 2-D cross-section of the computational do-
main andûc(x,y,tn) is the Fourier coefficient of the velocity
field at period~or shedding cycle! n and wave numberbc .
To determine the value ofa1 , we analyzeAn in the neigh-
borhood of the critical point (11e)Rec , where e[(Re
2Rec)/Rec is a small parameter.

Figure 3~a! shows the result of a 3-D simulation at
Re5195 (e50.03). Near the point of saturation,An departs
from the exponential growth described byAn115mAn . Ini-
tially this departure is governed by the third-order term in
~4!. One can quantify the deviation by evaluating

Dn[~An112mAn!/An
3 ,

which according to the normal form isDn5a11O(An
2).

This is plotted in Fig. 3~b!. Although at low amplitudesDn

fluctuates considerably, its mean value is almost constant
until the O(An

5) term in ~4! becomes important. From the
data we estimatea1.0.116. Figure 3~a! shows the growth
curve from the normal form truncated at third order. Excel-

FIG. 1. Dependence of the dominant Floquet multiplier on spanwise wave
number for values ofRe indicated. Multipliers are real and positive, and
each branch is symmetric:m(b)5m(2b).

FIG. 2. Neutral-stability curve for the cylinder wake. Everywhere to the
right of the curve there exist exponentially growing 3-D Floquet modes with
the indicated wavelength; the dashed–solid line indicates the mode with the
maximum linear growth rate.

FIG. 3. Nonlinear character of the secondary instability.~a! An from 3-D
simulation atRe5195 ~points!. Curves show results from the normal form
at first and third order withm51.041 anda150.116.~b! Dn computed from
the data in~a! showinga1.0 and therefore that the secondary instability is
subcritical. The inset shows a bifurcation diagram based on the normal form
together with asymptotic states from 3-D simulations~points!.
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lent agreement between the simulation data and the third-
order normal form with positivea1 clearly indicates that the
secondary instability is subcritical.

To strengthen this conclusion we performed additional
3-D simulations at Re5185 and 190. At Re5190
~e50.008!, we again founda1.0.116. Below the critical
point atRe5185 we found bi-stability between the 2-D flow
(A50) and a 3-D flow (A Þ 0): initial conditions corre-
sponding toA050.1 decayed back to zero, while initial con-
ditions corresponding toA050.915 evolved to a saturated
3-D flow with A50.897. Using the values ofa1 , Rec , and
the asymptotic amplitudesA from the nonlinear calculations,
we constructed the bifurcation diagram shown in the inset to
Fig. 3~a!. This diagram is necessarily schematic because the
data do not permit a reliable estimate of the coefficient of the
quintic term in the normal form. This term is responsible for
the saturation of the time series in Fig. 3~a! and the turning
point in the bifurcation diagram. Precise determination of
this coefficient is left to future work. However, the correct
prediction of final states by the normal form with the esti-
mated coefficients and the demonstration of bi-stability for
Re,Rec confirms that the bifurcation is subcritical.

Figure 4 illustrates the asymptotic 3-D flow at
Re5195, similar to experimental flow visualization above
Rec . From the initial superpositionU1ũc , the flow has de-
veloped a complex three-dimensional vorticity field with sig-
nificant streamwise vorticity far downstream. In this satu-
rated state the wake is 3-D and time-periodic, but with a
slightly lower shedding frequency. It is unknown whether
this flow is stable to further 3-D perturbations, but experi-
mental evidence suggests it is not.5

Our finding of a subcritical secondary instability is con-
sistent with experimental observations,6 but stands in con-
trast to other computational studies which conclude that the
bifurcation is supercritical. Karniadakis and Triantafyllou7

find a soft transition and stable 3-D solutions for Reynolds
numbers up to 225, but these calculations are for narrow
domains~L5p/2 diameters! and do not correspond to the
instability considered here. Zhanget al.8 have studied the
evolution of disturbances in domains with spanwise lengths

of L56 to 18 diameters. They report both hardand soft
transitions, although only the latter is relevant to the discus-
sion here~the hard transition is observed atRe.160 and
does not correspond to a bifurcation from the 2-D flow!. The
soft transition occurs atRe.180 and produces a 3-D flow
that agrees qualitatively with Fig. 4. While this transition is
attributed to supercritical behavior, they do not report growth
rates or 3-D results in the small hysteretic range ofRe found
here. Noack and Eckelmann9 provide indirect evidence of a
supercritical bifurcation in a low-dimensional model of the
3-D wake. However, the critical values computed from their
model compared to our results are 10% lower in Reynolds
number and 45% higher in wave number. Given the im-
mense computational requirements necessary for full resolu-
tion of the cylinder wake, it is not surprising that previous
computations failed to detect weak subcriticality.

In summary, we performed a combined linear and non-
linear computational study of secondary instability in the
wake of a circular cylinder. From our linear stability calcu-
lations we determined the precise critical values for the 3-D
instability of the 2-D wake. Using full 3-D simulations near
the critical point, we estimated the Landau constant for this
bifurcation and provided the first clear numerical evidence
that the secondary instability is subcritical. These calcula-
tions firmly establish the nature of the secondary instability
for an infinitely long cylinder in an open flow.
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FIG. 4. Visualization of the streamwise vorticity field for the saturated state
at Re5195. Light and dark surfaces correspond to positive and negative
streamwise vorticity with a magnitude ofujxd/U`u50.75.
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