Find me on Scopus ORCID ResearcherID
Publications
-
B. Düring, J. Franceschi, M.-T. Wolfram and M. Zanella.
Breaking consensus in kinetic opinion formation models on graphons.
J. Nonlinear Sci. 34 (2024), 79. (arXiv:2403.14431) -
B. Düring, J. Evans and
M.-T. Wolfram.
Steady states of an Elo-type rating model for players of varying strength.
Kinet. Relat. Models 17(2) (2024), 209-233. (arXiv:2204.10260) -
B. Düring and C. Heuer.
Time-adaptive high-order compact finite difference schemes for option pricing in a family of stochastic volatility models.
In: Progress in Industrial Mathematics at ECMI 2021, M. Ehrhardt and M. Günther (eds.), pp. 373-380, Mathematics in Industry 39, Springer, Berlin, Heidelberg, 2022. (arXiv:2107.09094) (SSRN:3890159) -
B. Düring, N. Georgiou, S. Merino-Aceituno and E. Scalas.
Continuum and thermodynamic limits for a simple random-exchange model.
Stochastic Process. Appl. 149 (2022), 248-277. (arXiv:2003.00930) -
B. Düring, M. Fischer and
M.-T. Wolfram.
An Elo-type rating model for players and teams of variable strength.
Phil. Trans. R. Soc. A 380(2224) (2022), 20210155. (arXiv:2109.15046) -
B. Düring and O. Wright.
On a kinetic opinion formation model for pre-election polling.
Phil. Trans. R. Soc. A 380(2224) (2022), 20210154. (arXiv:2107.05964) -
J.A. Carrillo, B. Düring, L.M. Kreusser and
C.-B. Schönlieb.
Equilibria of an anisotropic nonlocal interaction equation: analysis and numerics.
Discrete Contin. Dyn. Syst. Ser. A 41(8) (2021), 3985-4012. (arXiv:1912.093376) -
B. Düring, N. Georgiou, S. Merino-Aceituno and E. Scalas.
Continuum and thermodynamic limits for a wealth-distribution model.
In: Complexity, Heterogeneity, and the Methods of Statistical Physics in Economics, pp. 79-99, H. Aoyama et al. (eds.), Evolutionary Economics and Social Complexity Science 22, Springer, Singapore, 2020. -
J.A. Carrillo, B. Düring, L.M. Kreusser and
C.-B. Schönlieb.
Stability analysis of line patterns of an anisotropic interaction model.
SIAM J. Appl. Dyn. Syst. 18(4) (2019), 1798–1845. (arXiv:1806.04966) -
B. Düring and A. Pitkin.
High-order compact finite difference scheme for option pricing in stochastic volatility with contemporaneous jump models.
In: Progress in Industrial Mathematics at ECMI 2018, I. Faragó et al. (eds.), pp. 365-371, Mathematics in Industry 30, Springer, Berlin, Heidelberg, 2019. (arXiv:1810.13248) (SSRN:3275199) -
B. Düring and A. Pitkin.
High-order compact finite difference scheme for option pricing in stochastic volatility jump models.
J. Comput. Appl. Math. 355 (2019), 201-217. (arXiv:1704.05308) (SSRN:2954523) -
B. Düring, C. Gottschlich, S. Huckemann, L.M. Kreusser and
C.-B. Schönlieb.
An anisotropic interaction model for simulating fingerprints.
J. Math. Biol. 78(7) (2019), 2171-2206. (arXiv:1711.07417) -
B. Düring, M. Torregrossa and
M.-T. Wolfram.
Boltzmann and Fokker-Planck equations modelling the Elo rating system with learning effects.
J. Nonlinear Sci. 29(3) (2019), 1095-1128. (arXiv:1806.06648) -
B. Düring and A. Pitkin.
Efficient hedging in Bates model using high-order compact finite differences.
In: Recent Advances in Mathematical and Statistical Methods, D.M. Kilgour et al. (eds.), pp. 489-498, Springer Proceedings in Mathematics & Statistics 259, Springer, Cham, 2018. (arXiv:1710.05542) (SSRN:3053759) -
B. Düring, L. Pareschi and G. Toscani.
Kinetic models for optimal control of wealth inequalities.
Eur. Phys. J. B 91(10) (2018), 265. (arXiv:1803.02171) -
J.A. Carrillo, B. Düring, D. Matthes and D.S. McCormick.
A Lagrangian scheme for the solution of nonlinear diffusion equations using moving simplex meshes.
J. Sci. Comput. 75(3) (2018), 1463-1499. (arXiv:1702.01707) -
M. Burger, B. Düring, L.M. Kreusser, P.A. Markowich and C.-B. Schönlieb.
Pattern formation of a nonlocal, anisotropic interaction model.
Math. Models Methods Appl. Sci. 28(3) (2018), 409-451. (arXiv:1610.08108) -
B. Düring, C. Hendricks and J. Miles.
Sparse grid high-order ADI scheme for option pricing in stochastic volatility models.
In: Novel Methods in Computational Finance, M. Ehrhardt et al. (eds.), pp. 295-312, Mathematics in Industry 25, Springer, Cham, 2017. (arXiv:1611.01379) (SSRN:2864420) -
B. Düring and C. Heuer.
Essentially high-order compact schemes with application to stochastic volatility models on non-uniform grids.
In: Novel Methods in Computational Finance, M. Ehrhardt et al. (eds.), pp. 313-319, Mathematics in Industry 25, Springer, Cham, 2017. (arXiv:1611.00316) (SSRN:2862607) -
B. Düring, N. Georgiou and E. Scalas.
A stylised model for wealth distribution.
In: Economic Foundations for Social Complexity Science, Y.Aruka, A. Kirman (eds.), pp. 135-157, Evolutionary Economics and Social Complexity Science 9, Springer, Singapore, 2017. (arXiv:1609.08978) -
B. Düring.
Partial differential equations model political segregation.
SIAM News Blog, 8 June 2017. -
B. Düring and J. Miles.
High-order ADI scheme for option pricing in stochastic volatility models.
J. Comput. Appl. Math. 316 (2017), 109-121. (arXiv:1512.02529) (SSRN:2700756) -
B. Düring, A. Jüngel and L. Trussardi.
A kinetic equation for economic value estimation with irrationality and herding.
Kinet. Relat. Models 10(1) (2017), 239-261. (arXiv:1601.03244) -
B. Düring, C.-B. Schönlieb and M.-T. Wolfram (eds.).
Gradient flows: from theory to application.
ESAIM Proc. Surveys No. 54, EDP Sciences, France, 2016. -
B. Düring and C. Heuer.
High-order compact schemes for Black-Scholes basket options.
In: Progress in Industrial Mathematics at ECMI 2014, G. Russo et al. (eds.), pp. 1095-1102, Mathematics in Industry 22, Springer, Berlin, Heidelberg, 2016. (arXiv:1505.07613) -
B. Düring, P. Fuchs and A. Jüngel.
A higher-order gradient flow scheme for a singular one-dimensional diffusion equation.
Preprint. (arXiv:1509.00384) -
B. Düring and M.-T. Wolfram.
Opinion dynamics: inhomogeneous Boltzmann-type equations modelling opinion leadership and political segregation.
Proc. R. Soc. Lond. A 471 (2015), 20150345. (arXiv:1505.07433) -
B. Düring and C. Heuer.
High-order compact schemes for parabolic problems with mixed derivatives in multiple space dimensions.
SIAM J. Numer. Anal. 53(5) (2015), 2113-2134. (arXiv:1506.06711) (SSRN:2459861) -
B. Düring, M. Fournié and C. Heuer.
High-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids.
J. Comput. Appl. Math. 271 (2014), 247-266. (arXiv:1404.5138) (SSRN:2295581) -
L. Calatroni, B. Düring and
C.-B. Schönlieb.
ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing.
Discrete Contin. Dyn. Syst. Ser. A 34(3) (2014), 931-957. (arXiv:1305.5362) -
B. Düring, M. Fournié and A. Rigal.
High-order ADI schemes for convection-diffusion equations with mixed derivative terms.
In: Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM'12, Selected papers from the ICOSAHOM 12 conference, June 25-29, 2012, Gammarth, Tunisia, M. Azaïez et al. (eds.), pp. 217-226, Lecture Notes in Computational Science and Engineering 95, Springer, Berlin, Heidelberg, 2013. (arXiv:1505.07621) -
M. Benning, L. Calatroni, B. Düring and
C.-B. Schönlieb.
A primal-dual approach for a total variation Wasserstein flow.
In: Geometric Science of Information, First International Conference, GSI 2013, Paris, France, August 28-30, 2013, F. Nielsen and F. Barbaresco (eds.), pp. 413-421, Lecture Notes in Computer Science 8085, Springer, 2013. (arXiv:1305.5368) -
B. Düring and M. Fournié.
High-order compact finite difference scheme for option pricing in stochastic volatility models.
J. Comput. Appl. Math. 236(17) (2012), 4462-4473. (arXiv:1404.5140) (SSRN:1646885) -
B. Düring and C.-B. Schönlieb.
A high-contrast fourth-order PDE from imaging: numerical solution by ADI splitting.
In: Multi-scale and High-Contrast Partial Differential Equations, H. Ammari et al. (eds.), pp. 93-103, Contemporary Mathematics 577, American Mathematical Society, Providence, 2012. (preprint) -
B. Düring and M. Fournié.
On the stability of a compact finite difference scheme for option pricing.
In: Progress in Industrial Mathematics at ECMI 2010, M. Günther et al. (eds.), pp. 215-221, Mathematics in Industry 17, Springer, Berlin, Heidelberg, 2012. (preprint) -
B. Düring.
Kinetic modelling of opinion leadership.
SIAM News 44(10), December 2011, pp. 1, 8. -
B. Düring, D. Matthes and J.-P. Milisic.
A gradient flow scheme for nonlinear fourth order equations.
Discrete Contin. Dyn. Syst. Ser. B 14(3) (2010), 935-959. (preprint) -
B. Düring and D. Matthes.
A mathematical theory for wealth distribution.
In: Mathematical modeling of collective behavior in socio-economic and life-sciences, G. Naldi et al. (eds.), pp. 81-113, Birkhäuser, Boston, 2010. -
B. Düring.
Multi-species models in econo- and sociophysics.
In: Econophysics & Economics of Games, Social Choices and Quantitative Techniques, B. Basu et al. (eds.), pp. 83-89, Springer, Milan, 2010. -
B. Düring and M. Fournié.
Compact finite difference scheme for option pricing in Heston's model.
In: AIP Conference Proceedings 1281, Numerical Analysis and Applied Mathematics: International Conference of Numerical Analysis and Applied Mathematics 2010, T.E. Simos et al. (eds.), pp. 219-222, American Institute of Physics (AIP), Melville, NY, 2010. (preprint) -
B. Düring, P.A. Markowich, J.-F. Pietschmann and M.-T. Wolfram.
Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders.
Proc. R. Soc. Lond. A 465(2112) (2009), 3687-3708. (SSRN:1399345) -
B. Düring, D. Matthes and G. Toscani.
A Boltzmann-type approach to the formation of wealth distribution curves.
Riv. Mat. Univ. Parma (8) 1 (2009), 199-261. (SSRN:1281404) -
B. Düring.
Asset pricing under information with stochastic volatility.
Rev. Deriv. Res. 12(2) (2009), 141-167. (SSRN:1212323) -
B. Düring.
Agent-based models and diffusive limit equations for socio-economic problems.
Habilitation thesis, Technische Universität Wien, Austria, 2009. -
B. Düring and G. Toscani.
International and domestic trading and wealth distribution.
Comm. Math. Sci. 6(4) (2008), 1043-1058. (SSRN:1165174) -
B. Düring, A. Jüngel and S. Volkwein.
Sequential quadratic programming method for volatility estimation in option pricing.
J. Optim. Theory Appl. 139(3) (2008), 515-540. (SSRN:928219) -
B. Düring, D. Matthes and G. Toscani.
Kinetic equations modelling wealth redistribution: a comparison of approaches.
Phys. Rev. E 78(5) (2008), 056103. (SSRN:1161019) -
B. Düring.
Calibration problems in option pricing.
In: Nonlinear Models in Mathematical Finance: New Research Trends in Option Pricing, M. Ehrhardt (ed.), pp. 323-352, Nova Sci. Publ., Inc., Hauppauge, NY, 2008. -
B. Düring, D. Matthes and G. Toscani.
Exponential and algebraic relaxation in kinetic models for wealth distribution.
In: "WASCOM 2007" - Proceedings of the 14th Conference on Waves and Stability in Continuous Media, N. Manganaro et al. (eds.), pp. 228-238, World Sci. Publ., Hackensack, NJ, 2008. (preprint) -
B. Düring and G. Toscani.
Hydrodynamics from kinetic models of conservative economies.
Physica A 384(2) (2007), 493-506. (preprint) -
B. Düring.
A semi-smooth Newton method for an inverse problem in option pricing.
Proc. Appl. Math. Mech. 7(1) (2007), Special Issue: Sixth International Congress on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting, Zürich 2007, 1081105-1081106. (preprint) -
B. Düring and E. Lüders.
Option prices under generalized pricing kernels.
Rev. Deriv. Res. 8(2) (2005), 97-123. (preprint) -
B. Düring and A. Jüngel.
Existence and uniqueness of solutions to a quasilinear parabolic equation with quadratic gradients in financial markets.
Nonl. Anal. TMA 62(3) (2005), 519-544. (SSRN:520462) -
B. Düring.
Black-Scholes Type Equations: Mathematical Analysis, Parameter Identification & Numerical Solution.
Ph.D. thesis, J. Gutenberg-Universität Mainz, Germany, 2005. -
B. Düring, M. Fournié and A. Jüngel.
Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation.
Math. Mod. Num. Anal. 38(2) (2004), 359-369. (SSRN:520443) -
B. Düring, M. Fournié and A. Jüngel.
High-order compact finite difference schemes for a nonlinear Black-Scholes equation.
Intern. J. Theor. Appl. Finance 6(7) (2003), 767-789. (SSRN:520162)