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Preface

The term “harmonic analysis” is a flexible one that has been used to
denote a lot of different things. In this book I take it to mean those
parts of analysis in which the action of a locally compact group plays
an essential role: more specifically, the theory of unitary representations
of locally compact groups, and the analysis of functions on such groups
and their homogeneous spaces.

The purpose of this book is to give an exposition of the fundamental
ideas and theorems of that portion of harmonic analysis that can be
developed with minimal assumptions on the nature of the group with
which one is working. This theory was mostly developed in the period
from 1927 (the date of the Peter-Weyl theorem) through the 1960’s.
Since that time, research in harmonic analysis has proceeded in other
directions, mostly on a more concrete level, so one may ask what is the
excuse for a new book on the abstract theory at this time.

Well, in the first place, I submit that the material presented here
is beautiful. I fell in love with it as a student, and this book is the
fulfillment of a long-held promise to myself to return to it. In the second
place, the abstract theory is still an indispensable foundation for the
study of concrete cases; it shows what the general picture should look
like and provides a number of results that are useful again and again.
Moreover, the intervening years have produced few if any books with
- the scope of the present one. One can find expositions of various bits
and pieces of this subject in a lot of places, and there are a few lengthy
treatises in which one can perhaps learn more about certain aspects
‘of it than one wants to know. But I have taken to heart the dictum
propounded by R. F. Streater and A. S. Wightman in the preface of
their book PCT, Spin, Statistics, and All That, that a book containing
only Memorable Results is a Good Thing. The result, I hope, is a
book that presents a rather large amount of important and interesting
material in a concise and readable form.

The prerequisites for this book consist mostly of a familiarity with
real analysis and elementary functional analysis. I use Folland [39] and
Rudin [108] as standard references for this material; definitions and the-
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vi A Course in Abstract Harmonic Analysis

orems. in these books are used freely here, often without any specific
referemce. Rudin [108] also contains most of the material in Chapter 1,
but the latter is included here because some of the concepts in it —
especially projection-valued measures and the Gelfand transform — are
an essential part of the fabric of ideas in later sections, and because I
wished to include certain aspects of the spectral theorem that Rudin
omits.

Chapters 2-6 are the core of the book. Chapter 2 develops the basic
tools for doing analysis on groups and homogeneous spaces: invariant
~ measures and the convolution product. Chapter 3 presents the rudi-
ments of unitary representation theory, up through the Gelfand-Raikov
existence theorem for irreducible unitary representations. In particular,
it ,imtroduces the connection between representations and functions of
positive type (or positive definite functions, as they are often called),
an amazingly fruitful idea which also plays an important role in later
chapters. Chapters 4 and 5 are devoted to analysis on Abelian and
cbmpact groups. Here the Fourier transform takes center stage, first
as a straightforward generalization of the classical Fourier transform to
locally compact Abelian groups, and then in the more representation-
theoretic form that is appropriate to the non-Abelian case. Chapter 6
presents the theory of induced representations, including a complete
proof of the Mackey imprimitivity theorem (something which is remark-
ably scarce in the expository litefature) following the ideas of Blattner.
In all these chapters, a number of specific examples are included to il-
lustrate the general theory; they are interwoven with the rest of the text
in Chapters 2-4 but are mostly collected in separate sections at the end
in Chapters 5 and 6.

Chapter 7, on the theory of noncompact, non-Abelian groups, is of a
somewhat different nature than the earlier chapters. To a considerable
extent it is more like a survey article than a portion of a book, for many
of the main results are stated without proof (but with references). To
have given a complete treatment of the material in this chapter would
have required the enlargement the book to an unwieldy size, involv-
ing a lengthy digression into the theory of von Neumann algebras and
representations of C* algebras. (Indeed, many of the results are most
naturally stated in this context, their application to groups coming via
the group C* algebra.) The books of Dixmier [28], [29] already provide
an excellent exposition of this theory, which I saw no reason to duplicate.
Rather, I thought that many readers would appreciate a fairly detailed
sketch of the Big Picture for noncompact, non-Abelian groups with the
technical arguments omitted, especially since most of these results pro-
vide a background for the study of concrete cases rather than a set of
working tools.

The bibliography contains three kinds of items: original sources for
the major results in the book, references for results stated without proof,
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Preface vii

and expository works to which readers can refer for more information
on various topics. It makes no pretense of completeness. More extensive
bibliographies can be found in Dixmier [29], Fell and Doran [37], [38],
and Mackey [84], [86].

Chapters 2-5 are the embodiment of a course I gave at the University
of Washington in the spring quarter of 1993. (The material of Chapter 1
was covered in a preceding course.) I wrote Chapters 6 and 7 while
visiting the University of Colorado at Boulder for the fall semester of
1993, where I had the inestimable benefit of conversations with Arlan
Ramsay and Larry Baggett. In addition, Baggett let me borrow some
old handwritten notes by J. M. G. Fell, which were just what 1 needed
to sort out many of the ideas in Chapter 6.

Many of the ideas in this book are an outgrowth of the study of the
classical Fourier transform on the real line,

o
Q) = [ e fayd
—0Q

Indeed, R is a locally compact group; the functions e2™2¢ out of which F
is fashioned are its irreducible representations; and F gives the Gelfand
transform on L1(R), the spectral resolution of the algebra of translation-
invariant operators on L2(R), and the decomposition of the regular rep-
resentation of R into its irreducible components. When I first thought of
writing a book like this, I envisaged it as an essay on the group-theoretic
aspects of the Fourier transform. The scope of book as it finally turned
out is a bit different, but, the spirit of Fourier is still all-pervasive.

Some Matters of Notation and Terminology

The notation and terminology in this book agrees, for the most part,
with that in Folland [39]. Here are a few specific items that are worthy
of attention.

T denotes the multiplicative group of complex numbers of modulus
one. '

x £ denotes the characteristic function or indicator function of the set
E. If 7 is a finite-dimensional unitary representation, X, denotes its
character. These two uses of the letter x will cause no confusion.

In a topological space, a neighborhood of a point z or a set E is a set
whose interior contains z or E. Thus, neighborhoods need not be open
sets.

If X is a locally compact Hausdorff space, C(X), Co(X), and Ce(X)
denote the spaces of continuous (complex-valued) functions on X, con-
tinuous functions vanishing at infinity, and continuous functions of com-
pact support, respectively. (Of course, these spaces coincide when X
is compact.) A Radon measure on X is a Borel measure that is finite
on compact sets, outer regular on all Borel sets, and inner regular on
open sets. (Outer and inner regularity on a set mean that the set can be
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viii A Course in Abstract Harmonic Analysis
approximated in measure from the outside or inside by open or compact
sets, respectively. o-finite Radon measures are regular, that is, both
outer and inner regular on all Borel sets.)

The uniform norm is denoted by || ||sup. (In [39] it is denoted by || ||,
but I found that this led to an unsightly overuse of the letter u in some
situations.)

If X and Y are Banach spaces, the space of all bounded linear map-
pings from X to Y is denoted by L(X,)), and the space of all bounded
linear mappings from X to itself is denoted by L(X).

In §§2.2-2.4, left and right Haar measures on a locally compact group
G are denoted by A and p. However, in §2.5 and for the remainder of
the book, G is assumed to be equipped with a fixed left Haar measure,
which is never given a name, and the symbols A and p are freed for other
purposes. The Haar measure of E C G is denoted by |E|, the Lebesgue
spaces of the Haar measure are denoted by LP(G) or simply L?, and the
Haar integral of f € L(G) is denoted by [ f or [ f(x)dz.
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1

Banach Algebras and Spectral Theory

This chapter contains a brief exposition of that part of Banach algebra
theory that will be needed in the rest of this book, including the spectral
theorem for commutative C* algebras. Although these topics are not
part of harmonic analysis as such, the Gelfand transform and the spectral
theorem are embodiments of ideas that are also central to harmonic
analysis: the conversion of operators into more transparent forms and
the decomposition of operators into simpler pieces.

1.1 Banach Algebras: Basic Concepts

A Banach algebra is an algebra A over the field of complex numbers
equipped with a norm with respect to which it is a Banach space and
which satisfies ||zy|| < ||lz|| ||ly]| for all z,y in A. A is called unital if it
possesses a unit element or multiplicative identity, which we denote by
e. :

An involution on an algebra A is an anti-automorphism of A4 of order
2, that is, a map = — z* from A to A that satisfies

(1.1) (z+y)*=z*+y*, (z)*=xz*, (zy)*=y'z*, ™=z

for all z,y € A and A € C. An algebra equipped with an involution is
called a x-algebra. A Banach x-algebra that satisfies

(1.2) llz*z|| = ||z||? for all x

is called a C* algebra.

We do not require an involution to satisfy ||z*|| = ||z||, although this
holds for most of the examples we shall meet here. In particular it is
true for C* algebras: the estimate ||z||? = ||z*z|| < ||=*||||z]| implies that
lzl < llz*|l, and then |lz*|| < ||lz**[| = |l]l.


babak
Rectangle

babak
Rectangle

babak
Rectangle


2 A Course in Abstract Harmonic Analysis

If A and B are Banach algebras, a (Banach algebra) homomor-
phism from A to B is a bounded linear map ¢ : A — B such that
d(zy) = (z)p(y) for all z,y € A If A and B are x-algebras, a x-
homomorphism from A to B is a homomorphism ¢ such that ¢(z*) =
d(z)* for all z € A.

If S is a subset of the Banach algebra A, we say that A is generated
by S if the linear combinations of products of elements of S are dense
in A.

We now describe four examples of Banach algebras. These examples
barely begin to indicate how many different sorts of interesting Banach
algebras there are, but they and their generalizations are the ones that
will be important for us later.

Example 1. Let X be a compact Hausdorff space. The space C(X)
of continuous complex-valued functions on X is a unital Banach algebra
with the usual pointwise algebra operations and the uniform norm. The
map f — f is an involution that makes C(X) into a C* algebra. Simi-
larly, if X is a noncompact, locally compact Hausdorff space, Co(X) is
a nonunital C* algebra.

If S is a set of functions in C(X) (or Cp(X)) that separate points and
have no common zeros, the Stone-Weierstrass theorem says that C(X)
(or Co(X)) is generated by SU{f : f € S}.

Example 2. Let H be a Hilbert space. The set L(H) of all bounded
linear operators on H is a unital Banach algebra, with the operator
norm, and the map T — T* (T™* being the adjoint of T') is an involution
that makes £(H) into a C* algebra. Here is the verification of (1.2): On
the one hand, we have |T*T|| < |T*|IIT|l = ||T||>. On the other, for
any unit vector u € H, | T*T|| > (T*Tu,u) = (T, Tu) = ||Tu|?; taking
the supremum over all such u we get |T*T| > ||T||*>. Any subalgebra
of L(H) that is closed in the operator norm and closed under taking
adjoints is also a C* algebra.

Example 3. Let I' = [1(Z) be the space of all sequences a = (an)%%,
such that |ja]| = 3% |an| < 0. I! is a unital Banach algebra if we define
multiplication to be convolution:

oo
a*b=c, where c, = Zakbn_k.

— 00

The unit element is §, defined by ¢ = 1 and 6, = 0 for n # 0. The
standard involution on [! is defined by '

(@*)n = Gn.

[! is not a C* algebra with this involution; we leave it as an exercise for
the reader to find a counterexample to (1.2).


babak
Rectangle

babak
Rectangle

babak
Rectangle


\

Banach Algebras and Spectral Theory 3

For k € Z, let 6% € I! be defined by (6F)n = 1ifn =k, (6F), =0
otherwise. (In particular, §° = 6.) Tt is easily verified that 6% x 6% =
69%k. Hence 67! is the convolution inverse of &', and (by induction)
6% = 61 % -6 and 67F = 671 % ... x 51 (k factors) for k > 1.
Moreover, for any a = (a,) € I! we clearly have a = 3% _ax6*. Thus
I' is generated by 6! and its inverse 6~ 1.

Example 4. The space L' (R) is a Banach algebra when multiplication
is defined to be convolution,

(f  9)(z) = / FW)alz —v) dy,

and as in Example 3 we can define an involution on it by f*(z) = f(—z).
LY(R) is not unital, nor is it a C* algebra.

For the remainder of this section we assume that A is a unital Banach
algebra. In this case we can consider the elements of A possessing two-
sided inverses, which we call invertible elements.

(1.3) Lemma. If ||z|| <1 then e — z is invertible, and

(e—xz)" 1= Zx"
0

Proof:  The usual proof that the geometric series ) o° ¢ converges to
1/(1 — t) for |t| < 1 works equally well in any unital Banach
algebra. 1

(1.4) Theorem. Let A be a unital Banach algebra. (a) If |\| > ||z||
then Ae — z is invertible, and its inverse is Y o A™""'z". (b) If z is
invertible and ||y|| < ||z7!||=! then = — y is invertible, and its inverse
is 27V 00%(yz™Y)". (c) If < is invertible and |ly|| < i||lz=!|~! then
I(z —y)~t — == < 2|z~ ||lyll. (d) The set of invertible elements of
A is open, and the map x — z™! is continuous on it.

Proof: Since Ae — z = A(e — A71z), (a) follows immediately from
Lemma (1.3). So does (b), in view of the facts that ¢ —y = (e —yz~!)z
and |lyz=!|| < [yl =72 < 1. (c) follows from (b), since

o= o) = o Yy
1

e (N
1

o0
<=M Plyll D27 = 2 Pyl
0

Finally, (d) is a direct consequence of (b) and (c). I
If z € A, the spectrum of z is

o(z) = {A € C: Xe — z is not invertible}.
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4 A Course in Abstract Harmonic Analysis

o(z) is a closed subset of the disc {A : |A| < ||z||} by Theorem (1.4a,d).
For X\ ¢ o(z), the resolvent of z is the operator

R(A) = Rz(\) = Qe —z) 1.

(We generally omit the subscript z when no confusion will arise.) R(\)
is continuous in A by Theorem (1.4d). We shall now show that R(})) is
an analytic .A-valued function on the open set C\o(x). By this we mean
that the complex derivative R'()) exists (and is continuous); this implies
in particular that ¢ o R(X) is an ordinary C-valued analytic function of
) for any bounded linear functional ¢ € A*.

(1.5) Lemma. R()) is an analytic function of A € C\o(x).
Proof: If A\, pu ¢ o(z), we have
(n = Ae = (ue — z) — (e - x)

= (Ae — z)R(\)(ue — x) — (Ae — 7)R(p)(pe — 7)
= (Ae — z)[R(\) — R(p)](pe — z).

Multiplying both sides on the left by R(A\} and on the right by R(u), we
see that

(b= MR(ANE(p) = R(A) — R(u),

and hence
R(p) — R(A)
—_— = — R(p).
DL
Letting p — A, we see that R'()\) exists and equals —R(\)2. |

(1.6) Proposition. o(z) is nonempty for every x € A.

Proof: If o(x) were empty, R(\) would be an entire function of A.
As A — oo, [RN)|| = IA"Y(e = A~1z)~1|| — O since (e — A~1z)~! —e.
By Liouville’s theorem (applied to ¢ o R(}), for an arbitrary ¢ € A*),
R()) would be identically zero, which is absurd. i

(1.7) The Gelfand-Mazur Theorem. If A is a Banach algebra in
which every nonzero element is invertible, then A= C.

Proof: If x ¢ Ce then Ae —z # 0 for all A € C and hence Ae — z is
invertible for all A € C. But then o(z) = 0, which is impossible. Hence
A= Ce. 1

If z € A, the spectral radius of z is
p(z) = sup{|A| : A € o(z)}.

We have p(z) < ||z|| by Theorem (1.4a). In fact, we can be more precise.
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Banach Algebras and Spectral Theory 5

(1.8) Theorem. p(z) = limy oo llz™ M/

Proof: We have \e — z" = (Ae — ) Y0 " Mz"~1~9, from which
it follows that if A"e — =" is invertible then so is Ae — x. In other
words, if A € o(x) then A" € o(z"), so |A|* < [lz*]. It follows that
p(z) < liminf||z™||/™.

On the other hand, if ¢ € A*, ¢ o R()\) is analytic for |\| > p(z), and
by Theorem (1.4a) its Laurent series about infinity is S AT (™).
By standard complex variable theory, this series converges for |\| > p(z),
so for any such A we have |\"""1¢(z™)| < Cy for all n. The uniform
boundedness principle then implies the existence of a C > 0 such that
|A|=™||lz"|| < C for all n, and hence |z*||¥/™ < CY/™|A|. Letting n — oo,
we obtain limsup ||z"||/" < p(z). |

We conclude with a couple of elementary observations about inverses
and spectra in Banach *-algebras.

(1.9) Proposition. Let A be a unital Banach x-algebra.

a. e=c¢e".

b. If z is invertible, then so is z*, and (z*)™! = (z71)*.

c. o(z*) = o(z) for any x € A.

Proof: The relation (zy)* = y*z* shows that e is another mul-
tiplicative identity and hence that e* = e; it then also shows that

(z) ' = (@@ ). Ifze A e—x)" = Xe — z* by (a), and so (c)
follows from (b). |

1.2 Gelfand Theory

In this section we study the spectrum (also called the maximal ideal
space or structure space) of a commutative unital Banach algebra, a
powerful tool that was first systematically exploited by Gelfand and his
collaborators.

Let A be a commutative unital Banach algebra. By a multiplicative
functional on A we shall mean a nonzero homomorphism from A to C.
The set of all multiplicative functionals on A is called the spectrum
of A; we denote it by 0(A). (The relationship between this “spectrum”
and the spectrum of an element defined in §1.1 will be explained in
Proposition (1.15) below.)

(1.10) Proposition. Suppose h € a(A).

a. he) =1
b. If z is invertible in A then h(z) # 0.
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6 A Course in Abstract Harmonic Analysis

c. |h(z)| < ||z|| for all z € A.

Proof: (a): Pick z € A with h(z) # 0; then h(e)h(z) = h(ex) =
Mz), so h(e) = 1. (b): If z is invertible, h(z~!)h(z) = h(z71z) =
h(e) = 1. (c): If |A| > ||z|| then e — z is invertible by Theorem (1.4a)
s0 A — h(z) = h(Xe — z) # 0 by (b).

(c) says that o(A) is a subset of the closed unit ball B of A*. We
make o(A) into a topological space by imposing its weak* topology as
a subset of A*, that is, the topology of pointwise convergence on A. In
view of (a), for an algebra homomorphism h : A — C the conditions
h # 0 and h(e) = 1 are equivalent, so

o(A) = {h € B: h(e) =1 and h(zy) = h(z)h(y) for all z,y € A}

The conditions h(e) = 1 and h(zy) = h(z)h(y) are clearly preserved
under pointwise limits, so o(A) is a closed subset of B in the weak*
topology. By Alaoglu’s theorem, then, o(A) is a compact Hausdorff
space.

Multiplicative functionals are intimately connected with maximal ide-
als. We recall the terminology: if A is any algebra, a left (right) ideal
of A is a subalgebra 7 of A such that zy € 7 whenever z € A and yez
(x€Zandye A). Tisproperif 7 # A If Ais unital, Z is proper
ifand onlyife ¢ Z, forife € T thenz = ze = exr € T for all z € A.
If A is commutative, we can speak simply of ideals rather than left or
right ideals; in this case, a maximal ideal is a proper ideal that is not
contained in any larger proper ideal.

(1.11) Proposition. Let A be a commutative unital Banach algebra,
and let T C A be a proper ideal.

a. T contains no invertible elements.

b. T (the closure of Z) is a proper ideal.

¢. 7 is contained in a maximal ideal.

d. IfT is maximal then T is closed.

Proof: (a): If z € T is invertible then e = 212 € 7, 50 7 = A. (b):
If 7 is proper, it is contained in the set of noninvertible elements of A4,
which is closed by Theorem (1.4d); hence e ¢ Z, and it is easy to check
that 7 is an ideal. (c): This is a routine application of Zorn’s lemma;

the union of an increasing family of proper ideals is proper since it does
not contain e. Finally, (d) follows from (b). 1

(1.12) Theorem. Let A be a commutative unital Banach algebra. The
map h — ker(h) is a one-to-one correspondence between o(A) and the
set of maximal ideals in A.

Proof: 1If h € o(A), ker(h) is an ideal which is proper since h(e) =
1 # 0 and is maximal since it has codimension 1. If ker(g) = ker(h)
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then g = h, for if z € A we have = = h(z)e +y where y € ker{h), so
g(x) = h(z)g(e) + g(y) = h(z). Thus h — ker(h) is an injection from
o(A) to the set of maximal ideals.

On the other hand, suppose M is a maximal ideal, and let 7: A —
A/M be the quotient mapping. A/M inherits an algebra structure
from A, and it is a Banach space with the quotient norm ||z + M| =
inf{lx + mll : m € M}. (Here we need Proposition (1.11d).) It is
an easy exercise to check that A/M is in fact a Banach algebra. It
has no nontrivial ideals, for if 1 ¢ A/M is an ideal then 7~ Y(Z) is
an ideal in A such that M C 7~ Y(Z) C ‘A; hence Y I) =Mor A
and Z = {0} or A/M. But then every nonzero element of A/M is
invertible, for otherwise the ideal it generates would be nontrivial. By
the Gelfand-Mazur theorem, A/ M is isomorphic to C, and if we denote
the isomorphism by ¢ then pomisa multiplicative functional on A
whose kernel is M. |

If z € A, we define the function % on o(A) by
Z(h) = h(z).

7 is continuous on o(A) since the topology on o(A) is the topology of
pointwise convergence on A. The map z — Z from A to C(c(A)) is
called the Gelfand transform on A. We denote it by I' or T' 4 when
necessary for clarity:

(1.13) Theorem. Suppose A is a commutative unital Banach algebra
andx € A.

a. The Gelfand transform is a homomorphism from A to C(c(A)),
and © is the constant function 1.

b. xis invertible if and only if 7 never vanishes.

c. range(Z) = o(z).

d. |Zlewp = p(x) < il

Proof: (a) is obvious — for example, (zy) (k) = h(zy) = h(z)h(y) =
Z(h)g(h), and € =1 by Proposition (1.10a). For (b), we observe that
r is not invertible <= the ideal generated by = is proper <=
(by Proposition (1.11c)) = is contained in a maximal ideal <= (by
Theorem (1.12)) h(z) = 0 for some h € o(A) < T has a zero. (c)

follows from (b), for A € ofz) <> de—1xis not invertible <<=
X — Z(h) = 0 for some h € o(A). Finally, (d) follows immediately from

(c)- 1

If A is a *-algebra, one can ask whether the Gelfand transform takes
the involution on A to the canonical involution (namely complex conju-
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8 A Course in Abstract Harmonic Analysis

gation) on C(o(.A)), that is, whether

=% (z€A).
This does not always happen (see the remarks following Corollary (1.18)
for an example); when it does, A is called symmetric.

(1.14) Proposition. Suppose A is a commutative Banach *-algebra.

a. A is symmetric if and only if T is real-valued whenever T = *.
b. If A is a C* algebra, A is symmetric.
c. If A is symmetric, T'(A) is dense in C(o(A)).

Proof: (a) If A is symmetric and z = z* then 3 = %, s0 Z is real. To
prove the converse, given z € A, let u = (z+z*)/2 and v = (z — z*) /2.
+ Then u = u* and v = v*, so that @ and ¥ are real; also z = u + v and
T*=u—iv,80 T* =1 — 0 = 3.

(b) Suppose A is a C* algebra, z = z* € A, and h € o(A), and
suppose ZT(h) = h(z) = a + i with o, real. For t € R, consider
z =z +ite. We have h(z) = a+i(8+1) and z*z = 22 + t2, so by
Proposition (1.10c),

@+ (B+1)° = M) < [l21)% = |12 < a2 + 2.

Hence o? + 52 + 26t < ||z2|| for all ¢ € R, which forces 3 = 0. Hence 7
is real, so A is symmetric by (a).

(c) If A is symmetric, I'(A) is closed under complex conjugation. It
contains the constants since € = 1, and it separates points on o(A)
(trivially!). Hence I'(A) is dense in C (o(A)) by the Stone-Weierstrass
theorem. |

The motivation for calling (A) the “spectrum” of 4 comes from the
following result.

(1.15) Proposition. Ifzy € A, 7, is a homeomorphism from o(A) to
o(zo) in each of the following cases:

i. A is generated by x4 and e, or
ii. zg is invertible and A is generated by z¢ and =y L or
iii. A is symmetric and A is generated by xq, z}, and e.

Proof: %y maps o(A) onto o(xy) by Theorem (1.13c). Since o(.A)
and o(zp) are both compact Hausdorff spaces, it suffices to prove that 7z
is injective. But in each of the three cases, any h € o(A) is completely
determined by its action on z; since h(zg') = k(o) in case (ii) and
h(z§) = h(zo) in case (