Generic Bifurcation of Hamiltonian Vector Fields with Symmetry

Nonlinearity 5 (1992) 979-996

Michael Dellnitz, Ian Melbourne and Jerrold E. Marsden


One of the goals of this paper is to describe explicitly the generic movement of eigenvalues through a one-to-one resonance in a linear Hamiltonian system which is equivariant with respect to a symplectic representation of a compact Lie group. We classify this movement, and hence answer the question of when the collisions are ``dangerous'' in the sense of Krein by using a combination of group theory and definiteness properties of the associated quadratic Hamiltonian. For example, for systems with no symmetry or O(2) symmetry generically the eigenvalues split, whereas for systems with S1 symmetry, generically the eigenvalues may split or pass. It is in this last case that one has to use both group theory and energetics to determine the generic eigenvalue movement. The result is to be contrasted with the bifurcation of steady states (zero eigenvalue) where one can use either group theory alone (Golubitsky and Stewart) or definiteness properties of the Hamiltonian (Cartan-Oh) to determine if the eigenvalues split or pass on the imaginary axis.

Postscript file or pdf file