Good inducing schemes for uniformly hyperbolic flows, and applications to exponential decay of correlations

Ian Melbourne * Paulo Varandas ${ }^{\dagger}$

21 February 2023, updated 17 May 2023

Abstract

Given an Axiom A attractor for a $C^{1+\alpha}$ flow $(\alpha>0)$, we construct a countable Markov extension with exponential return times in such a way that the inducing set is a smoothly embedded unstable disk. This avoids technical issues concerning irregularity of boundaries of Markov partition elements and enables an elementary approach to certain questions involving exponential decay of correlations for SRB measures.

1 Introduction

Statistical properties [12, 29, 31] of Anosov and Axiom A diffeomorphisms [3, 33] were developed extensively in the 1970s. Key tools were the construction of finite Markov partitions [10, 32] and the spectral properties of transfer operators [28]. In particular, ergodic invariant probability measures were constructed corresponding to any Hölder potential; moreover, it was shown that hyperbolic basic sets for Axiom A diffeomorphisms are always exponentially mixing up to a finite cycle for such measures, see for example [12, 22, 29].

Still in the 1970s, finite Markov partitions were constructed [11, 26] for Anosov and Axiom A flows. This allows us to model each hyperbolic basic set as a suspension flow over a subshift of finite type, enabling the study of thermodynamic formalism (see e.g. [14]) and statistical properties (see e.g. [17, 27]).

However, rates of mixing for Axiom A flows are still poorly understood. By [24, 30], mixing Axiom A flows can mix arbitrarily slowly. Although there has been

[^0]important progress starting with [16, 18, 20], it remains an open question whether mixing Anosov flows have exponential decay of correlations [14]. Very recently, this question was answered positively [35] in the case of C^{∞} three-dimensional flows.

It turns out that using finite Markov partitions for flows raises technical issues due to the irregularity of their boundaries [5, 15, 34]. Even in the discrete-time setting, it is known that the boundaries of elements of a finite Markov partition need not be smooth [13]. In this paper, we propose using the approach of [36] to circumvent such issues at least in the case of SRB measures. In particular, we show that

> Any attractor for an Axiom A flow can be modelled by a suspension flow over a full branch countable Markov extension where the inducing set is a smoothly embedded unstable disk. The roof function, though unbounded, has exponential tails.

A precise statement is given in Theorem 2.1 below.
Remark 1.1 The approach of Young towers [36] has proved to be highly effective for studying discrete-time examples like planar dispersing billiards and Hénon-like attractors where suitable Markov partitions are not available. However, as shown in the current paper, there can be advantages (at least in continuous time) to working with countable Markov extensions even when there is a well-developed theory of finite Markov partitions. The extra flexibility of Markov extensions can be used not only to construct the extension but to ensure good regularity properties of the partition elements.

As a consequence of Theorem 2.1, we obtain an elementary proof of the following result:

Theorem 1.2 Suppose that Λ is an Axiom A attractor with SRB measure μ for a C^{1+} flow ϕ_{t} with C^{1+} stable holonomies $\$_{1}^{1}$ and such that the stable and unstable bundles are not jointly integrable. Then for all Hölder observables $v, w: \Lambda \rightarrow \mathbb{R}$, there exist constants $c, C>0$ such that

$$
\left|\int_{\Lambda} v w \circ \phi_{t} d \mu-\int_{\Lambda} v d \mu \int_{\Lambda} w d \mu\right| \leq C e^{-c t} \quad \text { for all } t>0 .
$$

Remark 1.3 Joint nonintegrability holds for an open and dense set of Axiom A flows and their attractors, see [19] and references therein. It implies mixing and is equivalent to mixing for codimension one Anosov flows. It is conjectured to be equivalent to mixing for Anosov flows [23].

Remark 1.4 (a) In the case when the unstable direction is one-dimensional and the stable holonomies are C^{2}, this result is due to [9, 8, 4, 5]. In particular, using

[^1]the fact that stable bunching is a robust sufficient condition for smoothness of stable holonomies together with the robustness of joint nonintegrability, [4] constructed the first robust examples of Axiom A flows with exponential decay of correlations. The smoothness condition on stable holonomies was relaxed from C^{2} to C^{1+} in [6] extending the class of examples in [4]. This class of examples is extended further by Theorem 1.2 with the removal of the one-dimensionality restriction on unstable manifolds.
(b) There is no restriction on the dimension of unstable manifolds in [8], and it is not surprising that the smoothness assumption on stable holonomies can also be relaxed as in [6]. However, there is a crucial hypothesis in [8] on the regularity of the inducing set in the unstable direction which is nontrivial in higher dimensions.

Theorem 1.2 is stated in the special case of Anosov flows in [15]. In [15, Appendix] it is argued that at least in the Anosov case the Markov partitions of [26] are sufficiently regular that the methods in [8] can be pushed through. In [5], a sketch is given of how to prove Theorem 1.2 also in the Axiom A case, but the details are not fully worked out.

As mentioned, our approach in this paper completely bypasses such issues since our inducing set is a smoothly embedded unstable disk. Moreover, our method works equally well for Anosov flows and Axiom A attractors. As a consequence, we recover the examples in [15], in particular that codimension one volume-preserving mixing C^{1+} Anosov flows are exponentially mixing in dimension four and higher.

The remainder of the paper is organised as follows. In Section 2, we state precisely and prove our result on good inducing for attractors of Axiom A flows. In Section 3 , we prove a result on exponential mixing for a class of skew product Axiom A flows, extending/combining the results in [6, 8]. In Section 4, we complete the proof of Theorem 1.2.

2 Good inducing for attractors of Axiom A flows

Let $\phi_{t}: M \rightarrow M$ be a C^{1+} flow defined on a compact Riemannian manifold $\left(M, d_{M}\right)$, and let $\Lambda \subset M$ be a closed ϕ_{t}-invariant subset. We assume that Λ is an attracting transitive uniformly hyperbolic set with adapted norm and that Λ is not a single trajectory. In particular, there is a continuous $D \phi_{t}$-invariant splitting $T_{\Lambda} M=E^{s} \oplus$ $E^{c} \oplus E^{u}$ where E^{c} is the one-dimensional central direction tangent to the flow, and there exists $\lambda \in(0,1)$ such that $\left|D \phi_{t} v\right| \leq \lambda^{t}|v|$ for all $v \in E^{s}, t \geq 1 ;\left|D \phi_{-t} v\right| \leq \lambda^{t}|v|$ for all $v \in E^{u}, t \geq 1$. Since the time-s map $\phi_{s}: \Lambda \rightarrow \Lambda$ is ergodic for all but countably many choices of $s \in \mathbb{R}$ [25], we can scale time slightly if necessary so that $\phi_{-1}: \Lambda \rightarrow \Lambda$ is transitive. Then there exists $p \in \Lambda$ such that $\bigcup_{i \geq 1} \phi_{-i} p$ is dense in Λ.

We can define (local) stable disks $W_{\delta}^{s}(y)=\left\{z \in W^{s}(y): d_{M}(y, z)<\delta\right\}$ for $\delta>0$ sufficiently small for all $y \in \Lambda$. Define local centre-stable disks $W_{\delta}^{\text {cs }}(y)=$ $\bigcup_{|t|<\delta} \phi_{t} W_{\delta}^{s}(y)$. Let Leb and d denote induced Lebesgue measure and induced distance
on local unstable manifolds. It is convenient to define local unstable disks $W_{\delta}^{u}(y)=$ $\left\{z \in W^{u}(y): d(y, z)<\delta\right\}$ using the induced distance.

For δ_{0} small, define $\mathcal{D}=W_{\delta_{0}}^{u}(p)$ and $\widehat{\mathcal{D}}=\bigcup_{x \in \mathcal{D}} W_{\delta_{0}}^{c s}(x)$. Define $\pi: \widehat{\mathcal{D}} \rightarrow \mathcal{D}$ such that $\pi \mid W_{\delta_{0}}^{c s}(x) \equiv x$. Whenever $\phi_{n} y \in \widehat{\mathcal{D}}$, we set $g_{n} y=\pi\left(\phi_{n} y\right)$.

We are now in a position to give a precise description of our inducing scheme.
Theorem 2.1 There exists an open unstable disk $Y=W_{\delta}^{u}(p) \subset \mathcal{D}$ (for some $\delta \in$ $\left.\left(0, \delta_{0}\right)\right)$ and a discrete return time function $R: Y \rightarrow \mathbb{Z}^{+} \cup\{\infty\}$ such that
(i) $\operatorname{Leb}(R>n)=O\left(\gamma^{n}\right)$ for some $\gamma \in(0,1)$;
(ii) Each connected component of $\{R=n\}$ is mapped by ϕ_{n} into $\widehat{\mathcal{D}}$ and mapped homeomorphically by g_{n} onto Y.

Remark 2.2 Let \mathcal{P} be the partition of Y consisting of connected components of $\{R=n\}$ for $n \geq 1$. (It follows from Theorem 2.1 (i) that \mathcal{P} is a partition of $Y \bmod 0$.) Define $F: Y \rightarrow Y, F=g_{R}=\pi \circ \phi_{R}$. Note that F is locally the composition of a time- R map ϕ_{R} (where R is constant on each partition element) with a centre-stable holonomy. Since centre-stable holonomies are Hölder continuous, it follows that F maps partition elements $U \in \mathcal{P}$ homeomorphically onto Y and that $\left.F\right|_{U}: U \rightarrow Y$ is a bi-Hölder bijection. If moreover, the centre-stable holonomies are C^{1}, then the partition elements are diffeomorphic to disks.

In the remainder of this section, we prove Theorem 2.1. Our proof is essentially the same as in [36, Section 6] for Axiom A diffeomorphisms, but we closely follow the treatment in [2] which provides many of the details of arguments sketched in [36].

Choice of constants Choose $\delta_{0}>0$ so that the following bounded distortion property holds: there exists $C_{1} \geq 1$ so that

$$
\begin{equation*}
\frac{\left|\operatorname{det} D \phi_{n}(x)\right| E^{u} \mid}{\left|\operatorname{det} D \phi_{n}(y)\right| E^{u} \mid} \leq C_{1} \tag{2.1}
\end{equation*}
$$

for every $n \geq 1$ and all $x, y \in \Lambda$ with $\phi_{n} x, \phi_{n} y$ in the same unstable disk such that $d\left(\phi_{j} x, \phi_{j} y\right)<4 \delta_{0}$ for all $0 \leq j \leq n$.

By standard results about stable holonomies, π is absolutely continuous and C^{α} for some $\alpha \in(0,1)$ when restricted to unstable disks in $\widehat{\mathcal{D}}$. For δ_{0} sufficiently small, there exists $C_{2}, C_{3} \geq 1$ such that

$$
\begin{equation*}
C_{2}^{-1} \leq \frac{\operatorname{Leb}(\pi(E))}{\operatorname{Leb}(E)} \leq C_{2} \tag{2.2}
\end{equation*}
$$

for all Lebesgue-measurable subset $E \subset W_{\delta_{0}}^{u}(y) \cap \widehat{\mathcal{D}}$ and all $y \in \Lambda$, and

$$
\begin{equation*}
d(\pi x, \pi y) \leq C_{3} d(x, y)^{\alpha} \tag{2.3}
\end{equation*}
$$

for all $x, y \in \widehat{\mathcal{D}}$ with x, y in the same unstable disk such that $d(x, y)<4 \delta_{0}$.
Let $d_{u}=\operatorname{dim} E^{u}$ and fix $L \geq 3$ so that

$$
\begin{equation*}
C_{1} C_{2}^{2} \frac{2^{d_{u}}-1}{(L-1)^{d_{u}}}<\frac{1}{4} . \tag{2.4}
\end{equation*}
$$

By the local product structure, there exists $\delta_{1} \in\left(0, \delta_{0}\right)$ such that $W_{\delta_{0}}^{c s}(x) \cap W_{\delta_{0}}^{u}(y)$ consists of precisely one point for all $x, y \in \Lambda$ with $d_{M}(x, y)<4 \delta_{1}$. Similarly, there exists $\delta \in\left(0, \delta_{1}\right)$ such that $W_{\delta_{1}}^{c s}(x) \cap W_{\delta_{1}}^{u}(y)$ consists of precisely one point for all $x, y \in$ Λ with $d_{M}(x, y)<(L+1) \delta$. Moreover, since local unstable/stable disks have bounded curvature, the intersection point $z \in W_{\delta_{1}}^{c s}(x) \cap W_{\delta_{1}}^{u}(y)$ satisfies $d(z, y) \leq C_{4} d_{M}(x, y)$ where $C_{4} \geq 1$ is a constant. Shrink $\delta>0$ if necessary so that $C_{3}(3 \delta)^{\alpha}<\frac{1}{2} \delta_{0}$ and $C_{4}(L+1) \delta<\delta_{0}$. Choose $N_{1} \geq 1$ such that $\bigcup_{i=1}^{N_{1}} \phi_{-i} p$ is δ-dense in Λ.

Construction of the partition We consider various small neighbourhoods $\mathcal{D}_{c}=$ $W_{c \delta}^{u}(p)$ with $c \in\{1,2, L-1, L\}$. Define $\widetilde{\mathcal{D}}_{c}=\bigcup_{x \in \mathcal{D}_{c}} W_{\delta_{1}}^{c s}(x)$.

Take $Y=\mathcal{D}_{1}$. Define a partition $\left\{I_{k}: k \geq 1\right\}$ of $\mathcal{D}_{2} \backslash \mathcal{D}_{1}$,

$$
I_{k}=\left\{y \in \mathcal{D}_{2}: \delta\left(1+\lambda^{\alpha k}\right) \leq d(y, p)<\delta\left(1+\lambda^{\alpha(k-1)}\right)\right\}
$$

Fix $\varepsilon>0$ small (as stipulated in Propositions 2.4 and 2.5 and Lemma 2.9 below). We define sets Y_{n} and functions $t_{n}: Y_{n} \rightarrow \mathbb{N}$, and $R: Y \rightarrow \mathbb{Z}^{+}$inductively, with $Y_{n}=$ $\{R>n\}$. Define $Y_{0}=Y$ and $t_{0} \equiv 0$. Inductively, suppose that $Y_{n-1}=Y \backslash\{R<n\}$ and that $t_{n-1}: Y_{n-1} \rightarrow \mathbb{N}$ is given. Write $Y_{n-1}=A_{n-1} \dot{\cup} B_{n-1}$ where

$$
A_{n-1}=\left\{t_{n-1}=0\right\}, \quad B_{n-1}=\left\{t_{n-1} \geq 1\right\}
$$

Consider the neighbourhood

$$
A_{n-1}^{(\varepsilon)}=\left\{y \in Y_{n-1}: d\left(\phi_{n} y, \phi_{n} A_{n-1}\right)<\varepsilon\right\}
$$

of the set A_{n-1}. Define $U_{n j}^{L}, j \geq 1$, to be the connected components of $A_{n-1}^{(\varepsilon)} \cap \phi_{-n} \widetilde{\mathcal{D}}_{L}$ that are mapped inside $\widetilde{\mathcal{D}}_{L}$ by ϕ_{n} and mapped homeomorphically onto \mathcal{D}_{L} by g_{n}. Let

$$
U_{n j}^{c}=U_{n j}^{L} \cap g_{n}^{-1} \mathcal{D}_{c} \quad \text { for } c=1,2, L-1
$$

Define $R \mid U_{n j}^{1}=n$ for each $U_{n j}^{1}$ and take $Y_{n}=Y_{n-1} \backslash \bigcup_{j} U_{n j}^{1}$. Finally, define $t_{n}: Y_{n} \rightarrow \mathbb{N}$ as

$$
t_{n}(y)=\left\{\begin{array}{cl}
k, & y \in \bigcup_{j} U_{n j}^{2} \text { and } g_{n} y \in I_{k} \text { for some } k \geq 1 \\
0, & y \in A_{n-1} \backslash \bigcup_{j} U_{n j}^{2} \\
t_{n-1}(y)-1, & y \in B_{n-1} \backslash \bigcup_{j} U_{n j}^{2}
\end{array}\right.
$$

and take $A_{n}=\left\{t_{n}=0\right\}, B_{n}=\left\{t_{n} \geq 1\right\}$ and $Y_{n}=A_{n} \dot{\cup} B_{n}$.
Remark 2.3 By construction, property (ii) of Theorem 2.1 is satisfied. It remains to verify that $\operatorname{Leb}(R>n)$ decays exponentially.

Visualisation of B_{n}. The set B_{n} is a disjoint union $B_{n}=\bigcup_{m=1}^{n} C_{n}(m)$ where $C_{n}(m)$ is a disjoint union of collars around each component of $\{R=m\}$. Each collar in $C_{n}(m)$ is homeomorphic under g_{m} to $\bigcup_{k \geq n-m+1} I_{k}$ with outer ring homeomorphic under g_{m} to I_{n-m+1}, and the union of outer rings is the set $\left\{t_{n}=1\right\}$. This picture presupposes Proposition 2.4 below which guarantees that each new generation of collars $C_{n}(n)$ does not intersect the set $\bigcup_{1 \leq m \leq n-1} C_{n-1}(m)$ of collars in the previous generation.

Proposition 2.4 Choose $\varepsilon<\left(C_{3}^{-1} \delta\right)^{1 / \alpha}$ sufficiently small that $W_{\varepsilon}^{u}(x) \subset \widehat{\mathcal{D}}$ for all $x \in \widetilde{\mathcal{D}}_{L}$. Then $\bigcup_{j} U_{n j}^{L-1} \subset A_{n-1}$ for all $n \geq 1$.

Proof We argue by contradiction. There is nothing to prove for $n=1$. Let $n \geq 2$ be least such that the result fails and choose j such that $U_{n j}^{L-1}$ intersects B_{n-1}. Then either (i) $U_{n j}^{L-1} \subset B_{n-1}$, or (ii) $U_{n j}^{L-1}$ intersects ∂A_{n-1}.

In case (i), choose $x \in U_{n j}^{L-1}$ (so in particular $\phi_{n} x \in \widehat{\mathcal{D}}$) with $g_{n} x=p$. Since $U_{n j}^{L-1} \subset U_{n j}^{L} \subset A_{n-1}^{(\varepsilon)}$, there exists $y \in A_{n-1}$ with $d\left(\phi_{n} x, \phi_{n} y\right)<\varepsilon$. In particular, $\phi_{n} y \in \widehat{\mathcal{D}}$ so $g_{n} y$ is well-defined. Note that $x \in U_{n j}^{L-1}$ and $y \notin U_{n j}^{L-1}$ since $U_{n j}^{L-1} \subset$ B_{n-1}. Hence the geodesic ℓ in \mathcal{D} joining $g_{n} x$ and $g_{n} y$ intersects $g_{n} \partial U_{n j}^{L-1}$. Choose $z \in \partial U_{n j}^{L-1} \cap g_{n}^{-1} \ell$. Since $g_{n}=\pi \circ \phi_{n}$, it follows from (2.3) that

$$
\delta<(L-1) \delta=d\left(g_{n} x, g_{n} z\right)<d\left(g_{n} x, g_{n} y\right) \leq C_{3} d\left(\phi_{n} x, \phi_{n} y\right)^{\alpha}<C_{3} \varepsilon^{\alpha}<\delta
$$

which is a contradiction. This rules out case (i).
In case (ii), choose $x \in U_{n j}^{L-1} \cap \partial A_{n-1}$. We show below that there exists $y \in$ $\partial A_{n-1}^{(\varepsilon)}$ such that $d\left(\phi_{n} x, \phi_{n} y\right) \leq \varepsilon$. In particular, $g_{n} x$ and $g_{n} y$ are well-defined and $d\left(g_{n} x, g_{n} y\right) \leq C_{3} \varepsilon^{\alpha}<\delta$. Since $U_{n j}^{L} \subset A_{n-1}^{(\varepsilon)}$, we have that $y \notin U_{n j}^{L}$. It follows that $g_{n} x \in \mathcal{D}_{L-1}$ while $g_{n} y \notin \mathcal{D}_{L}$. Hence $d\left(g_{n} x, g_{n} y\right) \geq \delta$ which is the desired contradiction.

It remains to verify that there exists $y \in \partial A_{n-1}^{(\varepsilon)}$ such that $d\left(\phi_{n} x, \phi_{n} y\right) \leq \varepsilon$. Since n is least, B_{n-1} is a disjoint union of collars as described in the visualisation above. Hence there exists a collar $Q \subset C_{n-1}(n-k)$ intersected by $U_{n j}^{L-1}$ for some $1 \leq k<n$ such that x lies in the outer boundary $\partial_{o} Q$ of Q. Note that $\partial_{o} Q=\partial A_{n-1} \cap Q$. Let D denote the disk enclosed by $\partial_{o} Q$ and let

$$
S=D \cap \partial\left(\phi_{-n} B_{\varepsilon}\left(\phi_{n} \partial D\right)\right)
$$

We claim that $S \neq \emptyset$ and $S \subset Q$. Then S is a ($\operatorname{dim} Y-1$)-dimensional sphere contained in $\partial A_{n-1}^{(\varepsilon)}$ and there exists $y \in S$ with the desired properties. (The point of the claim is that S lies entirely in Y_{n-1}.)

Note that g_{n-k} maps Q homeomorphically onto the set $J=\bigcup_{i \geq k} I_{i}$ which is an annulus of radial thickness $\delta \lambda^{\alpha k}$. By (2.3), ϕ_{n-k} maps Q homeomorphically onto a set $\tilde{J}=\pi^{-1} J$ of radial thickness at least $\left(C_{3}^{-1} \delta \lambda^{\alpha k}\right)^{1 / \alpha}=\left(C_{3}^{-1} \delta\right)^{1 / \alpha} \lambda^{k}$.

Moreover, $\phi_{k}\left(\tilde{J} \cap \phi_{n-k} A_{n-1}^{(\varepsilon)}\right) \subset \phi_{n} A_{n-1}^{(\varepsilon)}$ is contained in the set of points within d-distance ε of $\phi_{n} \partial A_{n-1}^{(\varepsilon)}$, so by definition of λ we have that $\tilde{J} \cap \phi_{n-k} A_{n-1}^{(\varepsilon)}$ is contained in the set of points within d-distance $\varepsilon \lambda^{k}$ of the outer boundary of \tilde{J}. Since $\varepsilon<\left(C_{3}^{-1} \delta\right)^{1 / \alpha}$, we obtain that $\tilde{J} \cap \phi_{n-k} \partial A_{n-1}^{(\varepsilon)}$ is homeomorphic to a ($\operatorname{dim} Y-1$)dimensional sphere contained entirely inside \tilde{J}. Hence $S=Q \cap \partial A_{n-1}^{(\varepsilon)}$ is homeomorphic to a ($\operatorname{dim} Y-1$)-dimensional sphere contained entirely inside Q, as required.

Proposition 2.5 Choose $\varepsilon<\left\{C_{3}^{-1} \delta\left(\lambda^{-\alpha}-1\right)\right\}^{1 / \alpha}$. Then for all $n \geq 1$,
(a) $A_{n-1}^{(\varepsilon)} \subset\left\{y \in Y_{n-1}: t_{n-1}(y) \leq 1\right\}$ for all $n \geq 1$.
(b) $\phi_{-n} W_{\varepsilon}^{u}\left(\phi_{n} x\right) \subset A_{n-1}^{(\varepsilon)}$ for all $x \in A_{n-1}$.

Proof (a) Suppose that $t_{n-1}(y)>1$. Then there exists a collar in $C_{n-1}(n-k)$ containing y. Let Q denote the outer ring of the collar with outer boundary Q_{1} and inner boundary Q_{2}. Then $t_{n-1} \mid Q \equiv 1$ and $t_{n-1}(y)>1$, so y lies inside the region bounded by Q_{2}.

Suppose for contradiction that $y \in A_{n-1}^{(\varepsilon)}$. Then we can choose $x \in A_{n-1}$ with $d\left(\phi_{n} x, \phi_{n} y\right)<\varepsilon$. Let ℓ be the geodesic in $W_{\varepsilon}^{u}\left(\phi_{n} x\right)$ connecting $\phi_{n} x$ to $\phi_{n} y$ and define $q_{j} \in Q_{j} \cap \phi_{-n} \ell$ for $j=1,2$.

Recall that Q is homeomorphic under g_{n-k} to I_{k}. Moreover, $g_{n-k} q_{j}$ lie in distinct components of the boundary of I_{k}, so

$$
d\left(g_{n-k} q_{1}, g_{n-k} q_{2}\right) \geq \delta\left(\lambda^{\alpha(k-1)}-\lambda^{\alpha k}\right)=\delta\left(\lambda^{-\alpha}-1\right) \lambda^{\alpha k}
$$

Hence

$$
\begin{aligned}
d\left(\phi_{n} q_{1}, \phi_{n} q_{2}\right) & \geq \lambda^{-k} d\left(\phi_{n-k} q_{1}, \phi_{n-k} q_{2}\right) \\
& \geq \lambda^{-k}\left\{C_{3}^{-1} d\left(g_{n-k} q_{1}, g_{n-k} q_{2}\right)\right\}^{1 / \alpha} \geq\left\{C_{3}^{-1} \delta\left(\lambda^{-\alpha}-1\right)\right\}^{1 / \alpha}>\varepsilon
\end{aligned}
$$

But $d\left(\phi_{n} q_{1}, \phi_{n} q_{2}\right) \leq d\left(\phi_{n} y, \phi_{n} x\right)<\varepsilon$ so we obtain the desired contradiction.
(b) Let $x \in A_{n-1}$ and $y \in \phi_{-n} W_{\varepsilon}^{u}\left(\phi_{n} x\right)$. Note that $y \in A_{n-1}^{(\varepsilon)}$ if and only if $y \in Y_{n-1}$. Hence we must show that $y \in Y_{n-1}$. If not, then there exists $k \geq 1$ such that $y \in\{R=n-k\}$. Define $Q \subset C_{n-1}(n-k)$ to be the outer ring of the corresponding collar. Choosing q_{1} and q_{2} as in part (a) we again obtain a contradiction.

Lemma 2.6 There exists $a_{1}>0$ such that for all $n \geq 1$,
(a) $\operatorname{Leb}\left(B_{n-1} \cap A_{n}\right) \geq a_{1} \operatorname{Leb}\left(B_{n-1}\right)$.
(b) $\operatorname{Leb}\left(A_{n-1} \cap B_{n}\right) \leq \frac{1}{4} \operatorname{Leb}\left(A_{n-1}\right)$.
(c) $\operatorname{Leb}\left(A_{n-1} \cap\{R=n\}\right) \leq \frac{1}{4} \operatorname{Leb}\left(A_{n-1}\right)$.

Proof (a) Let $y \in B_{n-1}$. By Proposition 2.4, $y \notin \bigcup_{j} U_{n j}^{L-1}$ so in particular $y \in Y_{n}$. Note that $t_{n}(y)=0$ if and only if $t_{n-1}(y)=1$. Hence $B_{n-1} \cap A_{n}=\left\{t_{n-1}=1\right\}$.

Now let $Q \subset C_{n-1}(n-k) \subset B_{n-1}$ be a collar $(1 \leq k \leq n)$ with outer ring $Q \cap A_{n}=Q \cap\left\{t_{n-1}=1\right\}$. Then $g_{n-k}=\pi \circ \phi_{n-k}$ maps Q homeomorphically onto $\bigcup_{i \geq k} I_{i}$ and $Q \cap\left\{t_{n-1}=1\right\}$ homeomorphically onto I_{k}. Let $d_{u}=\operatorname{dim} E^{u}$. By (2.1) and (2.2),

$$
\begin{aligned}
\frac{\operatorname{Leb}(Q)}{\operatorname{Leb}\left(Q \cap A_{n}\right)} & =\frac{\operatorname{Leb}(Q)}{\operatorname{Leb}\left(Q \cap\left\{t_{n-1}=1\right\}\right)} \leq C_{1} \frac{\operatorname{Leb}\left(\phi_{n-k} Q\right)}{\operatorname{Leb}\left(\phi_{n-k}\left(Q \cap\left\{t_{n-1}=1\right\}\right)\right)} \\
& \leq C_{1} C_{2}^{2} \frac{\operatorname{Leb}\left(\bigcup_{i \geq k} I_{i}\right)}{\operatorname{Leb}\left(I_{k}\right)}=C_{1} C_{2}^{2} D\left(d_{u}, \lambda^{\alpha}, k\right)
\end{aligned}
$$

where $D\left(d_{u}, \lambda, k\right)=\frac{\left(1+\lambda^{k-1}\right)^{d_{u}}-1}{\left(1+\lambda^{k-1}\right)^{d_{u}}-\left(1+\lambda^{k}\right)^{d_{u}}}$. Since $\lim _{k \rightarrow \infty} D\left(d_{u}, \lambda, k\right)=(1-\lambda)^{-1}$, we obtain that $\operatorname{Leb}(Q) \leq C_{1} C_{2}^{2} D \operatorname{Leb}\left(Q \cap A_{n}\right)$ where $D=\sup _{k \geq 1} D\left(d_{u}, \lambda^{\alpha}, k\right)$ is a constant depending only on d_{u} and λ^{α}. Summing over collars Q, it follows that $\operatorname{Leb}\left(B_{n-1}\right) \leq C_{1} C_{2}^{2} D \operatorname{Leb}\left(B_{n-1} \cap A_{n}\right)$.
(b) By Proposition 2.4. $U_{n j}^{2} \subset U_{n j}^{L-1} \subset A_{n-1}$ for each j. It follows that $A_{n-1} \cap B_{n}=$ $\bigcup_{j} U_{n j}^{2} \backslash U_{n j}^{1}$. By (2.1), (2.2) and 2.4),

$$
\frac{\operatorname{Leb}\left(U_{n j}^{2} \backslash U_{n j}^{1}\right)}{\operatorname{Leb}\left(U_{n j}^{L-1}\right)} \leq C_{1} C_{2}^{2} \frac{\operatorname{Leb}\left(\mathcal{D}_{2} \backslash \mathcal{D}_{1}\right)}{\operatorname{Leb}\left(\mathcal{D}_{L-1}\right)}=C_{1} C_{2}^{2} \frac{2^{d_{u}}-1}{(L-1)^{d_{u}}}<\frac{1}{4}
$$

Hence

$$
\frac{\operatorname{Leb}\left(A_{n-1} \cap B_{n}\right)}{\operatorname{Leb}\left(A_{n-1}\right)} \leq \frac{\sum_{j} \operatorname{Leb}\left(U_{n j}^{2} \backslash U_{n j}^{1}\right)}{\sum_{j} \operatorname{Leb}\left(U_{n j}^{L-1}\right)}<\frac{1}{4}
$$

(c) Proceeding as in part (b) with $U_{n j}^{2} \backslash U_{n j}^{1}$ replaced by $U_{n j}^{1}$, leads to the estimate

$$
\frac{\operatorname{Leb}\left(A_{n-1} \cap\{R=n\}\right)}{\operatorname{Leb}\left(A_{n-1}\right)} \leq \frac{\sum_{j} \operatorname{Leb}\left(U_{n j}^{1}\right)}{\sum_{j} \operatorname{Leb}\left(U_{n j}^{L-1}\right)} \leq \frac{C_{1} C_{2}^{2}}{(L-1)^{d_{u}}}<\frac{1}{4}
$$

Corollary 2.7 For all $n \geq 1$,
(a) $\operatorname{Leb}\left(A_{n-1} \cap A_{n}\right) \geq \frac{1}{2} \operatorname{Leb}\left(A_{n-1}\right)$.
(b) $\operatorname{Leb}\left(B_{n-1} \cap B_{n}\right) \leq\left(1-a_{1}\right) \operatorname{Leb}\left(B_{n-1}\right)$.
(c) $\operatorname{Leb}\left(B_{n}\right) \leq \frac{1}{4} \operatorname{Leb}\left(A_{n-1}\right)+\left(1-a_{1}\right) \operatorname{Leb}\left(B_{n-1}\right)$.
(d) $\operatorname{Leb}\left(A_{n}\right) \geq \frac{1}{2} \operatorname{Leb}\left(A_{n-1}\right)+a_{1} \operatorname{Leb}\left(B_{n-1}\right)$.

Proof Recall that $A_{n-1} \subset Y_{n-1}=Y_{n} \dot{\cup}\{R=n\}=A_{n} \dot{\cup} B_{n} \dot{\cup}\{R=n\}$. Hence by Lemma 2.6(b,c),

$$
\begin{aligned}
\operatorname{Leb}\left(A_{n-1}\right) & =\operatorname{Leb}\left(A_{n-1} \cap A_{n}\right)+\operatorname{Leb}\left(A_{n-1} \cap B_{n}\right)+\operatorname{Leb}\left(A_{n-1} \cap\{R=n\}\right) \\
& \leq \operatorname{Leb}\left(A_{n-1} \cap A_{n}\right)+\frac{1}{2} \operatorname{Leb}\left(A_{n-1}\right)
\end{aligned}
$$

proving (a). Similarly, by Lemma 2.6(a),

$$
\begin{aligned}
\operatorname{Leb}\left(B_{n-1}\right) & =\operatorname{Leb}\left(B_{n-1} \cap A_{n}\right)+\operatorname{Leb}\left(B_{n-1} \cap B_{n}\right)+\operatorname{Leb}\left(B_{n-1} \cap\{R=n\}\right) \\
& \geq a_{1} \operatorname{Leb}\left(B_{n-1}\right)+\operatorname{Leb}\left(B_{n-1} \cap B_{n}\right)
\end{aligned}
$$

proving (b).
Next, recall that $B_{n}=B_{n} \cap Y_{n-1}=B_{n} \cap\left(A_{n-1} \dot{\cup} B_{n-1}\right)$. Hence part (c) follows from Lemma 2.6(b) and part (b). Similarly, $A_{n}=A_{n} \cap\left(A_{n-1} \dot{\cup} B_{n-1}\right)$ and part (d) follows from Lemma 2.6(a) and part (a).

Corollary 2.8 There exists $a_{0}>0$ such that $\operatorname{Leb}\left(B_{n}\right) \leq a_{0} \operatorname{Leb}\left(A_{n}\right)$ for all $n \geq 0$.
Proof Let $a_{0}=\frac{2+a_{1}}{2 a_{1}}$. We prove the result by induction. The case $n=0$ is trivial since $B_{0}=\emptyset$. For the induction step from $n-1$ to n, we consider separately the cases $\operatorname{Leb}\left(B_{n-1}\right)>\frac{1}{2 a_{1}} \operatorname{Leb}\left(A_{n-1}\right)$ and $\operatorname{Leb}\left(B_{n-1}\right) \leq \frac{1}{2 a_{1}} \operatorname{Leb}\left(A_{n-1}\right)$.

Suppose first that $\operatorname{Leb}\left(B_{n-1}\right)>\frac{1}{2 a_{1}} \operatorname{Leb}\left(A_{n-1}\right)$. By Corollary 2.7(c),
$\operatorname{Leb}\left(B_{n}\right)<\left\{\frac{1}{2} a_{1}+\left(1-a_{1}\right)\right\} \operatorname{Leb}\left(B_{n-1}\right)=\left(1-\frac{1}{2} a_{1}\right) \operatorname{Leb}\left(B_{n-1}\right)<\operatorname{Leb}\left(B_{n-1}\right)$.
By Corollary 2.7(d),

$$
\operatorname{Leb}\left(A_{n}\right)>\left(\frac{1}{2}+a_{1} \frac{1}{2 a_{1}}\right) \operatorname{Leb}\left(A_{n-1}\right)=\operatorname{Leb}\left(A_{n-1}\right)
$$

Hence by the induction hypothesis,

$$
\operatorname{Leb}\left(B_{n}\right)<\operatorname{Leb}\left(B_{n-1}\right) \leq a_{0} \operatorname{Leb}\left(A_{n-1}\right)<a_{0} \operatorname{Leb}\left(A_{n}\right)
$$

establishing the result at time n.
Finally, suppose that $\operatorname{Leb}\left(B_{n-1}\right) \leq \frac{1}{2 a_{1}} \operatorname{Leb}\left(A_{n-1}\right)$. By Corollary $2.7(\mathrm{a}, \mathrm{c})$,

$$
\begin{aligned}
\operatorname{Leb}\left(B_{n}\right) & \leq \frac{1}{4} \operatorname{Leb}\left(A_{n-1}\right)+\operatorname{Leb}\left(B_{n-1}\right) \leq\left(\frac{1}{4}+\frac{1}{2 a_{1}}\right) \operatorname{Leb}\left(A_{n-1}\right) \\
& \leq\left(\frac{1}{2}+\frac{1}{a_{1}}\right) \operatorname{Leb}\left(A_{n}\right)=a_{0} \operatorname{Leb}\left(A_{n}\right),
\end{aligned}
$$

completing the proof.
Lemma 2.9 Let $\varepsilon \in\left(0, \frac{1}{2} \delta_{0}\right)$ be small as in Propositions 2.4 and 2.5. There exist $c_{1}>0$ and $N \geq 1$ such that

$$
\operatorname{Leb}\left(\bigcup_{i=0}^{N}\{R=n+i\}\right) \geq c_{1} \operatorname{Leb}\left(A_{n-1}\right) \quad \text { for all } n \geq 1
$$

Proof Fix $\lambda \in(0,1), L>1,0<\delta<\delta_{1}<\delta_{0}$ and $N_{1} \geq 1$ as defined from the outset. Recall that $C_{3}(3 \delta)^{\alpha}<\frac{1}{2} \delta_{0}$ and $C_{4}(L+1) \delta<\delta_{0}$. Choose $N_{2} \geq 1$ such that $\lambda^{N_{2}}<\varepsilon / \delta_{0}$ and take $N=N_{1}+N_{2}$.

We claim that
(*) For all $z \in \Lambda$, there exists $i \in\left\{1, \ldots, N_{1}\right\}$ such that $\pi\left(\phi_{i+N_{2}} W_{\varepsilon}^{u}(z) \cap \widetilde{\mathcal{D}}_{L}\right) \supset \mathcal{D}_{L}$.
Fix $z \in \Lambda$. By the definition of N_{1}, there exists $1 \leq i \leq N_{1}$ such that $d_{M}\left(\phi_{-i} p, \phi_{N_{2}} z\right)<\delta$. Let $y \in \mathcal{D}_{L}$. Then
$d_{M}\left(\phi_{-i} y, \phi_{N_{2}} z\right) \leq d\left(\phi_{-i} y, \phi_{-i} p\right)+d_{M}\left(\phi_{-i} p, \phi_{N_{2}} z\right) \leq d(y, p)+d_{M}\left(\phi_{-i} p, \phi_{N_{2}} z\right)<(L+1) \delta$.
Using the local product structure and choice of δ, we can define $x \in W_{\delta_{1}}^{c s}\left(\phi_{-i} y\right) \cap$ $W_{\delta_{1}}^{u}\left(\phi_{N_{2}} z\right)$. Then $\phi_{i} x \in W_{\delta_{1}}^{c s}(y) \subset \widetilde{\mathcal{D}}_{L}$ and $g_{i} x=\pi \phi_{i} x=y$. Also,

$$
d\left(x, \phi_{N_{2}} z\right) \leq C_{4} d_{M}\left(\phi_{-i} y, \phi_{N_{2}} z\right)<C_{4}(L+1) \delta<\delta_{0}
$$

By the definition of N_{2},

$$
\phi_{i} x \in \phi_{i} W_{\delta_{0}}^{u}\left(\phi_{N_{2}} z\right) \subset \phi_{i+N_{2}} W_{\varepsilon}^{u}(z) .
$$

Hence we obtain that $y=\pi \phi_{i} x \in \pi\left(\phi_{i+N_{2}} W_{\varepsilon}^{u}(z) \cap \widehat{\mathcal{D}}_{L}\right)$ proving $\left({ }^{*}\right)$.
Next, we claim that
${ }^{(* *)}$ For all $z \in \phi_{n} A_{n-1}, n \geq 1$, there exist $i \in\{0, \ldots, N\}$ and j such that $U_{n+i, j}^{1} \subset$ $\phi_{-n} W_{\delta_{0}}^{u}(z)$.

To prove $\left({ }^{* *}\right)$, define $V_{\varepsilon}=\phi_{-n} W_{\varepsilon}^{u}(z)$. By Proposition 2.5(b), $V_{\varepsilon} \subset A_{n-1}^{(\varepsilon)}$. We now consider two possible cases.

Suppose first that $V_{\varepsilon} \subset A_{n+i}$ for all $0 \leq i \leq N$. By claim (*), there exists $1 \leq i \leq N=N_{1}+N_{2}$ such that

$$
\pi\left(\phi_{n+i} V_{\varepsilon} \cap \widetilde{\mathcal{D}}_{L}\right)=\pi\left(\phi_{i} W_{\varepsilon}^{u}(z) \cap \widetilde{\mathcal{D}}_{L}\right) \supset \mathcal{D}_{L}
$$

while $V_{\varepsilon} \subset A_{n+i-1}$ by assumption. This means that $V_{\varepsilon} \supset U_{n+i, j}^{L}$ for some j. Hence

$$
U_{n+i, j}^{1} \subset U_{n+i, j}^{L} \subset V_{\varepsilon} \subset \phi_{-n} W_{\delta_{0}}^{u}(z)
$$

and we are done.
In this way, we reduce to the second case where there exists $0 \leq i \leq N$ least such that $V_{\varepsilon} \not \subset A_{n+i}$. Since i is least, $V_{\varepsilon} \subset A_{n+i-1}^{(\varepsilon)}$. (The ε is required in case $i=0$.) By Proposition 2.5(a), $V_{\varepsilon} \subset\left\{t_{n+i-1} \leq 1\right\}$. Hence

$$
\begin{aligned}
V_{\varepsilon} \backslash A_{n+i} & =\left(V_{\varepsilon} \cap B_{n+i}\right) \cup\left(V_{\varepsilon} \cap\{R=n+i\}\right) \\
& \subset\left\{t_{n+i-1} \leq 1, t_{n+i} \geq 1\right\} \cup\{R=n+i\} \subset \bigcup_{j} U_{n+i, j}^{2}
\end{aligned}
$$

Since $V_{\varepsilon} \backslash A_{n+i} \neq \emptyset$, this means that there exists j so that V_{ε} intersects $U_{n+i, j}^{2}$. Hence we can choose $a_{2} \in W_{\varepsilon}^{u}(z) \cap \phi_{n} U_{n+i, j}^{2}$.

Recall that $\phi_{n+i} U_{n+i, j}^{m} \subset \widetilde{\mathcal{D}}_{m}$ and $g_{n+i} U_{n+i, j}^{m}=\mathcal{D}_{m}$ for $m=1,2$. In particular, $b_{2}=\phi_{i} a_{2} \in \widetilde{\mathcal{D}}_{2}$ and $c_{2}=g_{i} a_{2} \in \mathcal{D}_{2}$.

Let $c_{1} \in \mathcal{D}_{1}$. Then $d_{M}\left(c_{1}, b_{2}\right) \leq d_{M}\left(c_{1}, c_{2}\right)+d_{M}\left(c_{2}, b_{2}\right)<3 \delta+\delta_{1}<4 \delta_{1}$. Hence, using the local product structure and definition of δ_{1}, we can define $b_{1} \in W_{\delta_{0}}^{c s}\left(c_{1}\right) \cap$ $W_{\delta_{0}}^{u}\left(b_{2}\right)$ and $a_{1}=\phi_{-i} b_{1}$. Note that

$$
\phi_{i} a_{r}=b_{r}, \quad \pi b_{r}=c_{r}, \quad r=1,2 .
$$

Hence

$$
d\left(a_{1}, a_{2}\right) \leq d\left(b_{1}, b_{2}\right) \leq C_{3} d\left(c_{1}, c_{2}\right)^{\alpha}<C_{3}(3 \delta)^{\alpha}<\frac{1}{2} \delta_{0}
$$

and so $d\left(a_{1}, z\right) \leq d\left(a_{1}, a_{2}\right)+d\left(a_{2}, z\right)<\frac{1}{2} \delta_{0}+\varepsilon<\delta_{0}$. It follows that $a_{1} \in W_{\delta_{0}}^{u}(z)$ and thereby that $c_{1} \in g_{i}\left(W_{\delta_{0}}^{u}(z) \cap \phi_{-i} \widehat{\mathcal{D}}_{1}\right)$. This proves that $\mathcal{D}_{1} \subset g_{i}\left(W_{\delta_{0}}^{u}(z) \cap \phi_{-i} \widehat{\mathcal{D}}_{1}\right)$. Hence $U_{n+i, j}^{1} \subset g_{-(n+i)} \mathcal{D}_{1} \subset \phi_{-n} W_{\delta_{0}}^{u}(z)$ verifying claim $\left({ }^{* *}\right)$.

We are now in a position to complete the proof of the lemma. Let $n \geq 1$, and let $Z \subset \phi_{n} A_{n-1}$ be a maximal set of points such that the balls $W_{\delta_{0} / 2}^{u}(z)$ are disjoint for $z \in Z$. If $x \in \phi_{n} A_{n-1}$, then $W_{\delta_{0} / 2}^{u}(x)$ intersects at least one $W_{\delta_{0} / 2}^{u}(z), z \in Z$, by maximality of the set Z. Hence $\phi_{n} A_{n-1} \subset \bigcup_{z \in Z} W_{\delta_{0}}^{u}(z)$. It follows that

$$
A_{n-1} \subset \bigcup_{z \in Z} \phi_{-n} W_{\delta_{0}}^{u}(z)
$$

Let $z \in Z$ and let $U_{z}=U_{n+i, j}^{1}$ be as in claim (**). In particular, $g_{n+i} U_{z}=\mathcal{D}_{1}=$ $W_{\delta}^{u}(p)$. Also, $\operatorname{Leb}\left(\phi_{n+i} U_{z}\right) \leq\left|D \phi_{1}\right|_{\infty}^{i m} \operatorname{Leb}\left(\phi_{n} U_{z}\right)$ where $m=\operatorname{dim} E^{u}$. Hence, by (2.2),

$$
\frac{1}{\operatorname{Leb}\left(\phi_{n} U_{z}\right)} \leq\left|D \phi_{1}\right|_{\infty}^{N m} \frac{1}{\operatorname{Leb}\left(\phi_{n+i} U_{z}\right)} \leq C_{3}\left|D \phi_{1}\right|_{\infty}^{N m} \frac{1}{\operatorname{Leb}\left(W_{\delta}^{u}(p)\right)}
$$

By (2.1),

$$
\frac{\operatorname{Leb}\left(\phi_{-n} W_{\delta_{0}}^{u}(z)\right)}{\operatorname{Leb}\left(U_{z}\right)} \leq C_{1} \frac{\operatorname{Leb}\left(W_{\delta_{0}}^{u}(z)\right)}{\operatorname{Leb}\left(\phi_{n} U_{z}\right)} \leq K
$$

where $K=C_{1} C_{3}\left|D \phi_{1}\right|_{\infty}^{N m} \frac{\sup _{y \in Y} \operatorname{Leb}\left(W_{\delta_{0}}^{u}(y)\right)}{\operatorname{Leb}\left(W_{\delta}^{u}(p)\right)}$.
Finally, the sets U_{z} are connected components of $\bigcup_{0 \leq i \leq N}\{R=n+i\}$ lying in distinct disjoint sets $\phi_{-n} W_{\delta_{0}}^{u}(z)$. Hence

$$
\operatorname{Leb}\left(A_{n-1}\right) \leq \sum_{z \in Z} \operatorname{Leb}\left(\phi_{-n} W_{\delta_{0}}^{u}(z)\right) \leq K \sum_{z \in Z} \operatorname{Leb}\left(U_{z}\right) \leq K \operatorname{Leb}\left(\bigcup_{0 \leq i \leq N}\{R=n+i\}\right)
$$

as required.
We can now complete the proof of Theorem 2.1.

Corollary 2.10 $\operatorname{Leb}(R>n)=O\left(\gamma^{n}\right)$ for some $\gamma \in(0,1)$.
Proof By Corollary 2.8 and Lemma 2.9 ,

$$
\begin{aligned}
\operatorname{Leb}(R \geq n) & =\operatorname{Leb}\left(A_{n-1}\right)+\operatorname{Leb}\left(B_{n-1}\right) \\
& \leq\left(1+a_{0}\right) \operatorname{Leb}\left(A_{n-1}\right) \leq d_{2} \operatorname{Leb}\left(\bigcup_{i=0}^{N}\{R=n+i\}\right)
\end{aligned}
$$

where $d_{2}=c_{1}^{-1}\left(1+a_{0}\right)$. It follows that

$$
\begin{aligned}
d_{2}^{-1} \operatorname{Leb}(R \geq n) & \leq \operatorname{Leb}(R=n)+\cdots+\operatorname{Leb}(R=n+N) \\
& =\operatorname{Leb}(R \geq n)-\operatorname{Leb}(R>n+N)
\end{aligned}
$$

Hence

$$
\operatorname{Leb}(R>n+N) \leq\left(1-d_{2}^{-1}\right) \operatorname{Leb}(R \geq n)
$$

In particular, $\operatorname{Leb}(R>k N) \leq \gamma^{k N}$ with $\gamma=\left(1-d_{2}^{-1}\right)^{1 / N}$ and the result follows.

3 Exponential decay of correlations for flows

In this section, we consider exponential decay of correlations for a class of uniformly hyperbolic skew product flows satisfying a uniform nonintegrability condition, generalising from C^{2} flows as treated in [8] to $C^{1+\alpha}$ flows. In doing so, we remove the restriction in [9, 6] that unstable manifolds are one-dimensional.

The arguments are a straightforward combination of those in [6, 8]. We follow closely the presentation in [6], with the focus on incorporating the ideas from [8] where required.

Quotienting by stable leaves leads to a class of semiflows considered in Subsection 3.1. The flows are considered in Subsection 3.2.

The current section is completely independent from Section 2, so overlaps in notation will not cause any confusion.

$3.1 C^{1+\alpha}$ uniformly expanding semiflows

Fix $\alpha \in(0,1)$. Let $Y \subset \mathbb{R}^{m}$ be an open ball ${ }^{2}$ in Euclidean space with Euclidean distance d. We suppose that $\operatorname{diam} Y=1$. Let Leb denote Lebesgue measure on Y. Let \mathcal{P} be a countable partition $\bmod 0$ of Y consisting of open sets.

Suppose that $F: \bigcup_{U \in \mathcal{P}} U \rightarrow Y$ is $C^{1+\alpha}$ on each $U \in \mathcal{P}$ and maps U diffeomorphically onto Y. Let $\mathcal{H}=\{h: U \rightarrow Y: U \in \mathcal{P}\}$ denote the family of inverse branches, and let \mathcal{H}_{n} denote the inverse branches for F^{n}. We say that F is a $C^{1+\alpha}$ uniformly expanding map if there exist constants $C_{1} \geq 1, \rho_{0} \in(0,1)$ such that

[^2](i) $|D h|_{\infty} \leq C_{1} \rho_{0}^{n}$ for all $h \in \mathcal{H}_{n}, n \geq 1$;
(ii) $|\log | \operatorname{det} D h\left|\left.\right|_{\alpha} \leq C_{1}\right.$ for all $h \in \mathcal{H}$;
where $|\psi|_{\alpha}=\sup _{y \neq y^{\prime}}\left|\psi(y)-\psi\left(y^{\prime}\right)\right| / d\left(y, y^{\prime}\right)^{\alpha}$. Under these assumptions, it is standard [1] that there exists a unique F-invariant absolutely continuous measure μ. The density $d \mu / d$ Leb is C^{α}, bounded above and below, and μ is ergodic and mixing.

We consider roof functions $r: \bigcup_{U \in \mathcal{P}} U \rightarrow \mathbb{R}^{+}$that are C^{1} on partition elements U with $\inf r>0$. Define the suspension $Y^{r}=\{(y, u) \in Y \times \mathbb{R}: 0 \leq u \leq r(y)\} / \sim$ where $(y, r(y)) \sim(F y, 0)$. The suspension semiflow $F_{t}: Y^{r} \rightarrow Y^{r}$ is given by $F_{t}(y, u)=$ ($y, u+t$) computed modulo identifications, with ergodic invariant probability measure $\mu^{r}=(\mu \times$ Lebesgue $) / \bar{r}$ where $\bar{r}=\int_{Y} r d \mu$. We say that F_{t} is a $C^{1+\alpha}$ uniformly expanding semiflow if F is a $C^{1+\alpha}$ uniformly expanding map and we can choose C_{1} from condition (i) and $\varepsilon>0$ such that
(iii) $|D(r \circ h)|_{\infty} \leq C_{1}$ for all $h \in \mathcal{H}$;
(iv) $\sum_{h \in \mathcal{H}} e^{\varepsilon|r o h|_{\infty}}|\operatorname{det} D h|_{\infty}<\infty$.

Let $r_{n}=\sum_{j=0}^{n-1} r \circ F^{j}$ and define

$$
\psi_{h_{1}, h_{2}}=r_{n} \circ h_{1}-r_{n} \circ h_{2}: Y \rightarrow \mathbb{R}
$$

for $h_{1}, h_{2} \in \mathcal{H}_{n}$. We require the following uniform nonintegrability condition [8, Equation (6.6)]:
(UNI) There exists $E>0$ and $h_{1}, h_{2} \in \mathcal{H}_{n_{0}}$, for some sufficiently large $n_{0} \geq 1$, with the following property: There exists a continuous unit vector field $\ell: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ such that $\left|D \psi_{h_{1}, h_{2}}(y) \cdot \ell(y)\right| \geq E$ for all $y \in Y$.
(The requirement "sufficiently large" can be made explicit as in [6] Equations (2.1) to (2.3)].) From now on, n_{0}, h_{1} and h_{2} are fixed.

Define $F_{\alpha}\left(Y^{r}\right)$ to consist of L^{∞} functions $v: Y^{r} \rightarrow \mathbb{R}$ such that $\|v\|_{\alpha}=|v|_{\infty}+$ $|v|_{\alpha}<\infty$ where

$$
|v|_{\alpha}=\sup _{(y, u) \neq\left(y^{\prime}, u\right)} \frac{\left|v(y, u)-v\left(y^{\prime}, u\right)\right|}{d\left(y, y^{\prime}\right)^{\alpha}} .
$$

Define $F_{\alpha, k}\left(Y^{r}\right)$ to consist of functions with $\|v\|_{\alpha, k}=\sum_{j=0}^{k}\left\|\partial_{t}^{j} v\right\|_{\alpha}<\infty$ where ∂_{t} denotes differentiation along the semiflow direction.

We can now state the main result in this section. Given $v \in L^{1}\left(Y^{r}\right), w \in L^{\infty}\left(Y^{r}\right)$, define the correlation function

$$
\rho_{v, w}(t)=\int v w \circ F_{t} d \mu^{r}-\int v d \mu^{r} \int w d \mu^{r} .
$$

Theorem 3.1 Suppose that $F_{t}: Y^{r} \rightarrow Y^{r}$ is a $C^{1+\alpha}$ uniformly expanding semiflow satisfying (UNI). Then there exist constants $c, C>0$ such that

$$
\left|\rho_{v, w}(t)\right| \leq C e^{-c t}\|v\|_{\alpha, 1}\|w\|_{\alpha, 1}
$$

for all $t>0$ and all $v, w \in F_{\alpha, 1}\left(Y^{r}\right)$ (alternatively all $v \in F_{\alpha, 2}\left(Y^{r}\right), w \in L^{\infty}\left(Y^{r}\right)$).
In the remainder of this subsection, we prove Theorem 3.1.
For $s \in \mathbb{C}$, let P_{s} denote the (non-normalised) transfer operator

$$
P_{s}=\sum_{h \in \mathcal{H}} A_{s, h}, \quad A_{s, h} v=e^{-s r o h}|\operatorname{det} D h| v \circ h .
$$

For $v: Y \rightarrow \mathbb{C}$, define $\|v\|_{\alpha}=\max \left\{|v|_{\infty},|v|_{\alpha}\right\}$ where $|v|_{\alpha}=\sup _{y \neq y^{\prime}} \mid v(y)-$ $v\left(y^{\prime}\right) \mid / d\left(y, y^{\prime}\right)^{\alpha}$. Let $C^{\alpha}(Y)$ denote the space of functions $v: Y \rightarrow \mathbb{C}$ with $\|v\|_{\alpha}<\infty$. We introduce the family of equivalent norms

$$
\|v\|_{b}=\max \left\{|v|_{\infty},|v|_{\alpha} /\left(1+|b|^{\alpha}\right)\right\}, \quad b \in \mathbb{R} .
$$

Proposition 3.2 Write $s=\sigma+i b$. There exists $\varepsilon \in(0,1)$ such that the family $s \mapsto$ P_{s} of operators on $C^{\alpha}(Y)$ is continuous on $\{\sigma>-\varepsilon\}$. Moreover, $\sup _{|\sigma|<\varepsilon}\left\|P_{s}\right\|_{b}<\infty$.

Proof The first five lines of the proof of [6, Proposition 2.5] should be changed to the following:

Using the inequality $1-t \leq-\log t$ valid for $t>0$, we obtain for $a>b>0$ that $a-b=a\left(1-\frac{b}{a}\right) \leq-a \log \frac{b}{a}=a(\log a-\log b)$. Hence $||\operatorname{det} D h(x)|-| \operatorname{det} D h(y) \| \leq$ $|\operatorname{det} D h|_{\infty}(\log |\operatorname{det} D h(x)|-\log |\operatorname{det} D h(y)|)$ and so by (ii),

$$
\begin{equation*}
\left||\operatorname{det} D h(x)|-\left|\operatorname{det} D h(y) \| \leq C_{1}\right| \operatorname{det} D h\right|_{\infty} d(x, y)^{\alpha} \quad \text { for all } h \in \mathcal{H}, x, y \in Y . \tag{3.1}
\end{equation*}
$$

The proof now proceeds exactly as for [6, Proposition 2.5] (with R, h^{\prime} and $|x-y|$ changed to r, $\operatorname{det} D h$ and $d(x, y))$.

The unperturbed operator P_{0} has a simple leading eigenvalue $\lambda_{0}=1$ with strictly positive C^{α} eigenfunction f_{0}. By Proposition 3.2, there exists $\varepsilon \in(0,1)$ such that P_{σ} has a continuous family of simple eigenvalues λ_{σ} for $|\sigma|<\varepsilon$ with associated C^{α} eigenfunctions f_{σ}. For $s=\sigma+i b$ with $|\sigma| \leq \varepsilon$, we define the normalised transfer operators

$$
L_{s} v=\left(\lambda_{\sigma} f_{\sigma}\right)^{-1} P_{s}\left(f_{\sigma} v\right)=\left(\lambda_{\sigma} f_{\sigma}\right)^{-1} \sum_{h \in \mathcal{H}} A_{s, h}\left(f_{\sigma} v\right)
$$

In particular, $L_{\sigma} 1=1$ and $\left|L_{s}\right|_{\infty} \leq 1$.
Set $C_{2}=C_{1}^{2} /(1-\rho), \rho=\rho_{0}^{\alpha}$. Then
(ii $\left.i_{1}\right)|\log | \operatorname{det} D h\left|\left.\right|_{\alpha} \leq C_{2}\right.$ for all $h \in \mathcal{H}_{n}, n \geq 1$,
(iii $\left.{ }_{1}\right)\left|D\left(r_{n} \circ h\right)\right|_{\infty} \leq C_{2}$ for all $h \in \mathcal{H}_{n}, n \geq 1$.

Write

$$
L_{s}^{n} v=\lambda_{\sigma}^{-n} f_{\sigma}^{-1} \sum_{h \in \mathcal{H}_{n}} A_{s, h, n}\left(f_{\sigma} v\right), \quad A_{s, h, n} v=e^{-s r_{n} \circ h}|\operatorname{det} D h| v \circ h .
$$

Lemma 3.3 (Lasota-Yorke inequality) There is a constant $C_{3}>1$ such that

$$
\left|L_{s}^{n} v\right|_{\alpha} \leq C_{3}\left(1+|b|^{\alpha}\right)|v|_{\infty}+C_{3} \rho^{n}|v|_{\alpha} \leq C_{3}\left(1+|b|^{\alpha}\right)\left\{|v|_{\infty}+\rho^{n}\|v\|_{b}\right\},
$$

for all $s=\sigma+i b,|\sigma|<\varepsilon$, and all $n \geq 1, v \in C^{\alpha}(Y)$.
Proof It follows from (ii_{1}) that

$$
||\operatorname{det} D h(x)|-|\operatorname{det} D h(y)|| \leq C_{2}|\operatorname{det} D h|_{\infty} d(x, y)^{\alpha} \leq C_{2} e^{C_{2}}|\operatorname{det} D h(z)| d(x, y)^{\alpha}
$$

for all $h \in \mathcal{H}_{n}, n \geq 1, x, y, z \in Y$. The proof now proceeds exactly as for [6, Lemma 2.7].

Corollary $3.4\left\|L_{s}^{n}\right\|_{b} \leq 2 C_{3}$ for all $s=\sigma+i b,|\sigma|<\varepsilon$, and all $n \geq 1$.
Proof This is unchanged from [6, Corollary 2.8].
Given $b \in \mathbb{R}$, we define the cone

$$
\begin{array}{r}
\mathcal{C}_{b}=\left\{(u, v): u, v \in C^{\alpha}(Y), u>0,0 \leq|v| \leq u,|\log u|_{\alpha} \leq C_{4}|b|^{\alpha}\right. \\
\left.|v(x)-v(y)| \leq C_{4}|b|^{\alpha} u(y) d(x, y)^{\alpha} \quad \text { for all } x, y \in Y\right\} .
\end{array}
$$

Throughout $B_{\delta}(y)=\left\{x \in \mathbb{R}^{m}: d(x, y)<\delta\right\}$.
Lemma 3.5 (Cancellation Lemma) Assume that the (UNI) condition is satisfied (with associated constants $E>0$ and $n_{0} \geq 1$). Let $h_{1}, h_{2} \in \mathcal{H}_{n_{0}}$ be the branches from (UNI).

There exists $0<\delta<\Delta=4 \pi / E$ such that for all $s=\sigma+i b,|\sigma|<\varepsilon,|b| \geq 1$, and all $(u, v) \in \mathcal{C}_{b}$ we have the following:

For every $y^{\prime} \in Y$ with $B_{(\delta+\Delta) /|b|}\left(y^{\prime}\right) \subset Y$, there exists $y^{\prime \prime} \in B_{\Delta /|b|}\left(y^{\prime}\right)$ such that one of the following inequalities holds on $B_{\delta /|b|}\left(y^{\prime \prime}\right)$:

Case $h_{1}:\left|A_{s, h_{1}, n_{0}}\left(f_{\sigma} v\right)+A_{s, h_{2}, n_{0}}\left(f_{\sigma} v\right)\right| \leq \frac{3}{4} A_{\sigma, h_{1}, n_{0}}\left(f_{\sigma} u\right)+A_{\sigma, h_{2}, n_{0}}\left(f_{\sigma} u\right)$,
Case $h_{2}:\left|A_{s, h_{1}, n_{0}}\left(f_{\sigma} v\right)+A_{s, h_{2}, n_{0}}\left(f_{\sigma} v\right)\right| \leq A_{\sigma, h_{1}, n_{0}}\left(f_{\sigma} u\right)+\frac{3}{4} A_{\sigma, h_{2}, n_{0}}\left(f_{\sigma} u\right)$.
Proof Let $\theta=V-b \psi_{h_{1}, h_{2}}$ where $\psi_{h_{1}, h_{2}}=r_{n_{0}} \circ h_{1}-r_{n_{0}} \circ h_{2}$ and $V=\arg \left(v \circ h_{1}\right)-$ $\arg \left(v \circ h_{2}\right)$.

We follow the following steps from [6, Lemma 2.9]:
(1) Reduce to the situation where $\left|v\left(h_{m} y^{\prime}\right)\right|>\frac{1}{2} u\left(h_{m} y^{\prime}\right)$ for both $m=1$ and $m=2$.
(2) Establish the estimate $\left|V(y)-V\left(y^{\prime}\right)\right| \leq \pi / 6$ for all $y \in B_{(\delta+\Delta) /|b|}\left(y^{\prime}\right)$.
(3) Construct $y^{\prime \prime} \in B_{\Delta /|b|}\left(y^{\prime}\right)$ such that

$$
b\left(\psi_{h_{1}, h_{2}}\left(y^{\prime \prime}\right)-\psi_{h_{1}, h_{2}}\left(y^{\prime}\right)\right)=\theta\left(y^{\prime}\right)-\pi \bmod 2 \pi
$$

(4) Deduce that $|\theta(y)-\pi| \leq 2 \pi / 3$ for all $y \in B_{(\delta+\Delta) /|b|}\left(y^{\prime}\right)$.
(5) Conclude the desired result.

Only step (3) requires any change from the argument in [6, Lemma 2.9]. We provide here the modified argument. Approximate the continuous unit vector field $\ell: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ in (UNI) by a smooth vector field $\ell: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ with $|\ell(x)| \leq 1$ for all $x \in \mathbb{R}^{m}$. By condition (iii $)$, the approximation can be chosen close enough that

$$
\begin{equation*}
\left|D \psi_{h_{1}, h_{2}}(y) \cdot \ell(y)\right| \geq \frac{1}{2} E \quad \text { for all } y \in Y \tag{3.2}
\end{equation*}
$$

Let $g:[0, \Delta /|b|] \rightarrow \mathbb{R}^{m}$ be the solution to the initial value problem

$$
\frac{d g}{d t}=\ell \circ g, \quad g(0)=y^{\prime}
$$

and set $y_{t}=g(t)$. Note that $d\left(y_{t}, y^{\prime}\right) \leq \int_{0}^{t}|\ell(g(s))| d s \leq \Delta /|b|$, so $y_{t} \in B_{\Delta /|b|}\left(y^{\prime}\right)$ for all $t \in[0, \Delta /|b|]$. By the mean value theorem applied to $\psi_{h_{1}, h_{2}} \circ g:[0, \Delta /|b|] \rightarrow \mathbb{R}$ and (3.2),

$$
\left|\psi_{h_{1}, h_{2}}\left(y_{t}\right)-\psi_{h_{1}, h_{2}}\left(y^{\prime}\right)\right| \geq t \inf _{s \in[0, \Delta /|b|]}\left|D \psi_{h_{1}, h_{2}}\left(y_{s}\right) \cdot \ell\left(y_{s}\right)\right| \geq \frac{1}{2} E t=(2 \pi / \Delta) t
$$

for all $t \in[0, \Delta /|b|]$. It follows that $b\left(\psi_{h_{1}, h_{2}}\left(y_{t}\right)-\psi_{h_{1}, h_{2}}\left(y^{\prime}\right)\right)$ fills out an interval around 0 of length at least 2π as t varies in $[0, \Delta /|b|]$. In particular, we can choose $y^{\prime \prime} \in B_{\Delta /|b|}\left(y^{\prime}\right)$ such that (3) holds.

Let $\left\{y_{1}^{\prime}, \ldots, y_{k}^{\prime}\right\} \subset Y$ be a maximal set of points such that the open balls $B_{(\delta+\Delta) /|b|}\left(y_{i}^{\prime}\right)$ are disjoint and contained in Y.

Let $(u, v) \in \mathcal{C}_{b}$. For each $i=1, \ldots, k$, there exists a ball $B_{i}=B_{\delta /|b|}\left(y_{i}^{\prime \prime}\right)$ on which the conclusion of Lemma 3.5 holds. Write type $\left(B_{i}\right)=h_{m}$ if we are in case h_{m}. Let $\widehat{B}_{i}=B_{\frac{1}{2} \delta /|b|}\left(y_{i}^{\prime \prime}\right)$

There exists a universal constant $C>0$ and a C^{1} function $\omega_{i}: Y \rightarrow[0,1]$ such that $\omega_{i} \equiv 1$ on $\widehat{B}_{i}, \omega_{i} \equiv 0$ on $Y \backslash B_{i}$, and $\left\|\omega_{i}\right\|_{C^{1}} \leq C|b| / \delta$. Define $\omega: Y \rightarrow[0,1]$,

$$
\omega(y)= \begin{cases}\sum_{\operatorname{type}\left(B_{i}\right)=h_{m}} \omega_{i}\left(F^{n_{0}} y\right), & y \in \operatorname{range} h_{m}, m=1,2 \\ 0 & \text { otherwise } .\end{cases}
$$

Note that $\|\omega\|_{C^{1}} \leq C^{\prime}|b|$ where $C^{\prime}=C \delta$ is independent of $(u, v) \in \mathcal{C}_{b}$ and $s \in \mathbb{C}$, and we can assume that $C^{\prime}>4$. Then $\chi=1-\omega / C^{\prime}: Y \rightarrow\left[\frac{3}{4}, 1\right]$ satisfies $|D \chi| \leq|b|$. Moreover, if type $\left(B_{i}\right)=h_{m}$ then $\chi \equiv \eta$ on range h_{m} where $\eta=1-1 / C^{\prime} \in(0,1)$.

Corollary 3.6 Let δ, Δ be as in Lemma 3.5. Let $|b| \geq 1,(u, v) \in \mathcal{C}_{b}$. Let $\chi=$ $\chi(b, u, v)$ be the C^{1} function described above (using the branches $h_{1}, h_{2} \in \mathcal{H}_{n_{0}}$ from (UNI)). Then $\left|L_{s}^{n_{0}} v\right| \leq L_{\sigma}^{n_{0}}(\chi u)$ for all $s=\sigma+i b,|\sigma|<\varepsilon$.

Proof This is immediate from Lemma 3.5 and the definition of χ.
Define the disjoint union $\widehat{B}=\bigcup \widehat{B}_{i}$.
Proposition 3.7 Let $K>0$. There exists $c_{1}>0$ such that $\int_{\widehat{B}} w d \mu \geq c_{1} \int_{Y} w d \mu$ for all C^{α} function $w: Y \rightarrow(0, \infty)$ with $|\log w|_{\alpha} \leq K|b|^{\alpha}$, for all $|b| \geq 16 \pi / E$.

Proof Let $y \in Y$. Since $(\delta+\Delta) /|b| \leq 2 \Delta /|b|=8 \pi /(E|b|) \leq \frac{1}{2}$, there exists $z \in Y$ with $B_{(\delta+\Delta) /|b|}(z) \subset Y$ such that $d(z, y)<(\delta+\Delta) /|b|$. By maximality of the set of points $\left\{y_{1}^{\prime}, \ldots, y_{k}^{\prime}\right\}$, there exists y_{i}^{\prime} such that $B_{(\delta+\Delta) /|b|}(z)$ intersects $B_{(\delta+\Delta) /|b|}\left(y_{i}^{\prime}\right)$. Hence $Y \subset \bigcup_{i=1}^{k} B_{i}^{*}$ where $B_{i}^{*}=B_{3(\delta+\Delta) /|b|}\left(y_{i}^{\prime}\right)$. Since the density $d \mu / d$ Leb is bounded above and below, there is a constant $c_{2}>0$ such that $\mu\left(\widehat{B}_{i}\right) \geq c_{2} \mu\left(B_{i}^{*}\right)$ for each i.

Let $x \in \widehat{B}_{i}, y \in B_{i}^{*}$. Then $d(x, y) \leq 4(\delta+\Delta) /|b|$ and so $|w(x) / w(y)| \leq e^{K^{\prime}}$ where $K^{\prime}=\{4(\delta+\Delta)\}^{\alpha} K$. It follows that

$$
\int_{\widehat{B}_{i}} w d \mu \geq \mu\left(\widehat{B}_{i}\right) \inf _{\widehat{B}_{i}} w \geq c_{2} e^{-K^{\prime}} \mu\left(B_{i}^{*}\right) \sup _{B_{i}^{*}} w \geq c_{1} \int_{B_{i}^{*}} w d \mu
$$

where $c_{1}=c_{2} e^{-K^{\prime}}$. Since the sets $\widehat{B}_{i} \subset Y$ are disjoint,

$$
\int_{\widehat{B}} w d \mu=\sum_{i} \int_{\widehat{B}_{i}} w d \mu \geq c_{1} \sum_{i} \int_{B_{i}^{*}} w d \mu \geq c_{1} \int_{Y} w d \mu
$$

as required.

Lemma 3.8 (Invariance of cone) There is a constant C_{4} depending only on C_{1}, $C_{2},\left|f_{0}^{-1}\right|_{\infty}$ and $\left|f_{0}\right|_{\alpha}$ such that the following holds:

For all $(u, v) \in \mathcal{C}_{b}$, we have that

$$
\left(L_{\sigma}^{n_{0}}(\chi u), L_{s}^{n_{0}} v\right) \in \mathcal{C}_{b},
$$

for all $s=\sigma+i b,|\sigma|<\varepsilon,|b| \geq 1$. (Here, $\chi=\chi(b, u, v)$ is from Corollary 3.6.)
Proof This is unchanged from [6, Lemma 2.12].
Lemma 3.9 (L^{2} contraction) There exist $\varepsilon, \beta \in(0,1)$ such that

$$
\int_{Y}\left|L_{s}^{m n_{0}} v\right|^{2} d \mu \leq \beta^{m}|v|_{\infty}^{2}
$$

for all $m \geq 1, s=\sigma+i b,|\sigma|<\varepsilon,|b| \geq \max \{16 \pi / E, 1\}$, and all $v \in C^{\alpha}(Y)$ satisfying $|v|_{\alpha} \leq C_{4}|b|^{\alpha}|v|_{\infty}$.

Proof Define $u_{0} \equiv 1, v_{0}=v /|v|_{\infty}$ and inductively,

$$
u_{m+1}=L_{\sigma}^{n_{0}}\left(\chi_{m} u_{m}\right), \quad v_{m+1}=L_{s}^{n_{0}}\left(v_{m}\right),
$$

where $\chi_{m}=\chi\left(b, u_{m}, v_{m}\right)$. It is immediate from the definitions that $\left(u_{0}, v_{0}\right) \in \mathcal{C}_{b}$, and it follows from Lemma 3.8 that $\left(u_{m}, v_{m}\right) \in \mathcal{C}_{b}$ for all m. Hence inductively the χ_{m} are well-defined as in Corollary 3.6 .

We proceed as in [6, Lemma 2.13] in the following steps.
(1) It suffices to show that there exists $\beta \in(0,1)$ such that $\int_{Y} u_{m+1}^{2} d \mu \leq \beta \int u_{m}^{2} d \mu$ for all m.
(2) Define $w=L_{0}^{n_{0}}\left(u_{m}^{2}\right)$. Then

$$
u_{m+1}^{2}(y) \leq \begin{cases}\xi(\sigma) \eta_{1} w(y) & y \in \widehat{B} \\ \xi(\sigma) w(y) & y \in Y \backslash \widehat{B}\end{cases}
$$

where $\xi(\sigma)$ can be made as close to 1 as desired by shrinking ε. Here, $\eta_{1} \in(0,1)$ is a constant independent of v, m, s, y.
(3) The function $w: Y \rightarrow \mathbb{R}$ satisfies the hypotheses of Proposition 3.7, consequently $\int_{\widehat{B}} w d \mu \geq c_{1} \int_{Y \backslash \widehat{B}} w d \mu$. This leads to the desired conclusion.

Lemma $3.10\left(C^{\alpha}\right.$ contraction) Let $E^{\prime}=\max \{16 \pi / E, 2\}$. There exists $\varepsilon \in(0,1)$, $\gamma \in(0,1)$ and $A>0$ such that $\left\|P_{s}^{n}\right\|_{b} \leq \gamma^{n}$ for all $s=\sigma+i b,|\sigma|<\varepsilon,|b| \geq E^{\prime}$, $n \geq A \log |b|$.

Proof This is unchanged from [6, Proposition 2.14, Corollary 2.15 and Theorem 2.16].

Proof of Theorem 3.1 This is identical to [6, Section 2.7]. We note that there is a typo in the statement of [6, Lemma 2.23] where $|b| \leq D^{\prime}$ should be $|b| \geq D^{\prime}$ (twice). Also, for the second statement of [6, Proposition 2.18] it would be more natural to argue that

$$
\begin{aligned}
\int_{Y} e^{\varepsilon r} d \text { Leb } & =\sum_{h \in \mathcal{H}} \int_{h(Y)} e^{\varepsilon r} d \text { Leb } \\
& =\sum_{h \in \mathcal{H}} \int_{Y} e^{\varepsilon r \circ h}|\operatorname{det} D h| d \operatorname{Leb} \leq \operatorname{Leb}(Y) \sum_{h \in \mathcal{H}} e^{\varepsilon|r o h| \infty}|\operatorname{det} D h|_{\infty}
\end{aligned}
$$

which is finite by condition (iv). Hence $\int_{Y} e^{\varepsilon r} d \mu<\infty$ by boundedness of $d \mu / d$ Leb.

$3.2 C^{1+\alpha}$ uniformly hyperbolic skew product flows

Let $X=Y \times Z$ where Y is an open ball of diameter 1 with Euclidean metric d_{Y} and $\left(Z, d_{Z}\right)$ is a compact Riemannian manifold. Define the metric $d\left((y, z),\left(y^{\prime}, z^{\prime}\right)\right)=$ $d_{Y}\left(y, y^{\prime}\right)+d_{Z}\left(z, z^{\prime}\right)$ on X. Let $f(y, z)=(F y, G(y, z))$ where $F: Y \rightarrow Y, G: X \rightarrow Z$ are $C^{1+\alpha}$.

We say that $f: X \rightarrow X$ is a $C^{1+\alpha}$ uniformly hyperbolic skew product if $F: Y \rightarrow Y$ is a $C^{1+\alpha}$ uniformly expanding map satisfying conditions (i) and (ii) as in Section 3.1, with absolutely continuous invariant probability measure μ, and moreover
(v) There exist constants $C>0, \gamma_{0} \in(0,1)$ such that $d\left(f^{n}(y, z), f^{n}\left(y, z^{\prime}\right)\right) \leq$ $C \gamma_{0}^{n} d\left(z, z^{\prime}\right)$ for all $y \in Y, z, z^{\prime} \in Z$.
Let $\pi^{s}: X \rightarrow Y$ be the projection $\pi^{s}(y, z)=y$. This defines a semiconjugacy between f and F and there is a unique f-invariant ergodic probability measure μ_{X} on X such that $\pi_{*}^{s} \mu_{X}=\mu$.

Suppose that $r: \bigcup_{U \in \mathcal{P}} U \rightarrow \mathbb{R}^{+}$is C^{1} on partition elements U with $\inf r>0$. Define $r: X \rightarrow \mathbb{R}^{+}$by setting $r(y, z)=r(y)$. Define the suspension $X^{r}=\{(x, u) \in$ $X \times \mathbb{R}: 0 \leq u \leq r(x)\} / \sim$ where $(x, r(x)) \sim(f x, 0)$. The suspension flow $f_{t}: X^{r} \rightarrow$ X^{r} is given by $f_{t}(x, u)=(x, u+t)$ computed modulo identifications, with ergodic invariant probability measure $\mu_{X}^{r}=\left(\mu_{X} \times\right.$ Lebesgue $) / \bar{r}$.

We say that f_{t} is a $C^{1+\alpha}$ uniformly hyperbolic skew product flow provided $f: X \rightarrow$ X is a $C^{1+\alpha}$ uniformly hyperbolic skew product as above, and $r: Y \rightarrow \mathbb{R}^{+}$satisfies conditions (iii) and (iv) as in Section 3.1. If $F: Y \rightarrow Y$ and $r: Y \rightarrow \mathbb{R}^{+}$satisfy condition (UNI) from Section 3.1, then we say that the skew product flow f_{t} satisfies (UNI).

Define $F_{\alpha}\left(X^{r}\right)$ to consist of L^{∞} functions $v: X^{r} \rightarrow \mathbb{R}$ such that $\|v\|_{\alpha}=|v|_{\infty}+$ $|v|_{\alpha}<\infty$ where

$$
|v|_{\alpha}=\sup _{(y, z, u) \neq\left(y^{\prime}, z^{\prime}, u\right)} \frac{\left|v(y, z, u)-v\left(y^{\prime}, z^{\prime}, u\right)\right|}{d\left((y, z),\left(y^{\prime}, z^{\prime}\right)\right)^{\alpha}}
$$

Define $F_{\alpha, k}\left(X^{r}\right)$ to consist of functions with $\|v\|_{\alpha, k}=\sum_{j=0}^{k}\left\|\partial_{t}^{j} v\right\|_{\alpha}<\infty$ where ∂_{t} denotes differentiation along the flow direction.

We can now state the main result in this section. Given $v \in L^{1}\left(X^{r}\right), w \in L^{\infty}\left(X^{r}\right)$, define the correlation function

$$
\rho_{v, w}(t)=\int v w \circ f_{t} d \mu_{X}^{r}-\int v d \mu_{X}^{r} \int w d \mu_{X}^{r}
$$

Theorem 3.11 Assume that $f_{t}: X \rightarrow X$ is a $C^{1+\alpha}$ hyperbolic skew product flow satisfying the (UNI) condition. Then there exist constants $c, C>0$ such that

$$
\left|\rho_{v, w}(t)\right| \leq C e^{-c t}\|v\|_{\alpha, 1}\|w\|_{\alpha, 1}
$$

for all $t>0$ and all $v, w \in F_{\alpha, 1}\left(X^{r}\right)$ (alternatively all $v \in F_{\alpha, 2}\left(X^{r}\right), w \in F_{\alpha}\left(X^{r}\right)$).
Proof This is unchanged from [6, Section 4].

4 Proof of Theorem 1.2

We return to the situation of Section 2, so $\Lambda \subset M$ is a uniformly hyperbolic attractor for a $C^{1+\alpha}$ flow, $\alpha \in(0,1)$, defined on a compact Riemannian manifold. Define the open unstable disk $Y=W_{\delta}^{u}(p)$ with discrete return time $R: Y \rightarrow \mathbb{Z}^{+}$and induced $\operatorname{map} F=\pi \circ \phi_{R}: Y \rightarrow Y$ as in Theorem 2.1.

Under smoothness assumptions on holonomies, we verify the conditions on the suspension flow f_{t} in Section 3 and obtain Theorem 1.2 as an easy consequence.

Proposition 4.1 Suppose that the centre-stable holonomies are $C^{1+\alpha}$. (In particular, $\pi: \widehat{\mathcal{D}} \rightarrow \mathcal{D}$ is $C^{1+\alpha}$.) Then (after shrinking δ_{0} in Section 2 if necessary) F is a $C^{1+\alpha}$ uniformly expanding map.

Proof As in Remark 2.2, it is immediate that $\left.F\right|_{U}: U \rightarrow Y$ is a $C^{1+\alpha}$ diffeomorphism for all $U \in \mathcal{P}$. Let $h: Y \rightarrow U$ be an inverse branch with $\left.R\right|_{U}=n$, and define $\pi_{U}=\left.\pi\right|_{\phi_{n}(U)}: \phi_{n}(U) \rightarrow \mathcal{D}$. Then

$$
\lambda^{-1}|v| \leq \lambda^{-n}|v| \leq\left|D \phi_{n}(x) v\right| \leq\left|\left(D \pi_{U}\right)^{-1}\right|_{\infty}|D F(x) v|
$$

for all $x \in U, v \in T_{x} Y$. Hence $|D h|_{\infty} \leq \rho_{0}$ where $\rho_{0}=\lambda \sup _{U}\left|\left(D \pi_{U}\right)^{-1}\right|_{\infty}$. Shrinking δ_{0}, we can ensure that $\rho_{0}<1$. In particular, condition (i) in Section 3.1 holds (with $C_{1}=1$). Condition (ii) is the standard distortion estimate.

In the remainder of this section, we suppose moreover that the stable holonomies are $C^{1+\alpha}$. Shrink $\delta_{0} \in(0,1)$ as in Proposition 4.1 and shrink $\delta_{1} \in\left(0, \delta_{0}\right)$ so that $\phi_{t}\left(W_{\delta_{1}}^{s}(y)\right) \subset W_{\delta_{0}}^{s}\left(\phi_{t} y\right)$ for all $t>0, y \in \Lambda$. Recall that $\mathcal{D}=W_{\delta_{0}}^{u}(p)$ and

$$
\widehat{\mathcal{D}}=\bigcup_{y \in \mathcal{D}} W_{\delta_{0}}^{c s}(y)=\bigcup_{|t|<\delta_{0}} \phi_{t}\left(\bigcup_{y \in \mathcal{D}} W_{\delta_{0}}^{s}(y)\right) .
$$

The projection $\pi^{s}: \bigcup_{y \in \mathcal{D}} W_{\delta_{0}}^{s}(y) \rightarrow \mathcal{D}$ given by $\pi^{s} \mid W_{\delta_{0}}^{s}(y) \equiv y$ is $C^{1+\alpha}$. Moreover, $\pi=\pi^{s} \circ \phi_{r_{0}}$ where $\phi_{r_{0}}: \widehat{\mathcal{D}} \rightarrow \bigcup_{y \in \mathcal{D}} W_{\delta_{0}}^{s}(y)$ and $r_{0}: \widehat{\mathcal{D}} \rightarrow\left(-\delta_{0}, \delta_{0}\right)$ is $C^{1+\alpha}$. Define $r=R+r_{0}$ on Y. The choice $\delta_{0}<1$ ensures that $\inf r \geq 1-\delta_{0}>0$. Define the corresponding semiflow $F_{t}: Y^{r} \rightarrow Y^{r}$.

Proposition 4.2 $F_{t}: Y^{r} \rightarrow Y^{r}$ is a $C^{1+\alpha}$ uniformly expanding semiflow.
Proof By Proposition 4.1, F is a $C^{1+\alpha}$ uniformly expanding map. In particular, conditions (i) and (ii) are satisfied.

Notice that $F=\pi^{s} \circ \phi_{r}$ where $r=R+r_{0}$ is $C^{1+\alpha}$ on partition elements $U \in \mathcal{P}$. Since $D r=D r_{0}$ on partition elements, it is immediate that $\sup _{h \in \mathcal{H}}|D(r \circ h)|_{\infty} \leq\left|D r_{0}\right|_{\infty} \sup _{h \in \mathcal{H}}|D h|_{\infty} \leq \rho_{0}\left|D r_{0}\right|_{\infty}<\infty$ verifying condition (iii) on r. Recall that $\operatorname{Leb}(R>n)=O\left(\gamma^{n}\right)$ for some $\gamma \in(0,1)$, so we can choose $\varepsilon>0$ such that $\int_{Y} e^{\varepsilon R} d$ Leb $<\infty$. Condition (ii) ensures that $|\operatorname{det} D h|_{\infty} \leq$
$(\operatorname{Leb} Y)^{-1} e^{C_{1}} \operatorname{Leb}($ range $h)$ for all $h \in \mathcal{H}$. Hence $\sum_{h \in \mathcal{H}} e^{\varepsilon|r o h|_{\infty}}|\operatorname{det} D h|_{\infty} \ll$ $\sum_{h \in \mathcal{H}} e^{\varepsilon|R o h|_{\infty}} \operatorname{Leb}($ range $h)=\int_{Y} e^{\varepsilon R} d$ Leb $<\infty$ verifying condition (iv) on r.

We now make a $C^{1+\alpha}$ change of coordinates so that $\widehat{\mathcal{D}}$ is identified with $\mathcal{D} \times$ $W_{\delta_{0}}^{s}(p) \times\left(-\delta_{0}, \delta_{0}\right)$ where $\{y\} \times W_{\delta_{0}}^{s}(p)$ is identified with $W_{\delta_{0}}^{s}(y)$ for all $y \in \mathcal{D}$ and $\left(-\delta_{0}, \delta_{0}\right)$ is the flow direction. Let $X=Y \times Z$ where $Z=W_{\delta_{0}}^{s}(p)$ and define r : $X \rightarrow(0, \infty)$ by $r(y, z)=r(y)$. Also, define $f=\phi_{r}: X \rightarrow X$ and the corresponding suspension flow $f_{t}: X^{r} \rightarrow X^{r}$

Proposition $4.3 f_{t}: X^{r} \rightarrow X^{r}$ is a $C^{1+\alpha}$ uniformly hyperbolic skew product flow.
Proof Note that $\pi^{s}(X)=Y$ and $\pi^{s}(y, z)=y$. Also, $f(y, z)=(F y, G(y, z))$ where $G: X \rightarrow Z$ is $C^{1+\alpha}$. Since Z corresponds to the exponential contracting stable foliation, condition (v) in Section 3.2 is satisfied. Hence $f: X \rightarrow X$ is a $C^{1+\alpha}$ uniformly hyperbolic skew product and the corresponding suspension flow $f_{t}: X^{r} \rightarrow$ X^{r} is a $C^{1+\alpha}$ uniformly hyperbolic skew product flow.

Next we recall the standard argument that joint nonintegrability implies (UNI) in the current situation. (Similar arguments are given for instance in [7, Section 3] and [21, Section 5.3].)

Joint nonintegrability is defined in terms of the temporal distortion function. To define this intrinsically (independently of the inducing scheme) we have to introduce the first return time $\tau: X \rightarrow \mathbb{R}^{+}$and the Poincaré map $g: X \rightarrow X$ given by

$$
\tau(x)=\inf \left\{t>0: \phi_{t}(x) \in X\right\}, \quad g(x)=\phi_{\tau(x)}(x)
$$

Note that τ is constant along stable leaves by the choice of X.
For $x_{1}, x_{2} \in X$, define the local product $\left[x_{1}, x_{2}\right]$ to be the unique intersection point of $W^{u}\left(x_{1}\right) \cap W^{s}\left(x_{2}\right)$. The temporal distortion function D is defined to be

$$
D\left(x_{1}, x_{2}\right)=\sum_{j=-\infty}^{\infty}\left\{\tau\left(g^{j} x_{1}\right)-\tau\left(g^{j}\left[x_{1}, x_{2}\right]\right)-\tau\left(g^{j}\left[x_{2}, x_{1}\right]\right)+\tau\left(g^{j} x_{2}\right)\right\}
$$

at points $x_{1}, x_{2} \in X$. The stable and unstable bundles are jointly integrable if and only if $D \equiv 0$.

Lemma 4.4 Joint nonintegrability of the stable and unstable bundles implies (UNI).
Proof For points $x, x^{\prime} \in X$ with $x^{\prime} \in W^{u}(x)$, we define

$$
D_{0}\left(x, x^{\prime}\right)=\sum_{j=1}^{\infty}\left\{\tau\left(g^{-j} x\right)-\tau\left(g^{-j} x^{\prime}\right)\right\}
$$

Since τ is constant along stable leaves,

$$
\begin{aligned}
D\left(x_{1}, x_{2}\right) & =\sum_{j=1}^{\infty}\left\{\tau\left(g^{-j} x_{1}\right)-\tau\left(g^{-j}\left[x_{1}, x_{2}\right]\right)-\tau\left(g^{-j}\left[x_{2}, x_{1}\right]\right)+\tau\left(g^{-j} x_{2}\right)\right\} \\
& =D_{0}\left(x_{1},\left[x_{1}, x_{2}\right]\right)+D_{0}\left(x_{2},\left[x_{2}, x_{1}\right]\right)
\end{aligned}
$$

Next, we find a more convenient expression for D_{0} in terms of r and f. Note that for any $x \in X$, there exists $N(x) \in \mathbb{Z}^{+}$(the number of returns to X up to time $r(x)$) such that

$$
r(x)=\sum_{\ell=0}^{N(x)-1} \tau\left(g^{\ell} x\right), \quad f(x)=g^{N(x)} x
$$

Corresponding to the partition \mathcal{P} of Y, we define the collection $\widetilde{\mathcal{P}}=\{\bar{U} \times \bar{Z}$: $U \in \mathcal{P}\}$ of closed subsets of X. Suppose that $x, x^{\prime} \in V_{0}, V_{0} \in \widetilde{\mathcal{P}}$, with $x^{\prime} \in W^{u}(x)$. The induced map $f: X \rightarrow X$ need not be invertible since it is not the first return to X. However, we may construct suitable inverse branches z_{j}, z_{j}^{\prime} of x, x^{\prime} as follows. Set $z_{0}=x, z_{0}^{\prime}=x^{\prime}$. Since f is transitive and continuous on closures of partition elements, there exists $V_{1} \in \widetilde{\mathcal{P}}$ and $z_{1} \in V_{1}$ such that $f z_{1}=z_{0}$. Since F is full-branch, $f\left(W^{u}\left(z_{1}\right) \cap V_{1}\right) \supset W^{u}\left(z_{0}\right)$, so there exists $z_{1}^{\prime} \in W^{u}\left(z_{1}\right) \cap V_{1}$ such that $f z_{1}^{\prime}=z_{0}^{\prime}$. Inductively, we obtain $V_{n} \in \widetilde{\mathcal{P}}$ and $z_{j}, z_{j}^{\prime} \in V_{n}$ with $z_{j}^{\prime} \in W^{u}\left(z_{j}\right)$ such that $f z_{j}=z_{j-1}$ and $f z_{j}^{\prime}=z_{j-1}^{\prime}$.

By construction, $z_{j-1}=f z_{j}=g^{N\left(z_{j}\right)} z_{j}$. Hence $z_{j}=g^{-\left(N\left(z_{1}\right)+\cdots+N\left(z_{j}\right)\right)} x$ and

$$
r\left(z_{j}\right)=\sum_{\ell=0}^{N\left(z_{j}\right)-1} \tau\left(g^{\ell} g^{-\left(N\left(z_{1}\right)+\cdots+N\left(z_{j}\right)\right)} x\right)=\sum_{\ell=N\left(z_{1}\right)+\cdots+N\left(z_{j-1}\right)+1}^{N\left(z_{1}\right)+\cdots+N\left(z_{j}\right)} \tau\left(g^{-\ell} x\right)
$$

A similar expression holds for $r\left(z_{j}^{\prime}\right)$. Hence

$$
D_{0}\left(x, x^{\prime}\right)=\sum_{j=1}^{\infty}\left\{r\left(z_{j}\right)-r\left(z_{j}^{\prime}\right)\right\} .
$$

We are now in a position to complete the proof of the lemma, showing that if (UNI) fails, then $D \equiv 0$. To do this, we make use of [8, Proposition 7.4] (specifically the equivalence of their conditions 1 and 3). Namely, the failure of the (UNI) condition in Section 3.1 means that we can write $r=\xi \circ F-\xi+\zeta$ on Y where $\xi: Y \rightarrow \mathbb{R}$ is continuous (even C^{1}) and ζ is constant on partition elements $U \in \mathcal{P}$. Extending ξ and ζ trivially to $X=Y \times Z$, we obtain that $r=\xi \circ f-\xi+\zeta$ on X where $\xi: X \rightarrow \mathbb{R}$ is continuous and constant on stable leaves, and ζ is constant on elements $V \in \widetilde{\mathcal{P}}$. In particular,

$$
\sum_{j=1}^{n} r\left(z_{j}\right)=\sum_{j=1}^{n}\left\{\xi\left(z_{j-1}-\xi\left(z_{j}\right)+\zeta\left(z_{j}\right)\right\}=\xi(x)-\xi\left(z_{n}\right)+\sum_{j=1}^{n} \zeta\left(z_{j}\right)\right.
$$

For $x, x^{\prime} \in V_{0}, V_{0} \in \widetilde{\mathcal{P}}$, with $x^{\prime} \in W^{u}(x)$, it follows that

$$
\sum_{j=1}^{n}\left\{r\left(z_{j}\right)-r\left(z_{j}^{\prime}\right)\right\}=\xi(x)-\xi\left(x^{\prime}\right)-\xi\left(z_{n}\right)+\xi\left(z_{n}^{\prime}\right)
$$

Taking the limit as $n \rightarrow \infty$, we obtain that $D_{0}\left(x, x^{\prime}\right)=\xi(x)-\xi\left(x^{\prime}\right)$. Hence $D\left(x_{1}, x_{2}\right)=$ $\xi\left(x_{1}\right)-\xi\left(\left[x_{1}, x_{2}\right]\right)-\xi\left(\left[x_{2}, x_{1}\right]\right)+\xi\left(x_{2}\right)$. Since ξ is constant on stable leaves, $D\left(x_{1}, x_{2}\right)=0$ as required.

Proof of Theorem 1.2 By Proposition 4.3 and Lemma 4.4, f_{t} is a $C^{1+\alpha}$ uniformly hyperbolic flow satisfying (UNI). The result for $C^{1+\alpha}$ observables follows from Theorem 3.11. As in [18], the result follows from a standard interpolation argument (see also [6, Corollary 2.3]).

Acknowledgements This research was supported in part by CMUP, which is financed by national funds through FCT - Fundação para a Ciência e a Tecnologia, I.P., under the project with reference UIDB/00144/2020. PV also acknowledges financial support from the project PTDC/MAT-PUR/4048/2021 and from the grant CEECIND/03721/2017 of the Stimulus of Scientific Employment, Individual Support 2017 Call, awarded by FCT. The authors are also grateful to Fundação Oriente for the financial support during the Pedro Nunes Meeting in Convento da Arrábida, where part of this work was done.

References

[1] J. Aaronson. An Introduction to Infinite Ergodic Theory. Math. Surveys and Monographs 50, Amer. Math. Soc., 1997.
[2] J. F. Alves, S. Luzzatto and V. Pinheiro. Markov structures and decay of correlations for non-uniformly expanding dynamical systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005) 817-839.
[3] D. V. Anosov. Geodesic flows on closed Riemannian manifolds of negative curvature. Trudy Mat. Inst. Steklov. 90 (1967) 209.
[4] V. Araújo, O. Butterley and P. Varandas. Open sets of Axiom A flows with exponentially mixing attractors. Proc. Amer. Math. Soc. 144 (2016) 2971-2984.
[5] V. Araújo, O. Butterley and P. Varandas. Erratum to "Open sets of Axiom A flows with exponentially mixing attractors". Proc. Amer. Math. Soc. 146 (2018) 5013-5014.
[6] V. Araújo and I. Melbourne. Exponential decay of correlations for nonuniformly hyperbolic flows with a $C^{1+\alpha}$ stable foliation, including the classical Lorenz attractor. Ann. Henri Poincaré 17 (2016) 2975-3004.
[7] V. Araújo, I. Melbourne and P. Varandas. Rapid mixing for the Lorenz attractor and statistical limit laws for their time-1 maps. Comm. Math. Phys. 340 (2015) 901-938.
[8] A. Avila, S. Gouëzel and J. Yoccoz. Exponential mixing for the Teichmüller flow. Publ. Math. Inst. Hautes Études Sci. 104 (2006) 143-211.
[9] V. Baladi and B. Vallée. Exponential decay of correlations for surface semi-flows without finite Markov partitions. Proc. Amer. Math. Soc. 133 (2005) 865-874.
[10] R. Bowen. Markov partitions for Axiom A diffeomorphisms. Amer. J. Math. 92 (1970) 725-747.
[11] R. Bowen. Symbolic dynamics for hyperbolic flows. Amer. J. Math. 95 (1973) 429-460.
[12] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math. 470, Springer, Berlin, 1975.
[13] R. Bowen. Markov partitions are not smooth. Proc. Amer. Math. Soc. 71 (1978) 130-132.
[14] R. Bowen and D. Ruelle. The ergodic theory of Axiom A flows. Invent. Math. 29 (1975) 181-202.
[15] O. Butterley and K. War. Open sets of exponentially mixing Anosov flows. J. Eur. Math. Soc. (JEMS) 22 (2020) 2253-2285.
[16] N. I. Chernov. Markov approximations and decay of correlations for Anosov flows. Ann. of Math. 147 (1998) 269-324.
[17] M. Denker and W. Philipp. Approximation by Brownian motion for Gibbs measures and flows under a function. Ergodic Theory Dynam. Systems 4 (1984) 541-552.
[18] D. Dolgopyat. On the decay of correlations in Anosov flows. Ann. of Math. 147 (1998) 357-390.
[19] M. J. Field, I. Melbourne and A. Török. Stability of mixing and rapid mixing for hyperbolic flows. Ann. of Math. 166 (2007) 269-291.
[20] C. Liverani. On contact Anosov flows. Ann. of Math. 159 (2004) 1275-1312.
[21] I. Melbourne. Superpolynomial and polynomial mixing for semiflows and flows. Nonlinearity 31 (2018) R268-R316.
[22] W. Parry and M. Pollicott. Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics. Astérique 187-188, Société Mathématique de France, Montrouge, 1990.
[23] J. F. Plante. Anosov flows. Amer. J. Math. 94 (1972) 729-754.
[24] M. Pollicott. A complex Ruelle-Perron-Frobenius theorem and two counterexamples. Ergodic Theory Dynam. Systems 4 (1984) 135-146.
[25] C. Pugh and M. Shub. Ergodic elements of ergodic actions. Compositio Math. 23 (1971) 115-122.
[26] M. Ratner. Markov partitions for Anosov flows on n-dimensional manifolds. Israel J. Math. 15 (1973) 92-114.
[27] M. Ratner. The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature. Israel J. Math. 16 (1973) 181-197.
[28] D. Ruelle. Statistical mechanics of a one-dimensional lattice gas. Comm. Math. Phys. 9 (1968) 267-278.
[29] D. Ruelle. Thermodynamic Formalism. Encyclopedia of Math. and its Applications 5, Addison Wesley, Massachusetts, 1978.
[30] D. Ruelle. Flows which do not exponentially mix. C. R. Acad. Sci. Paris 296 (1983) 191-194.
[31] Y. G. Sinaĭ. Gibbs measures in ergodic theory. Russ. Math. Surv. 27 (1972) 21-70.
[32] Ja. G. Sină̆. Construction of Markov partitionings. Funkcional. Anal. i Priložen. 2 (1968) 70-80.
[33] S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 (1967) 747-817.
[34] L. Stoyanov. Spectra of Ruelle transfer operators for axiom A flows. Nonlinearity 24 (2011) 1089-1120.
[35] M. Tsujii and Z. Zhang. Smooth mixing Anosov flows in dimension three are exponentially mixing. Ann. of Math. (2) 197 (2023) 65-158.
[36] L.-S. Young. Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. 147 (1998) 585-650.

[^0]: *Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
 ${ }^{\dagger}$ CMUP and Departamento de Matemática, Universidade Federal da Bahia, 40170-110 Salvador, Brazil

[^1]: ${ }^{1} C^{1+}$ means C^{r} for some $r>1$.

[^2]: ${ }^{2}$ More generally, we could consider a John domain as in [8] but the current setting suffices for our purposes.

