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Abstract. We prove polynomial decay of correlations for geodesic flows on a class of
nonpositively curved surfaces where zero curvature only occurs along one closed geodesic.
We also prove that various statistical limit laws, including the central limit theorem, are
satisfied by this class of geodesic flows.
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1. Introduction

The goal of this work is to provide examples of geodesic flows on nonpositively curved
manifolds with polynomial decay of correlations.

Theorem 1.1. Let r ∈ [4,∞), and let S be a closed Riemannian surface of nonpositive
curvature obtained by isometrically gluing two negatively curved surfaces with boundaries to
the boundaries of the surface of revolution with profile 1 + |s|r, |s| ≤ 1. Let M = T 1S and
a = r+2

r−2 ∈ (1, 3]. Then the geodesic flow gt : M → M has polynomial decay of correlations
with respect to the normalized Riemannian volume µ: for all ε > 0 and all sufficiently
smooth observables φ, ψ : M → R, there is a constant C(φ, ψ) such that∣∣∣∣∫

M
φ · (ψ ◦ gt) dµ−

∫
M
φdµ

∫
M
ψ dµ

∣∣∣∣ ≤ C(φ, ψ)
1

ta−ε
for all t > 0.

The precise meaning of “sufficiently smooth” is explained in Section 7. In addition, we
state and prove statistical limit laws such as the central limit theorem (CLT) for Hölder
observables φ : M → R.

Figure 1 depicts the surfaces S considered in Theorem 1.1: the region between two curves
α and β is a surface of revolution with profile 1 + |s|r, |s| ≤ 1, thus the curve γ with s = 0
is a closed geodesic with zero curvature; outside this region, S has negative curvature. We
call γ the degenerate closed geodesic.

γα β

S

Figure 1. Surfaces with degenerate closed geodesic γ considered in Theo-
rem 1.1.

Remark 1.2. We expect that the mixing rate in Theorem 1.1 is almost sharp. Indeed, as
part of the proof of Theorem 1.1, we construct a piecewise smooth Poincaré map g : Σ→ Σ
with piecewise smooth first hit time that is bounded above and below (away from zero),
and g has the sharp polynomial mixing rate n−a.

More precisely, let µΣ denote the corresponding Liouville probability measure on Σ. In
Section 7, we apply [You99] to show that for all Hölder observables φ, ψ : Σ → R, there is



POLYNOMIAL DECAY OF CORRELATIONS IN NONPOSITIVE CURVATURE 3

a constant C(φ, ψ) such that for all integers n ≥ 2,∣∣∣∣∫
Σ
φ · (ψ ◦ gn) dµΣ −

∫
Σ
φdµΣ

∫
Σ
ψ dµΣ

∣∣∣∣ ≤ C(φ, ψ)
(log n)1+a

na
·

Moreover, by [BMT21], for all Hölder observables φ, ψ : Σ → R with nonzero mean and
support bounded away from T 1γ, there is a constant c(φ, ψ) such that for all integers n ≥ 2,

(1.1)

∣∣∣∣∫
Σ
φ · (ψ ◦ gn) dµΣ −

∫
Σ
φdµΣ

∫
Σ
ψ dµΣ

∣∣∣∣ ≥ c(φ, ψ)
1

(log n)na
·

Obtaining rates for the geodesic flow gt is more subtle due to the neutral flow direction.
We obtain the upper bound in Theorem 1.1 by applying the recent work of [BBM19]. Since
the first hit time is bounded away from zero, there is no reason to expect the flow gt to decay
faster than g; a precise statement of the form (1.1) for the flow gt is the subject of work in
progress [BMT]. (We note however that the bounds obtained in Lemmas 4.4 and 4.5 below
combined with the arguments of [BMMW17b] show that gt is certainly not exponentially
mixing.)

Remark 1.3. We believe that the optimal mixing rate for gt is t−a (similarly n−a for g).
Indeed, we expect that the arguments in [CZ08] can be used to remove the multiplicative
factor (log n)1+a in Remark 1.2 and the same argument would allow us to take ε = 0 in
Theorem 1.1. However, to focus on the main ideas introduced in this paper, we do not
pursue such an improvement here.

In general, the dynamical and statistical properties of geodesic flows in closed Riemannian
manifolds is a fascinating topic whose origin goes back to Artin, Hadamard, Hedlund,
Hopf, Klein, Poincaré, among others. Indeed, geodesic flows on manifolds with negative
or nonpositive sectional curvature were the motivation of various breakthroughs in ergodic
theory. One of them was given by Hopf: the nowadays called Hopf argument was used to
prove that geodesic flows on negatively curved compact surfaces are ergodic with respect
to their Liouville volume measure [Hop39]. Anosov extended Hopf’s argument to prove
ergodicity of geodesic flows in negative curvature to arbitrary dimensions [Ano69].

Moreover, geodesic flows in manifolds with negative sectional curvature are Bernoulli
[OW73, Rat74], which is the ultimate chaotic property from a measure-theoretic point of
view. After this was established, efforts were made to understand finer statistical properties
such as decay of correlations. Among the developments, we mention the work of Chernov
[Che98], Dolgopyat [Dol98] and Liverani [Liv04] on the exponential decay of correlations for
contact Anosov flows (and in particular geodesic flows on compact manifolds with negative
curvature), and the work of Burns et al. [BMMW17b, BMMW17a] on the rates of mixing
of the Weil-Petersson geodesic flows on moduli spaces of Riemann surfaces. We mention
that, beside its intrinsic interest, exponential mixing for geodesic (and frame) flows has
applications to other fields such as the geometry of lattices [EM93], number theory [KM99],
and the topology of 3–manifolds [KM12].

While geodesic flows in negative curvature are the prototypical examples of uniformly
hyperbolic flows, geodesic flows in nonpositive curvature are the prototypical examples of
nonuniformly hyperbolic flows, and are much harder to study. For instance, the ergodic-
ity of the Liouville measure is still an open problem. Pesin developed a global theory for
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nonuniformly hyperbolic systems, nowadays called Pesin theory, and used it to derive the
ergodicity of the Liouville measure in various contexts [Pes77a, Pes77b], see also the discus-
sion in [Bal95, p. 5]. In particular, the geodesic flows considered in Theorem 1.1 are ergodic
for the Liouville measure. There has been recent progress on the measure-theoretic prop-
erties of these flows, including the uniqueness of the measure of maximal entropy [Kni98],
the uniqueness of other classes of equilibrium states [BCFT18], and the Bernoulli property
[LLS16], among others. Previously, nothing was known about decay of correlations or the
CLT for such flows, and this paper gives the first contribution in this direction. (Although
this paper gives the first “classical” CLT, an asymptotic version of the CLT for measures
converging to the measure of maximal entropy was recently obtained by [TW21].)

To prove Theorem 1.1 we use an axiomatic approach, nowadays called Chernov axioms,
first developed by Chernov to prove exponential decay of correlations for dispersing billiard
maps [Che99a]. We actually follow a simplification of this work given by Chernov and
Zhang [CZ05a]. We apply these works to a uniformly hyperbolic map with singularities f ,
equal to the return map of a Poincaré section that does not intersect the degenerate closed
geodesic. Then the method of Markarian [Mar04, CZ05a, BMT21] enables us to establish
polynomial decay of correlations for h and gt.

Remark 1.4. When establishing mixing rates for billiards, the main step is to verify com-
plexity bounds, due to the fact that the remaining Chernov axioms had already been verified
for many classes of examples in the previous twenty years starting with [BSC91], as dis-
cussed in [CZ05a, Section 4]. However, this is not the case for geodesic flows in nonpositive
curvature, so the current paper aims to lay the groundwork for verifying all of the Chernov
axioms for general classes of geodesic flows, in addition to treating the specific example in
Theorem 1.1.

One of the Chernov axioms is that invariant manifolds have uniformly bounded curvature.
This is a delicate point for the surfaces we consider. For instance, Ballmann, Brin and Burns
showed that in a surface of revolution with profile 1 + s4 (i.e. r = 4 in Theorem 1.1) the
invariant manifolds of the degenerate closed geodesic are not C2, hence the curvature is
not even defined [BBB87]. To avoid this, we verify that [Che99a, CZ05a] works under the
weaker assumption that the invariant manifolds have uniformly bounded C1+Lip norms, and
we exploit the fact that this latter property is satisfied in the class of surfaces we consider,
by a result of Gerber and Wilkinson [GW99], see Theorem 2.6.

Some of the Chernov axioms are related to hyperbolicity properties of the uniformly
hyperbolic map f mentioned above. In negative curvature, these properties are usually
obtained by estimating solutions of the Riccati equation. Unfortunately, the presence of
zero curvature weakens such estimates, and we were not able to use them to establish the
required axioms. Instead, we follow a different approach and use a system of coordinates in
the unit tangent bundle of the surface of revolution, called Clairaut coordinates. In these
coordinates, estimates for f are almost sharp.

In addition, the Poincaré section has to satisfy some geometrical and dynamical prop-
erties. One of them is the absence of triple intersections for a sufficiently large number
of pre-iterates under f of a finite family of compact curves. This task would be a simple
application of perturbative methods if these pre-iterates remained compact. However, f
has unbounded derivative, and the pre-images of some compact curves have infinite length.
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This phenomenon is related to the homoclinic points of the degenerate closed geodesic, and
a thorough analysis of the dynamics of f is required to implement the perturbative methods
successfully.

Remark 1.5. Chernov and Zhang considered an analogous class of dispersing billiard
maps [CZ05b] for which the obstacles are convex with nonvanishing curvature except at
two flat points where the obstacles have profile ±(1 + |s|r), r > 2. They obtained the
same upper bound (log n)a+1n−a as in Remark 1.2 and the lower bound (log n)−1n−a was
proved in [BMT21]. The associated semiflow has the same polynomial decay of correlations
[Mel07, Mel18], but the analogue of Theorem 1.1 for the billiard flow remains unproved
(this is the final open question in [Mel18, Section 9]).

Contrary to [CZ05b], we require r ≥ 4 rather than just r > 2 because this provides
the usual C4 regularity required to apply several tools from the theory of geodesic flows
described in Section 2 (from the properties of elementary ordinary differential equations like
the Jacobi and Riccati equations to more recent results such as Theorem 2.6).

The paper is organized as follows. In Section 2 we review known facts about the geometry
and dynamics of geodesic flows on surfaces, with special attention to the class of surfaces
considered in Theorem 1.1. In particular, we state the main results of Gerber and Wilkinson
[GW99] that we will use. Section 3 presents the axiomatic approach of [Che99a, CZ05a], and
includes the justification that uniform bounds on the C1+Lip norms of invariant manifolds
are enough, see Remark 3.2. In Section 4 we make a systematic study of the dynamics of
the geodesic flow near the degenerate closed geodesic, which is related to explosion of the
derivative of f . Here we make substantial use of the Clairaut coordinates. In Section 5
we construct the Poincaré section. We also prove that the roof function of the constructed
Poincaré section has polynomial tails (Lemma 5.4), and prove some hyperbolicity estimates
for f , see Section 5.6. Using these results, we prove in Section 6 that f indeed satisfies
the Chernov axioms. Finally, we prove Theorem 1.1 and various statistical limit laws in
Section 7.

2. Surfaces with nonpositive curvature

In this section, we recall some known facts on differential geometry, most specifically on
geodesic flows in nonpositively curved surfaces and surfaces of revolution. We also give
a precise description of the class of surfaces we consider in this article, and describe the
properties of these surfaces that will be used in the sequel.

2.1. Geodesic flows. Let S be a closed Riemannian surface. Let M = T 1S be its unit
tangent bundle, which is a closed three dimensional Riemannian manifold. There is a
natural metric on M , called the Sasaki metric, which is the product of horizontal and
vertical vectors, see e.g. [dC92, Chapter 3, Exercise 2]. We write ‖ · ‖Sas for the norm
induced by the Sasaki metric. The volume form on S induces a smooth probability measure
µ on M .

Geodesic flow {gt}: The geodesic flow on S is the flow {gt}t∈R : M → M defined by
gt(x) = γ′x(t), where γx : R→ S is the unique geodesic such that γ′x(0) = x. For simplicity,
we denote the geodesic flow by gt. The probability measure µ is invariant under gt.
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For p ∈ S, let K(p) be the Riemannian curvature at p. We assume that S has nonpositive
Riemannian curvature: K(p) ≤ 0 for all p ∈ S. The dynamical properties of gt are intimately
related to the curvature of S.

Degenerate and Regular sets: The degenerate set of gt is defined by

Deg = {x ∈M : K(γx(t)) = 0 for all t ∈ R},
and the regular set of gt is defined by

Reg = M \Deg = {x ∈M : K(γx(t)) < 0 for some t ∈ R}.

Clearly, Deg and Reg form a partition of M , with Deg closed and Reg open.

Remark 2.1. The classical literature uses the terminology “singular set” instead of “de-
generate set”, but here we reserve the term “singular” for the dynamical setting of the
Chernov axioms.

Theorem 2.2 (Pesin [Pes77b]). If µ[Deg] = 0, then the flow (gt, µ) is ergodic.

See also the discussion in [Bal95, p. 5].

The dynamical properties of gt are usually studied via Jacobi fields.

Jacobi field: A vector field J : t 7→ J(t) ∈ Tγ(t)S along a geodesic γ is called a Jacobi
field if it satisfies the Jacobi equation

J ′′(t) +K(γ(t))J(t) = 0.

If J(t), J ′(t) are perpendicular to γ′(t) for some (and hence all) t, then J is called a perpen-
dicular Jacobi field.

For every x ∈M there is an isomorphism

TxM ↔ {(J(0), J ′(0)) : J is a Jacobi field along γx with J ′(0) ⊥ γ′x(0)}.
Under this identification, the Sasaki metric is equal to ‖(J, J ′)‖2Sas = ‖J‖2+‖J ′‖2. Addition-
ally, we have dgt(J(0), J ′(0)) = (J(t), J ′(t)), and this is one of the reasons why Jacobi fields
provide dynamical information of gt. Under our curvature assumptions, we can characterize
stable and unstable subspaces.

Stable and unstable Jacobi fields: A Jacobi field J is called stable if ‖J(t)‖ is uni-
formly bounded for all t ≥ 0, and unstable if ‖J(t)‖ is uniformly bounded for all t ≤ 0.

Stable and unstable subspaces: The stable subspace of x ∈M is

Êsx = {(J(0), J ′(0)) : J is a stable perpendicular Jacobi field along γx},
and the unstable subspace of x ∈M is

Êux = {(J(0), J ′(0)) : J is an unstable perpendicular Jacobi field along γx}.

Remark 2.3. We reserve the notation E
s/u
x for the stronger notion of stable/unstable

subspace in the sense of hyperbolic dynamics, as described in Section 5.

Let Zx denote the one-dimensional subspace of TxM tangent to the geodesic flow. The
following are known facts of these subspaces, see e.g. [Ebe01].
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Lemma 2.4. The families {Êsx}, {Êux} satisfy the following properties:

(1) Invariance: {Êsx}, {Êux} are dgt–invariant for all t ∈ R.

(2) Dimension: Êsx, Ê
u
x have dimension one and are orthogonal to Zx.

(3) Continuity: The maps x 7→ Êsx, Ê
u
x are continuous.

(4) Relation with Deg,Reg: Êsx = Êux if and only if x ∈ Deg, hence Êsx⊕Zx⊕Êux = TxM
if and only if x ∈ Reg.

Next, we consider the invariant manifolds of gt. We first define the invariant manifolds for

the geodesic flow g̃t on the universal cover S̃ of S. For that, we consider Busemann functions

and horospheres. Our discussion follows [Ebe01, Section IV.A]. For each v ∈ T 1S̃, let γ̃v
be the unique geodesic of S̃ with γ̃′v(0) = v. Given t ∈ R, define the function Bv,t : S̃ → R
by Bv,t(x) = d(x, γ̃v(t))− t. (Here, d is the unique metric on S̃ making the covering map a

local isometry.) The Busemann function of v is the limit function Bv : S̃ → R defined by
Bv = lim

t→+∞
Bv,t. Since S has nonpositive curvature, it follows from Eberlein that each Bv

is C2 [Ebe01, Section IV.A], see also [HIH77, Prop. 3.1].

Horospheres: The stable horosphere at v ∈ T 1S̃ is the set Hs(v) ⊂ S̃ defined as Hs(v) =

B−1
v (0). The unstable horosphere at v ∈ T 1S̃ is the set Hu(v) ⊂ S̃ defined by Hu(v) =

(B−v)
−1(0).

Each Hs/u(v) is a C2 curve of S̃, and v 7→ Hs/u(v) is continuous, see e.g. [Bal95, p. 25].
These curves define invariant foliations for g̃t.

Invariant manifolds for g̃t: The stable manifold for g̃t at v ∈ T 1S̃ is the graph over
Hs(v) defined by

W̃ s
v =

{
w ∈ T 1S̃ :

w is perpendicular to and has basepoint at
Hs(v), pointing in the same direction of v

}
.

The unstable manifold for g̃t at v ∈ T 1S̃ is defined analogously.

Since Hs/u(v) is C2, its normal subbundle is C1, i.e. each leaf W̃
s/u
v is C1.

Invariant manifolds for gt: The stable/unstable manifolds of gt at x ∈ M are the

projections to M of the stable/unstable manifolds of g̃t at some (every) v ∈ T 1S̃ that

projects to x. We denote them by Ŵ
s/u
x .

By the above discussion the curves Ŵ
s/u
x are C1 for all x ∈M . Under additional condi-

tions, Gerber & Wilkinson proved a stronger regularity [GW99] and also a property about

the tangent distributions Ês/u, see Theorem 2.6 below.
Next, we discuss the link between Jacobi fields and horospheres. Fix x ∈ M , and let

J−(t) be a stable perpendicular Jacobi field along γx. If E(t) is a unitary parallel vector
field orthogonal to γx, then J−(t) = j−(t)E(t) where j−(t) = ‖J−(t)‖ satisfies the scalar
Jacobi equation

j′′(t) +K(γx(t))j(t) = 0.

The logarithmic derivative ux,−(t) =
j′−(t)

j−(t) = [log j−(t)]′ satisfies the Riccati equation

u′(t) + u(t)2 +K(γx(t)) = 0.
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Define u− : M → R by u−(x) = ux,−(0). It is known that u−(x) is the geodesic curvature of

the curve Hs(v) at the basepoint of v for some (every) v ∈ T 1S̃ that projects to x. Similarly,
for each x ∈M define a function ux,+; then u+ : M → R defined by u+(x) = ux,+(0) is the

geodesic curvature of Hu(v) at the basepoint of v for some (every) v ∈ T 1S̃ that projects
to x. The following properties of u± will be essential to us.

Proposition 2.5. The functions u± are continuous, u− ≤ 0 ≤ u+ and u±(x) = 0 if and
only if x ∈ Deg.

The continuity of u± follows from the regularity of the Busemann functions mentioned
above. The functions u± also provide the growth rate of the derivative of gt, as follows. Fix
x ∈M . For an unstable perpendicular Jacobi field J+(t) along γx, we have

j+(t) = j+(0) exp

[∫ t

0
u+(gsx)ds

]
j′+(t) = j+(0) exp

[∫ t

0
u+(gsx)ds

]
u+(gtx)

and so

‖dgt(J+(0), J ′+(0))‖Sas

‖(J+(0), J ′+(0))‖Sas
=
‖(J+(t), J ′+(t))‖Sas

‖(J+(0), J ′+(0))‖Sas

=

√
1 + u+(gtx)2

1 + u+(x)2
exp

[∫ t

0
u+(gsx)ds

]
.

By Proposition 2.5, if the orbit segment g[0,t]x is far from Deg, then Êux is indeed an
expanding direction. A similar calculation holds for stable perpendicular Jacobi fields. We
actually work with a variant of the Sasaki metric, as in [KH95, §17.6]. Let δ > 0.

δ–Sasaki metric: The δ–Sasaki metric is the metric ‖ · ‖δ−Sas satisfying the equality

‖(J, J ′)‖2δ−Sas = ‖J‖2 + δ‖J ′‖2

for all Jacobi field J .

The Sasaki metric is the 1–Sasaki metric. In our calculations, we will fix a δ–Sasaki
metric for δ small enough and denote it simply by ‖ · ‖. Hence

‖dgt(J+(0), J ′+(0))‖
‖(J+(0), J ′+(0))‖

=

√
1 + δu+(gtx)2

1 + δu+(x)2
exp

[∫ t

0
u+(gsx)ds

]
,

thus by the continuity of u+ we get that

(2.1) C−1
δ exp

[∫ t

0
u+(gsx)ds

]
≤
‖dgt(J+(0), J ′+(0))‖
‖(J+(0), J ′+(0))‖

≤ Cδ exp

[∫ t

0
u+(gsx)ds

]
where lim

δ→0
Cδ = 1. Similar considerations apply to J−.
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2.2. Surfaces of revolution. Let I ⊂ R be a compact interval, and let ξ : I → R be a
positive C4 function. The surface of revolution defined by ξ around the x axis is the surface
S with global chart Ξ : I × [0, 2π] → R3 given by Ξ(s, θ) = (s, ξ(s) cos θ, ξ(s) sin θ). We
collect some known facts about these surfaces, see [dC76].

Curvature: The curvature at p = Ξ(s, θ) is equal to

K(p) = − ξ′′(s)

ξ(s)[1 + (ξ′(s))2]2
·

See [dC76, Example 4, p. 161].

Geodesics on surfaces of revolution have a simple description. They satisfy the so-called
Clairaut relation, which allows to reduce the second order ordinary differential equation
(ODE) defining the geodesic to a first order ODE. Let γ(t) = Ξ(s(t), θ(t)) be a geodesic,
and let ψ(t) ∈ S1 be the angle that the circle s = s(t), more precisely its image under Ξ,
makes with γ at γ(t), see Figure 2.

Clairaut relation: The value

(2.2) c = ξ(s(t)) cosψ(t) = ξ(s(t))2θ′(t)

is constant along γ. We call c the Clairaut constant of γ and of all of its tangent vectors.

γ

ψ(t)

x

y

z

s = s(t)
γ(t)

Figure 2. Clairaut relation: c = ξ(s(t)) cosψ(t) = ξ(s(t))2θ′(t) is constant
along γ.

Equation of geodesics: If γ(t) = Ξ(s(t), θ(t)) is a geodesic with Clairaut constant c,
then s(t) satisfies

(2.3)
[
1 + ξ′(s)2

]
(s′)2 +

c2

ξ(s)2
= 1.

See [dC76, Example 5, p. 255] for the proof.

For a fixed s0 ∈ R, the curve Ξ(s0, θ) is called a meridian. The meridian Ξ(s0, θ) is a
geodesic if and only if ξ′(s0) = 0 (see [dC76, p. 256]).
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Observe that S is diffeomorphic to I×S1 and M is diffeomorphic to S×S1 ∼= I×S1×S1,
where (p, ψ) ∈ S × S1 is identified to the unit tangent vector with basepoint p that makes
an angle ψ with the meridian passing though p. We can use this identification to define
another metric on M .

Clairaut coordinates and Clairaut metric: The Clairaut coordinates on M are
(s, θ, ψ) ∈ I × S1× S1, and the Clairaut metric on M is the Riemannian metric ‖ · ‖C on M
given by the canonical product on I × S1 × S1.

The Clairaut metric induces a distance, which we call the Clairaut distance and denote
by dC. Above, the canonical metrics are the induced metrics of I ⊂ R and S1 ⊂ R2. Since
I is compact, the metrics ‖ · ‖δ−Sas and ‖ · ‖C are equivalent.

The Clairaut relation (2.2) leads us to the following definition.

Clairaut function: The Clairaut function is the function c : M → R defined by
c(s, θ, ψ) = ξ(s) cosψ.

2.3. Surfaces with degenerate closed geodesic. We now define a class of surfaces that
exhibit two special features: the only region of zero curvature is a closed geodesic, and on
a neighborhood of this geodesic the surface is a particular surface of revolution.

Surface with degenerate closed geodesic: A surface of nonpositive curvature S is
a surface with degenerate closed geodesic γ if there are r ∈ [4,∞) and ε0 > 0 such that:

◦ S is Cr with everywhere negative curvature except at a closed geodesic γ.
◦ There are two closed curves α, β defining a set N ⊂ S that contains γ such that N

is a surface of revolution with ξ(s) = 1 + |s|r for |s| ≤ ε0. Moreover, α = Ξ(−ε0, θ),
γ = Ξ(0, θ), β = Ξ(ε0, θ) are meridians. We call N the neck, see Figure 3.

γα β

Ξ(ε0, θ)

N

Ξ(−ε0, θ)

Ξ(0, θ)

S

Figure 3. An example of a surface S with degenerate closed geodesic.

Such surfaces indeed exist, and can be obtained by interpolating the neck with a hyper-
bolic surface (K ≡ −1) with one cusp on each side. Since near the cusp a hyperbolic surface
is a surface of revolution, it is enough to interpolate its profile function with the function
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ξ, in a way that the resulting function is strictly convex for s 6= 0. This can be made as in
[Don88, Appendix A.2], using a partition of unity.

In the sequel, we fix a surface S with degenerate closed geodesic γ. Following the notation
of Section 2.1, let M = T 1S, gt : M → M the geodesic flow on S, and µ the smooth
probability measure on M induced by the Riemannian metric. Recall that the invariant

manifolds Ŵ
s/u
x are C1 for all x ∈ M . Gerber & Wilkinson proved a stronger regularity

[GW99] and also a property about the tangent distributions Ês/u.

Theorem 2.6 (Gerber & Wilkinson [GW99]). Let S be a surface with degenerate closed

geodesic. Then the curves Ŵ
s/u
x are uniformly C1+Lip, and x 7→ Ê

s/u
x is Hölder continuous.

In other words, the C1+Lip norms of all Ŵ
s/u
x , x ∈M , are bounded by a uniform constant,

and the tangent direction Ê
s/u
x is Hölder continuous as a function of x ∈ M . Actually,

Gerber & Wilkinson established Theorem 2.6 in a context that does not cover surfaces with
degenerate closed geodesic with non-integer r, but their proof can be easily adapted to prove
the above theorem. In the Appendix, we show how to make such changes.

In the Clairaut coordinates, let γ0 = {0} × S1 × {0} and γπ = {0} × S1 × {π}. We
have Deg = γ0 ∪ γπ and so Theorem 2.2 implies that the flow gt is ergodic. Actually, gt is
Bernoulli; see [Pes77a] and [BP07, Thm. 12.2.13] for the classical proofs, and [LLS16] for a
proof using symbolic dynamics.

Next, we use the Clairaut function to distinguish some vectors of M that will play a key
role in the next sections. The only meridian that is a geodesic is γ = Ξ(0, θ). In M , this
corresponds to the two geodesics γ0 and γπ. The Clairaut constants are c = 1 and c = −1
respectively. Let x = (s, θ, ψ) ∈ M with s 6= 0 such that g[0,ε](x) ⊂ [−|s|, |s|] × S1 × S1 for
some ε > 0, i.e. the geodesic starting at x points towards γ.

Asymptotic, bouncing, crossing vectors and geodesics: A vector x ∈M as above
is called:

◦ Asymptotic if c(x) = ±1: the geodesic path g[0,∞)(x) is asymptotic to γ.
◦ Bouncing if |c(x)| > 1: there is t > 0 such that ψ(t) = 0 or π, i.e. the geodesic path
g[0,t](x) spirals towards γ, gt(x) is tangent to a meridian and after that the geodesic path
spirals away from γ. In such cases, the geodesic does not reach γ.
◦ Crossing if |c(x)| < 1: there is t > 0 such that s(t) = 0, i.e. the geodesic path g[0,t](x)

spirals towards γ, gt(x) crosses γ and after that the geodesic path spirals away from γ.

The corresponding geodesic with initial condition x is called asymptotic, bouncing, crossing
respectively.

See Figure 4. The statements above are easily verified using the Clairaut relation (2.2).
For instance, if c(x) > 1 then s(t) never vanishes during the neck transition and gt(x) is
bounded away from γ. It follows that ψ(t0) = 0 for some t0 > 0, and s(t0) is uniquely
determined by the equation ξ(s(t0)) = c. In particular, the value of t0 is unique and we
obtain bouncing as claimed.

We end this section making a comment on the number of closed geodesics. Letting P (T )
denote the number of closed orbits of length ≤ T , Knieper [Kni83] proved that

(2.4) lim
T→∞

1
T logP (T ) = htop(g1).
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(a) (b) (c)

Figure 4. (a) Asymptotic vector. (b) Bouncing vector. (c) Crossing vector.

3. Chernov axioms for exponential mixing

Young introduced a powerful scheme [You98], nowadays called Young towers, that implies
exponential mixing for a vast class of dynamical systems, especially finite horizon dispersing
billiards. Based on some previous work [Che99b] and on Young’s novel method, Chernov
introduced a set of axioms that implies exponential mixing, and applied it to numerous
further classes of planar dispersing billiards [Che99a]. These axioms are nowadays called
Chernov axioms. Using the ideas of Young and Chernov, many authors proved exponential
and polynomial decay of correlations for other classes of billiards [You99, Mar04, CZ05a,
CZ05b, BT08].

In this paper, we only require the existence of a Young tower together with its conse-
quences; hence we omit the precise definition of Young tower and instead refer the reader
to [You98].

We pay special attention to [CZ05a], where the presentation of Chernov axioms is more
suitable to our context, as we now explain. Firstly, they focus on two-dimensional maps.
Secondly, they give a simpler criterion on the axiom that is usually hardest to prove, com-
monly called growth of unstable manifolds. The simpler criterion assumes, additionally to
the low dimension of the phase space, four facts:

◦ Alignment: S + is tangent to stable cones and S − is tangent to unstable cones. Here,
S ± are the singular sets, see Section 3.1 below.
◦ Structure of the singular set: control on the rate of accumulation of singularity curves.
◦ Growth bound: control on the inverses of least expansions of smooth pieces of unstable

manifolds.
◦ Complexity bound: control on the growth rate of self-intersections of primary singulari-

ties.

These conditions are stated in axioms (A3) and (A8) below. Hence, in this work the
Chernov axioms consist of eight conditions for an abstract smooth hyperbolic map with
singularities to have exponential decay of correlations. Except for axioms (A3) and (A8),
our presentation is based on [BT08, Appendix A], with one crucial difference in axiom (A5):
while the Chernov axioms require the invariant manifolds to be C2 curves with uniformly
bounded curvature, we only require them to be C1+Lip with uniformly bounded C1+Lip

norm.
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3.1. Chernov axioms. Here, we state the axioms (A1) to (A8).

(A1) Dynamical system. We consider X0 an open subset of a C2 Riemannian surface

X̂ such that its closure X is compact. We let S +,S − be closed subsets of X, and let
f : X0\S + → X0\S − be a C2 diffeomorphism. We call S + the singular set of f , and S −

the singular set of f−1. (Derivatives are allowed to blow up at the boundary of X0 and at
the singular sets.)

For n ≥ 1, define

Sn = S + ∪ f−1(S +) ∪ · · · ∪ f−n+1(S +)

S−n = S − ∪ f(S −) ∪ · · · ∪ fn−1(S −).

Then Sn is the singular set of fn, and S−n is the singular set of f−n. Observe that
S1 = S + and S−1 = S −.

(A2) Uniform hyperbolicity. There are two families of cones {Cux}, {Csx} in the tangent

planes TxX̂, x ∈ X, called unstable and stable cones, and a constant Λ > 1 such that:

(A2.1) Continuity: {Cux}, {Csx} are continuous on X.
(A2.2) Full hyperbolicity: The axes of {Cux}, {Csx} are one-dimensional.
(A2.3) Transversality: min

x∈X
∠(Cux , C

s
x) > 0.

(A2.4) Invariance: Df(Cux ) ⊂ Cufx and Df(Csx) ⊃ Csfx whenever Df exists.

(A2.5) Uniform hyperbolicity: For all vu ∈ Cux and vs ∈ Csx,

‖Df(vu)‖ ≥ Λ‖vu‖ and ‖Df−1(vs)‖ ≥ Λ‖vs‖.

Let x ∈ X0. For x 6∈
⋃
n≥0 S−n let Eux =

⋂
n≥0Df

n(Cuf−nx), and for x 6∈
⋃
n≥0 Sn let

Esx =
⋂
n≥0Df

−n(Csfnx). These are called the unstable and stable subspaces, respectively.

Axiom (A2) implies that every Eux , E
s
x is one-dimensional. Moreover, if x 6∈

⋃
n∈Z Sn then

Eux ⊕Esx = TxX̂, with Eux being spanned by vectors with positive Lyapunov exponents and
Esx spanned by vectors with negative Lyapunov exponents.

For the remaining axioms, we need to introduce some terminology. Let ρ,m be respec-

tively the Riemannian metric and Lebesgue measure on X̂. Given a curve W ⊂ X̂, let
ρW ,mW be respectively the Riemannian metric and Lebesgue measure on W induced by
ρ,m.

Local unstable manifold (LUM): A local unstable manifold (LUM) is a curve W ⊂ X
such that:

(i) f−n is well-defined and smooth on W for all n ≥ 0.
(ii) ρ(f−nx, f−ny)→ 0 exponentially quickly as n→∞ for all x, y ∈W .

We usually write W u
x to represent a LUM containing x. The tangent space of W u

x at
x is Eux . Similarly, we define the notion of local stable manifold (LSM) and write W s

x to
represent a LSM containing x.

Now let W1,W2 be sufficiently small and close enough LUM’s such that small LSM’s
intersect each of W1,W2 at most once. let W ′1 = {x ∈ W1 : W s

x ∩ W2 6= ∅}, and let
H : W ′1 → W2 be the holonomy map obtained by sliding along local stable manifolds, i.e.



14 YURI LIMA, CARLOS MATHEUS, AND IAN MELBOURNE

H(x) is the unique intersection between W s
x and W2. Also, let Λ(x) = |det(Df �Eux )| be

the Jacobian of f in the direction of Eux , which is the factor of expansion on W u
x at x.1

(A3) Alignment. The angle between S + and LUM’s is bounded away from zero; the
angle between S − and LSM’s is bounded away from zero.

(A4) SRB measure. The map f preserves an ergodic volume measure µ such that a.e.
x ∈ X0 has a LUM W u

x and the conditional measure on W u
x induced by µ is absolutely

continuous with respect to mWu
x

. Furthermore, fn is ergodic for all n ≥ 1.

(A5) Uniformly bounded C1+Lip norms. The leaves W
u/s
x are uniformly C1+Lip.

In other words, there exists a universal constant K > 0 such that if W
u/s
x is an LUM

or LSM then the graph representing W
u/s
x locally at x has C1+Lip norm bounded by K.

Axiom (A5) is weaker than those required in the literature, and is discussed further at the
end of this section, see Remark 3.2.

(A6) Uniform distortion bounds. There is a function ψ : [0,∞) → [0,∞) with
limx→0 ψ(x) = 0 for which the following holds: if W is a LUM, then for all x, y belonging
to the same connected component V of W ∩Sn−1,

log

[
n−1∏
i=0

Λ(f ix)

Λ(f iy)

]
≤ ψ(ρfn(V )(f

nx, fny)).

(A7) Uniform absolute continuity. There is a constant C > 0 with the following
property: if W1,W2 are two sufficiently small and close enough LUM’s, then the holonomy
map H : W ′1 →W2 is absolutely continuous with respect to mW1 ,mW2 and

1

C
≤ mW2(H[W ′1])

mW1(W ′1)
≤ C.

Now we proceed to the crucial axiom, which states that the expansion of the system
prevails over the fragmentation caused by the singularities. Let us recall once more that
condition (A8) below follows [CZ05a]. Indeed, we require the practical scheme described in
[CZ05a, §6], for the following reasons:

◦ The singular set S1 = S + is usually decomposed into two components SP and SS.
The set SP is made of intrinsic singularities, which we call primary, and SS is made
of artificial ones, which we call secondary. The set SS is artificially added to guarantee
bounded distortion, near places where the derivative explodes.
◦ Since the expansion factor Λ might be close to 1, we often need to consider an iterate fn

so that Λn is large enough.

Hence we assume that S1 = S + = SP ∪ SS, and we let Sn = SP,n ∪ SS,n be the
corresponding decomposition of Sn for n ≥ 1, where

SP,n = SP ∪ f−1(SP) ∪ · · · ∪ f−n+1(SP)

SS,n = SS ∪ f−1(SS) ∪ · · · ∪ f−n+1(SS).

1For simplicity, the original work of Chernov also required an assumption called nonbranching of unstable
manifolds, see [Che99a, p. 516]. As already remarked in [Che99a], this assumption can be dropped [vdB01].
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Since secondary singularities are accompanied by strong hyperbolicity, the philosophy that
“expansion prevails over fragmentation” is guaranteed if the expansion caused by SS prevails
over the fragmentation caused by SP,n. We only need to check this for some n ≥ 1 for which
Λn is large enough. The precise conditions are the following.

(A8) Growth of unstable manifolds.

(A8.1) Structure of the singularity set: There are constants C, d > 0 such that if W is a
LUM, then W ∩S1 is at most countable. Furthermore, W ∩S1 has at most one
accumulation point x∞, and if {xn} is the monotonic sequence in W ∩S1 coverging
to x∞ then

ρ(xn, x∞) ≤ C

nd
for all n ≥ 1.

(A8.2) Growth bound (assumption on secondary singularities):

θ0 := lim inf
δ→0

sup
|W |<δ

∑
n

1
Λn

< 1,

where the supremum is taken over all LUM W with W ∩ SP = ∅, the connected
components of W\SS are {Wn} and Λn = min{Λ(x) : x ∈Wn}.

(A8.3) Complexity bound (assumption on primary singularities): Let

KP,n := lim
δ→0

sup
|W |<δ

KP,n(W )

where the supremum is taken over all LUM W and KP,n(W ) is the number of

connected components of W\SP,n; then KP,n < min{θ−1
0 ,Λ}n for some n ≥ 1.

We can now state the result of Chernov & Zhang that will be important to us.

Theorem 3.1 (Chernov & Zhang [CZ05a]). If f satisfies (A1)–(A8), then f is modelled by
a Young tower with exponential tails.

In particular, f enjoys exponential decay of correlations by [You98].

Remark 3.2. Previous work requires invariant manifolds to have uniformly bounded sec-
tional curvature in axiom (A5). This condition is solely used to uniformly approximate
pieces of invariant manifolds by hyperplanes. More specifically, [Che99a, Estimate (4.1)]
states the existence of C > 0 such that if W is a δ–LUM then Z[W,W, 0] ≤ CZ[H,H, 0],
where H is the projection of W to TxM for some (every) x ∈ W . The function Z[W,W, 0]
characterizes, in some sense, the “size” of W . The curvature assumption is used to show
that the “size” of W is of the same order of its projection to hyperplanes. The weaker
assumption of uniformly bounded C1+Lip norm ensures that the jacobians of the projection
map and of its inverse have uniformly bounded Lipschitz constants, and this is enough to
imply the above estimate. In particular, Theorem 3.1 remains valid under (A1)–(A8) with
this slightly weakened version of (A5).

4. Dynamics of transitions in the neck N

We initiate the study of the geodesic flow on a surface with degenerate closed geodesic
as defined in Section 2.3 with r ≥ 4 and ε0 > 0 fixed. Recall that we are taking δ > 0
small enough and considering the δ–Sasaki metric ‖ · ‖ = ‖ · ‖δ−Sas. By Proposition 2.5 and
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equation (2.1), the loss of uniform hyperbolicity of gt occurs when a geodesic approaches
Deg, i.e. when it spends a large amount of time spiraling close to the degenerate closed
geodesic γ. Hence in this section we focus on giving a detailed description of the dynamics
of the transitions in the neck N .

In Subsection 4.1 we construct a two-dimensional section Ω, the transition section, and
an associated transition map f0. In Subsection 4.2 we obtain an explicit formula for f0.
It is this representation that allows us to avoid using the Riccati equation and its (not so
precise) estimates and, instead, to perform more accurate calculations. In Subsection 4.3
we estimate transition times and derivatives of f0.

In the rest of the paper, we use the following notation:

◦ a(u) � b(u) or a(u) = O(b(u)) if there is a constant C such that a(u) ≤ Cb(u) for all u
small enough.
◦ a(u) ≈ b(u) if a(u)� b(u) and b(u)� a(u).

◦ a(u) ∼ b(u) if lim
u→0

a(u)
b(u) = 1.

The calculations in this section use the Clairaut coordinates x = (s, θ, ψ) on T 1A ∼=
[−ε0, ε0]× S1 × S1.

4.1. Transition section Ω and map f0. The transition section Ω we construct allows a
very simple description of the transitions of geodesics in the neck. As detailed below, we
define Ω = Ω+ ∪ Ω− ∪ Ω0 where:

◦ Ω+ ⊂ {±ε0} × S1 × S1 is a neighborhood of four families of geodesics entering the neck
and asymptotic to γ;
◦ Ω− ⊂ {±ε0}×S1×S1 is a neighborhood of four families of geodesics exiting the neck and

asymptotic to γ in backwards time;
◦ Each of Ω+ and Ω− is a disjoint union of four annular regions (diffeomorphic to S1 ×

(−1, 1));
◦ Ω0 is defined in a neighborhood of γ and is a disjoint union of two open disks.

To construct Ω±, we use the Clairaut function c from Section 2.2. Recall that ξ(s) =
1 + |s|r. Hence there is a unique ψ0 ∈ (0, π2 ) such that ξ(ε0) cosψ0 = ξ(−ε0) cosψ0 = 1. Re-
calling the notation of asymptotic vector introduced in Section 2.3, the vectors (±ε0, θ,±ψ0),
θ ∈ S1, constitute four families of asymptotic vectors with Clairaut constant c = 1 and as-
ymptotic to γ. Similarly, (±ε0, θ,±(π−ψ0)), θ ∈ S1, constitute four families of asymptotic
vectors with c = −1 and asymptotic to γ. Of these, (−ε0, θ, ψ0), (ε0, θ,−ψ0), (−ε0, θ, π−ψ0),
(ε, θ,−(π−ψ0)) correspond to the four families of trajectories that enter N and are asymp-
totic to γ as t→∞. The remaining four families of trajectories exit N and are asymptotic
to γ as t→ −∞.

Focusing momentarily on x = (−ε0, θ, ψ0), we define

Ω1 = {x = (−ε0, θ, ψ) ∈ T 1A : |c(x)− 1| < χ}.

Shrinking χ = χ(ε0, r) > 0, we can ensure that Ω1 = {−ε0} × S1 × I where I is an
open interval containing ψ0 with I ⊂ (0, π2 ). Treating the other three families of entering
asymptotic trajectories similarly, we obtain Ω+ as the union of four sets isomorphic to Ω1.

Similarly, the set Ω−, isomorphic to Ω+, is obtained by considering the four families of
exiting asymptotic trajectories.



POLYNOMIAL DECAY OF CORRELATIONS IN NONPOSITIVE CURVATURE 17

Finally, let

Ω0 = (−χ, χ)× {0} × ((−χ, χ) ∪ (π − χ, π + χ)) ⊂ T 1A.

Transition section Ω: Define Ω = Ω− ∪ Ω0 ∪ Ω+.

We now prove that Ω is transverse to the flow direction.

◦ The tangent space at every point of Ω0 is R × {0} × R. Since the flow directions at
(0, 0, 0) and (0, π, 0) are spanned by (0, 1, 0) and (0,−1, 0) respectively, transversality
holds at (0, 0, 0) and (0, π, 0). Since χ > 0 is small enough, transversality holds at every
point of Ω0.
◦ The tangent space at every x = (±ε0, θ, ψ) ∈ Ω+ is {0}×R×R. If (s(t), θ(t), ψ(t)) is the

geodesic defined by x, then the flow direction at x is (s′(0), θ′(0), ψ′(0)). Since ψ(0) 6= 0,
we have ξ(s(0)) > c(x) and so the equation of geodesics (2.3) implies that s′(0) 6= 0.
Again for χ > 0 small enough, Ω+ is transverse to the flow direction at x.
◦ Analogously, Ω− is transverse to the flow direction.

The transition section Ω captures all trajectories that approach Deg. To better under-
stand them, consider the partition of Ω+ = Ω=

+ ∪ Ω>
+ ∪ Ω<

+ induced by c:

Ω=
+ = {x ∈ Ω+ : |c(x)| = 1}, (asymptotic),

Ω>
+ = {x ∈ Ω+ : |c(x)| > 1}, (bouncing),

Ω<
+ = {x ∈ Ω+ : |c(x)| < 1}, (crossing).

Similarly, we define Ω− = Ω=
− ∪ Ω>

− ∪ Ω<
−.

We have the following transitions of segments of trajectories that enter N and approach
Deg.

◦ Starting at asymptotic vectors: Ω=
+ → Ω0 → Ω0 → · · · , and these trajectories get trapped

in Ω0.
◦ Starting at bouncing vectors: Ω>

+ → Ω0 → · · · → Ω0 → Ω>
−.

◦ Starting at crossing vectors: Ω<
+ → Ω0 → · · · → Ω0 → Ω<

−.

We have thus understood the transition in the neck of every x ∈ Ω+. Next, we introduce
the map that performs the transitions from Ω+ to Ω−.

Transition map f0: Let f0 : Ω+ \ Ω=
+ → Ω− \ Ω=

− be the map induced by the flow, i.e.
f0(x) = gt(x) where t > 0 is least such that gt(x) ∈ Ω−.

4.2. Formula for the transition map f0. In this subsection, we obtain an explicit for-
mula for f0.

Denote geodesics in the neck by x = x(t) = (s(t), θ(t), ψ(t)). As we have seen, they are
characterized by the equations

c = ξ(s) cosψ = ξ(s)2θ′,(4.1)

[1 + ξ′(s)2](s′)2 +
c2

ξ(s)2
= 1,(4.2)

where c = c(x) is the Clairaut constant of x. We parametrize bouncing geodesics x taking
s′(0) = 0 and ψ(0) = 0 or π, i.e. x bounces back exactly at time t = 0. Similarly, we
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parametrize crossing geodesics x taking s(0) = 0, i.e. x crosses γ exactly at time t = 0. The
next result describes the symmetry properties of bouncing/crossing geodesics.

Lemma 4.1. The following are true.

(1) A bouncing geodesic (s(t), θ(t), ψ(t)) with s′(0) = 0 and ψ(0) = 0 satisfies

(s(−t), θ(−t), ψ(−t)) = (s(t),−θ(t) + 2θ(0),−ψ(t))

for all t.
(2) A crossing geodesic (s(t), θ(t), ψ(t)) with s(0) = 0 satisfies

(s(−t), θ(−t), ψ(−t)) = (−s(t),−θ(t) + 2θ(0), ψ(t))

for all t.

Proof. (1) Define

x = (s(t), θ(t), ψ(t)) = (s(−t),−θ(−t) + 2θ(0),−ψ(−t)).
We show that x is a geodesic with the same initial conditions of x. Start by observing that

x(0) = (s(0), θ(0), 0) = x(0). Since s′(t) = −s′(−t), θ′(t) = θ′(−t) and ψ
′
(t) = ψ′(−t),

c(x) = ξ(s(t))2θ
′
(t) = ξ(s(−t))2θ′(−t) = c(x),

[1 + ξ′(s(t))2](s′(t))2 + c(x)2

ξ(s(t))2 = [1 + ξ′(s(−t))2](s′(−t))2 + c(x)2

ξ(s(−t))2 = 1.

Hence x = x, which proves part (1).

(2) Similarly, define

x = (s(t), θ(t), ψ(t)) = (−s(−t),−θ(−t) + 2θ(0), ψ(−t)).

Then x(0) = (0, θ(0), ψ(0)) = x(0) and, since s′(t) = s′(−t), θ′(t) = θ′(−t) and ψ
′
(t) =

−ψ′(−t),

c(x) = ξ(s(t))2θ
′
(t) = ξ(s(−t))2θ′(−t) = c(x),

[1 + ξ′(s(t))2](s′(t))2 + c(x)2

ξ(s(t))2 = [1 + ξ′(s(−t))2](s′(−t))2 + c(x)2

ξ(s(−t))2 = 1.

We obtain again that x = x, which proves part (2). �

Let x = (s(t), θ(t), ψ(t)) be a bouncing/crossing geodesic parametrized as above.

Transition time Υ0: Define Υ0(x) = min{t > 0 : |s(t)| = ε0}.
Since ξ is an even function, we can assume that x enters the neck N at {s = −ε0}.

Lemma 4.1 implies the identities

x = g−Υ0(x)(s(0), θ(0), ψ(0)) ∈ Ω+, f0(x) = gΥ0(x)(s(0), θ(0), ψ(0)) ∈ Ω−.

In particular, the transition time of x from Ω+ to Ω− is actually equal to 2Υ0(x) (but it is
convenient to call Υ0 the transition time). Moreover:

◦ If x is bouncing then s �[−Υ0(x),0] is strictly increasing and s �[0,Υ0(x)] is strictly decreasing.
We have s(−Υ0(x)) = −ε0 = s(Υ0(x)).
◦ If x is crossing then s �[−Υ0(x),Υ0(x)] is strictly increasing. We have s(−Υ0(x)) = −ε0,
s(Υ0(x)) = ε0.

The next proposition gives the remaining ingredient to obtain the explicit formula for f0.
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Proposition 4.2. Let x be a bouncing/crossing geodesic. Then

|θ(Υ0(x))− θ(−Υ0(x))| = 2

∫ ε0

|s(0)|

|c(x)|
ξ(s)

[
1 + ξ′(s)2

ξ(s)2 − c(x)2

] 1
2

ds.

Proof. Equations (4.1) and (4.2) can be rewritten as

θ′ = c(x)ξ(s)−2 and |s′| = ξ(s)−1

[
ξ(s)2 − c(x)2

1 + ξ′(s)2

] 1
2

.

Dividing one equation by the other yields∣∣∣∣dθds
∣∣∣∣ =
|c(x)|
ξ(s)

[
1 + ξ′(s)2

ξ(s)2 − c(x)2

] 1
2

.

Since s �[0,Υ0(x)] is monotone,

|θ(Υ0(x))− θ(0)| =
∫ ε0

|s(0)|

|c(x)|
ξ(s)

[
1 + ξ′(s)2

ξ(s)2 − c(x)2

] 1
2

ds.

By Lemma 4.1, we have that θ(Υ0(x)) − θ(−Υ0(x)) = 2[θ(Υ0(x)) − θ(0)] and the proof is
complete. �

By the rotational symmetry, the integral in Proposition 4.2 only depends on ψ. Hence
we define

ζ(ψ) = 2

∫ ε0

|s(0)|

|c(x)|
ξ(s)

[
1 + ξ′(s)2

ξ(s)2 − c(x)2

] 1
2

ds.

With this notation,

f0(−ε0, θ, ψ) =

{
(−ε0, θ ± ζ(ψ),−ψ) for bouncing vectors,

(ε0, θ ± ζ(ψ), ψ) for crossing vectors.

4.3. Transition times and derivatives of f0. Before proceeding further, we derive two
elementary integral estimates.

Proposition 4.3. a

(1) Let r, α, ε > 0 with αr > 1. Then∫ ε

0
(sr + b)−α ds ∼ C1b

−α+ 1
r as b→ 0+,

where C1 =
∫∞

0 (xr + 1)−α dx.
(2) Let q, r, α, ε > 0 and β ≥ 0 with αr − βq > 1. Then∫ ε

b
(sr − br)−α(sq − bq)β ds ∼ C2b

βq−αr+1 as b→ 0+,

and ∫ ε+b

b
(sr − br)−α(sq − bq)β ds ∼ C2b

βq−αr+1 as b→ 0+,

where C2 =
∫∞

1 (xr − 1)−α(xq − 1)β dx.
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Proof. Note that αr > 1 implies that C1 is finite. By direct computation and the change of

variables x = b−
1
r s,∫ ε

0
(sr + b)−α ds = b−α

∫ ε

0
(b−1sr + 1)−α ds = b−α+ 1

r

∫ εb−
1
r

0
(xr + 1)−α dx

and part (1) follows.
Proceeding similarly to the proof of part (1),∫ ε

b
(sr − br)−α(sq − bq)βds = bβq−αr

∫ ε

b

[(
s
b

)r − 1
]−α [( s

b

)q − 1
]β
ds

= bβq−αr+1

∫ εb−1

1
(xr − 1)−α(xq − 1)βdx

and the first estimate in part (2) follows. The argument for the second estimate is identical.
�

To better analyse f0 near the set of asymptotic vectors, we introduce a partition of Ω+,
as follows.

Homogeneity bands on Ω+: For each n ≥ 1, the homogeneity band with index n is
Cn = C>

n ∪ C<
n where

C>
n =

{
x ∈ Ω+ : 1 + 1

(n+1)2 < |c(x)| < 1 + 1
n2

}
C<
n =

{
x ∈ Ω+ : 1− 1

n2 < |c(x)| < 1− 1
(n+1)2

}
.

The next result estimates Υ0 in the homogeneity bands.

Lemma 4.4. Let x be a geodesic with entry vector in Cn. Then Υ0(x) ≈ n
r−2
r .

Proof. We continue to assume without loss that s(−Υ0(x)) = −ε0. Also, we suppose
without loss that the Clairaut constant c = c(x) is positive. By assumption, 1

(n+1)2 <

|c− 1| < 1
n2 . By (4.2),

(4.3) (s′)2 = (1 + (ξ′)2)−1ξ−2(ξ + c)(ξ − c) ≈ ξ(s)− c.

We have two cases:

◦ If x is bouncing, then c = 1 + |s(0)|r where s(0) ∼ −n−2/r. By (4.3), (s′)2 ≈ |s|r− |s(0)|r

and so (|s|r − |s(0)|r)−
1
2 s′ ≈ 1 on the interval [−Υ0(x), 0]. Applying Proposition 4.3(2)

with α = 1
2 , β = 0 and b = |s(0)|, we conclude that

Υ0(x) ≈ −
∫ s(0)

−ε0
(|s|r − |s(0)|r)−

1
2ds =

∫ ε0

|s(0)|
(sr − |s(0)|r)−

1
2ds

≈ |s(0)|−
r
2

+1 ∼ n
r−2
r .
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◦ If x is crossing, then c = cosψ(0) ∼ 1 − n−2. By (4.3), (s′)2 ≈ |s|r + n−2 and so

(|s|r + n−2)−
1
2 s′ ≈ 1 on the interval [−Υ0(x),Υ0(x)]. Applying Proposition 4.3(1) with

α = 1
2 and b = n−2, we conclude that

Υ0(x) ≈
∫ ε0

0
(sr + n−2)−

1
2ds ≈

(
n−2

)− 1
2

+ 1
r = n

r−2
r .

This concludes the proof of the lemma. �

Now we estimate, in terms of c, how the ψ–coordinate varies under f0. Without loss, we
restrict to positive values of c.

Lemma 4.5. Suppose that x,x are both bouncing or both crossing geodesics. Then

|ψ(Υ0(x))− ψ(Υ0(x))| ≈ |c(x)− c(x)|.
In particular, if the entry vectors of x,x are both in the same connected component of C<

n

or of C>
n then

|ψ(Υ0(x))− ψ(Υ0(x))| = 2(ε2r
0 + 2εr0)−1/2n−3 +O(n−4).

Proof. Let a = (1 + εr0)−1. By (4.1), (1 + εr0) cosψ(Υ0(x)) = c(x) and so cosψ(Υ0(x)) =

ac(x). Similarly, cosψ(Υ0(x)) = ac(x). By the mean value theorem,

a|c(x)− c(x)| = | cosψ(Υ0(x))− cosψ(Υ0(x))|
= | sinψ∗| · |ψ(Υ0(x))− ψ(Υ0(x))|

for some ψ∗ between ψ(Υ0(x)) and ψ(Υ0(x)). Since cosψ(Υ0(x)), cosψ(Υ0(x)) ∼ a, we

have | sinψ∗| ∼ (1− a2)1/2 and so

|ψ(Υ0(x))− ψ(Υ0(x))| = a| sinψ∗|−1|c(x)− c(x)| ∼ a(1− a2)−1/2|c(x)− c(x)|.
Now suppose that the entry vectors of x,x are in the same connected component of C>

n .
Assuming without loss of generality that c(x), c(x) > 0, then 1 + (n + 1)−2 < c(x), c(x) ≤
1+n−2. It follows that |c(x)−c(x)| = 2n−3 +O(n−4). Also, sinψ∗ = (1−a2)−1/2 +O(n−2).
Hence

|ψ(Υ0(x))− ψ(Υ0(x))| = 2a(1− a2)−1/2n−3 +O(n−4).

An analogous calculation holds if the entry vectors are in C<
n . �

To conclude this section, we obtain estimates for the derivatives of ζ.

Lemma 4.6. The following are true.

(1) If (−ε0, θ, ψ) ∈ C<
n then ζ ′(ψ) ≈ −n3− 2

r and ζ ′′(ψ) ≈ n5− 2
r .

(2) If (−ε0, θ, ψ) ∈ C>
n then ζ ′(ψ) ≈ n3− 2

r and |ζ ′′(ψ)| � n5− 2
r .

Note that the first three estimates in Lemma 4.6 give upper and lower bounds, while the
fourth estimate gives only an upper bound.

Proof. (1) Let a = 1+εr0 (this notation is different from Lemma 4.5). We have c(x) = a cosψ,

hence cosψ ∼ a−1 ≈ 1 and sinψ ∼ (1− a−2)
1
2 ≈ 1. Also, s(0) = 0, so

ζ(ψ) = 2a cosψ

∫ ε0

0
A(s)

[
ξ(s)2 − a2 cos2 ψ

]− 1
2 ds
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where A(s) =
[1+ξ′(s)2]

1
2

ξ(s) ≈ 1. By direct calculation,

ζ ′(ψ) = −2a sinψ

∫ ε0

0
A(s)ξ(s)2

[
ξ(s)2 − a2 cos2 ψ

]− 3
2 ds

≈ −
∫ ε0

0
[ξ(s)− c(x)]−

3
2 ds

and

ζ ′′(ψ) = 2a cosψ

∫ ε0

0
A(s)ξ(s)2

[
3a2 sin2 ψ + a2 cos2 ψ − ξ(s)2

] [
ξ(s)2 − a2 cos2 ψ

]− 5
2 ds

≈
∫ ε0

0
[ξ(s)− c(x)]−

5
2 ds.

Noting that ξ(s)− c(x) ≈ sr + n−2, Proposition 4.3(1) applied with:

◦ α = 3
2 and b = n−2 gives that ζ ′(ψ) ≈ −(n−2)−

3
2

+ 1
r = −n3− 2

r .

◦ α = 5
2 and b = n−2 gives that ζ ′′(ψ) ≈ (n−2)−

5
2

+ 1
r = n5− 2

r .

This proves part (1).

(2) This part is more difficult, for two reasons: the interval of integration in ζ is not fixed,
and the denominator ξ(s)2 − c(x)2 is harder to control since both ξ(s), c(x) > 1. Since
s′(0) = 0, we have c(x) = a cosψ = 1 + |s(0)|r with, as before, cosψ ≈ 1 and sinψ ≈ 1.

Introduce the variable y = |s(0)|. Then c(x)− 1 = yr and so y ∼ n−
2
r . Write ζ(ψ) = 2I(y),

where

I(y) =

∫ ε0

y

(1 + yr)

ξ(s)

[
1 + ξ′(s)2

ξ(s)2 − (1 + yr)2

] 1
2

ds

=

∫ ε0−y

0

(1 + yr)

ξ(s+ y)

[
1 + ξ′(s+ y)2

ξ(s+ y)2 − (1 + yr)2

] 1
2

ds

=

∫ ε0−y

0
A(s, y) [(s+ y)r − yr]−

1
2 ds.

Here, A(s, y) = (1+yr)
ξ(s+y)

[
1+ξ′(s+y)2

ξ(s+y)+(1+yr)

] 1
2

is C2 with A(s, y) ≈ 1.

Next, write I(y) = I1(y) + I2(y) where

I1(y) =

∫ ε0

0
A(s, y) [(s+ y)r − yr]−

1
2 ds,

I2(y) = −
∫ ε0

ε0−y
A(s, y) [(s+ y)r − yr]−

1
2 ds.
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Now, I2 is C2 for y small and in particular I ′2 and I ′′2 are bounded. Therefore, it remains
to estimate I ′1 and I ′′1 . We have I ′1 = Q1 +Q2 where

Q1(y) =

∫ ε0

0
∂yA(s, y) [(s+ y)r − yr]−

1
2 ds,

Q2(y) = − r
2

∫ ε0

0
A(s, y) [(s+ y)r − yr]−

3
2
[
(s+ y)r−1 − yr−1

]
ds.

Using that A is C2 and applying Proposition 4.3(2) with α = 1
2 , β = 0, b = y gives that

|Q1(y)| �
∫ ε0

0
[(s+ y)r − yr]−

1
2 ds =

∫ ε0+y

y
[sr − yr]−

1
2 ds ≈ y−

r
2

+1.

Now, since A(s, y) ≈ 1, applying Proposition 4.3(2) with α = 3
2 , β = 1, q = r − 1, b = y

implies that

Q2(y) ≈ −
∫ ε0

0
[(s+ y)r − yr]−

3
2
[
(s+ y)r−1 − yr−1

]
ds

= −
∫ ε0+y

y
[sr − yr]−

3
2
[
sr−1 − yr−1

]
ds ≈ −y−

r
2 .

Hence, I ′(y) ≈ I ′1(y) ≈ −y−
r
2 . Next we transform back to the variable ψ. Differentiating

1+yr = a cosψ with respect to ψ, we get that ryr−1 dy
dψ = −a sinψ ≈ −1 and so dy

dψ ≈ −y
1−r,

which implies that

ζ ′(ψ) = 2I ′(y) dydψ ≈ (−y−
r
2 )(−y1−r) = y1− 3r

2 ∼ (n−
2
r )1− 3r

2 ∼ n3− 2
r .

This is the desired estimate for ζ ′.
Similarly, we can write I ′′1 = Q3 +Q4 +Q5 +Q6 with

|Q3(y)| �
∫ ε0+y

y
[sr − yr]−

1
2 ds ≈ y−

r
2

+1,

|Q4(y)| �
∫ ε0+y

y
[sr − yr]−

3
2
[
sr−1 − yr−1

]
ds ≈ y−

r
2 ,

|Q5(y)| ≈
∫ ε0+y

y
[sr − yr]−

3
2
[
sr−2 − yr−2

]
ds ≈ y−

r
2
−1,

|Q6(x)| ≈
∫ ε0+y

y
[sr − yr]−

5
2
[
sr−1 − yr−1

]2
ds ≈ y−

r
2
−1.

Here, the estimates of Q3, Q4 are the same as those of Q1, Q2, the estimate of Q5 follows
from Proposition 4.3(2) with α = 3

2 , β = 1, q = r− 2, b = y and the estimate of Q6 follows

from Proposition 4.3(2) with α = 5
2 , β = 2, q = r − 1, b = y. Hence |I ′′(y)| � y−

r
2
−1.

Differentiating ryr−1 dy
dψ = −a sinψ with respect to ψ and recalling that dy

dψ ≈ −y
1−r, we

get that

−1 ≈ −a cosψ = r(r − 1)yr−2
( dy
dψ

)2
+ ryr−1 d2y

dψ2 ≈ r(r − 1)y−r + ryr−1 d2y
dψ2 .
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Since y−r is large, both terms on the right-hand side have the same order, hence d2y
dψ2 ≈

−y−2r+1. We thus conclude that

|ζ ′′(ψ)| =
∣∣2I ′′(y)

( dy
dψ

)2
+ 2I ′(y) d

2y
dψ2

∣∣� y−
r
2
−1y2(1−r) + y−

r
2 y−2r+1

≈ y−
5r
2

+1 ∼ (n−
2
r )−

5r
2

+1 = n5− 2
r

which is the required estimate for ζ ′′. �

5. Poincaré section and first return map f

In this section, we construct a suitable Poincaré first return map f : Σ0 → Σ0 with
unbounded Poincaré return time τ : Σ0 → (0,∞] such that inf τ > 0. Keeping in mind the
Chernov axioms (Section 3), we require that the two-dimensional cross-section Σ0 satisfies:

◦ Σ0 is the disjoint union of finitely many codimension one submanifolds of M each of which
is almost orthogonal to the flow direction and hence, by Lemma 2.4(2), almost parallel to

Ês⊕ Êu. In particular, the flow projections of the one-dimensional stable/unstable direc-

tions Ês,u of gt define stable/unstable directions Es,u for f . Moreover, the hyperbolicity

of f along Es,u is almost the same as that of gt along Ês,u, as given by equation (2.1).
◦ The boundary of Σ0 is transverse to Es and Eu. This condition ensures (A3).
◦ There are no triple intersections for a certain family of curves and iterates under f . This

family of curves is the union of boundaries of Σ0 and finitely many curves of asymp-
totic vectors, and makes up the primary singular set SP. This condition is used in the
verification of (A8.3).

The construction of Σ0 is rather technical, and is done as follows. Recall the transition

section Ω constructed in Section 4.1. Using Ω, we construct a “security” section Σ̃ that is

almost parallel to Ês⊕ Êu. Then we choose Σ̂ ⊂ Σ̃ so that its boundary is transverse to the
invariant directions and the “no triple intersections” requirement stated above holds. Ide-

ally, we would take Σ0 = Σ̂, but unfortunately this is not enough to guarantee axiom (A2),
since the hyperbolicity rate of the Poincaré return map (and its induced maps) depends on
two effects that compete one against the other:

◦ The angle between the Poincaré section and Ês,u: the smaller the angle is, the closer are
the hyperbolicity rates of the flow and of the Poincaré return map.
◦ The Poincaré return time of the section: the smaller the return time is, the weaker is the

hyperbolicity of the flow (and hence of the Poincaré return map).

If the connected components of Σ̂ are small to guarantee a small angle, then the Poincaré
return time is close to zero. To bypass this difficulty, we divide each connected component of

Σ̂ into small pieces, each of them still with boundary transverse to the invariant directions,
and displace each of them by a small amount in the flow direction so that the new angle

with Ês,u is as close to zero as we wish and no triple intersection appears. Letting Σ0 be

the union of the displaced pieces, its Poincaré return time is close to that of Σ̂. In other
words, this division procedure decreases the angle whilst almost preserving the Poincaré
return time. This allows us to prove (A2) in Section 6.
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5.1. Construction of Σ̃. Since Ω± might not be almost parallel to Ês,u, we take instead

a finite union of small discs that are almost parallel to Ês,u and whose union of flow boxes

contains Ω±. Choosing the discs small enough, the transitions in the neck from Σ̃ to
itself coincide with the transitions from Ω+ to Ω− up to small flow displacements at the

beginning and end. Then we complete Σ̃ by adding a disjoint union of finitely many small
discs such that their flow boxes do not intersect the trajectories in the neck that are close
to the asymptotic ones. In other words, we complete the section so that the asymptotic
trajectories and nearby ones remain the same.

We begin introducing some notation. For each x ∈ M , let expx : TxM → M denote the
exponential map of M at x. For U ⊂ M and I ⊂ R, we let gIU =

⋃
t∈I gt(U). Recall that

Zx is the one-dimensional subspace of TxM tangent to the geodesic flow.

su–disc and flow box: The su–disc at x ∈M with radius λ > 0 is the surface

Dλ(x) = {expx(v) : v ⊥ Zx and ‖v‖ ≤ λ}.

The flow box at x ∈M with radius λ > 0 is g[−λ,λ]Dλ(x).

Fix χ = χ(r, ε0) > 0 small. We take λ < χ so that Dλ(x) is an immersed surface and

TyDλ(x) is almost orthogonal to the flow and hence almost parallel to Êsy ⊕ Êuy for every

y ∈ Dλ(x). Now we proceed to construct Σ̃.

Step 1 (Construction of Σ̃ near Ω±): Choose points x1, . . . , xm ∈ M and 0 < a <
b < χ such that {Db(xi)}1≤i≤m are pairwise disjoint and

Ω+ ∪ Ω− ⊂
⋃

1≤i≤m
g[−a,a]Da(xi) ⊂

⋃
1≤i≤m

g[−b,b]Db(xi).(5.1)

In other words, Step 1 “approximates” Ω± by finitely many su–discs. This can be done
e.g. by taking a sufficiently fine net of points in Ω− ∪Ω+ and then displacing each of them
a small amount in the flow direction so that their su–discs are all disjoint; see a similar
argument in [LS19, Lemma 2.7].

Step 2 (Security neighborhood Ñ): Choose a compact neighborhood N+ ⊂ Ω+ such

that Ω=
+ ⊂ int(N+). For x ∈ N+, let t(x) = inf{t > 0 : gt(x) ∈ Ω−} ∈ (0,+∞], and let Ñ

be the closure of {gt(x) : x ∈ N+ and 0 ≤ t ≤ t(x)}.

Since Ω=
+ is the disjoint union of four closed curves, N+ is the disjoint union of four

compact sets. The set Ñ is a compact neighborhood of all asymptotic vectors with |s| ≤ ε0.

Step 3 (Construction of Σ̃ far from Ω±): Choose xm+1, . . . , xm+n ∈M such that:

◦ {Db(xi)}m+1≤i≤m+n are pairwise disjoint su–discs, each of them disjoint from Ñ and
disjoint from {Db(xi)}1≤i≤m;

◦ the disjoint union Σ̃(r)]Ω0 is a global Poincaré section (i.e. a cross-section with bounded

first return time) for all λ ∈ [a, b], where Σ̃(λ) =
⋃

1≤i≤m+nDλ(xi).

Again, Step 3 can be carried out similarly to [LS19, Lemma 2.7]. Note that all flow
trajectories that start in N+ make the transition in the neck without visiting any Db(xi),
m+ 1 ≤ i ≤ m+ n.
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The security section Σ̃: Define Σ̃ = Σ̃(b).

Thus Σ̃ ] Ω0 is the largest global Poincaré section constructed in Steps 1–3. Before

continuing, let us introduce some further notation. For λ ∈ [a, b], let h̃λ : Σ̃(λ) ] Ω0 →
Σ̃(λ) ] Ω0 be the corresponding Poincaré return map. Since the return times of h̃a, h̃b are

bounded away from zero and infinity, we have h̃a = h̃Nb where N : Σ̃(a)]Ω0 → {1, 2, . . . , N0}
is bounded. The same holds for every λ ∈ [a, b], namely h̃λ = h̃Nλb where Nλ : Σ̃(λ)]Ω0 →
{1, 2, . . . , N0} is bounded (the bound N0 is the same).

For λ ∈ [a, b], define the following objects:

◦ τλ : Σ̃(λ)→ N ∪ {∞} such that h̃
τλ(x)
λ (x) is the first return of x to Σ̃(λ).

◦ S +(λ) = ∂Σ̃(λ) ∪ {τλ =∞}.
◦ fλ : Σ̃(λ)\S +(λ)→ Σ̃(λ) the Poincaré return map.2

Note that τλ(x) = ∞ only for asymptotic vectors, and that the flow time function of fλ
is unbounded exactly when approaching asymptotic vectors. Yet, fa and fb differ by a
bounded number of iterates, as we now explain. Write τ = τa(x), and let 0 ≤ i, j < τ such

that h̃b(x), . . . , h̃ib(x) ∈ Σ̃(b)\Σ̃(a), h̃i+1
b (x), . . . , h̃τ−j−1

b (x) ∈ Ω0 and h̃τ−jb (x), . . . , h̃τ−1
b (x) ∈

Σ̃(b)\ Σ̃(a), i.e. i is the last iterate before entering Ω0 and τ − j−1 is the last iterate before

leaving Ω0. Clearly fa(x) = f i+j+1
b (x). Observing that h̃a(x) = h̃i+1

b (x), it follows that
i+ 1 ≤ Na. Similarly, j + 1 ≤ Na. Letting `0 := 2N0 − 1, we conclude that i+ j + 1 ≤ `0,

hence fa = f `b for some ` : Σ̃(a)\S +(a)→ {1, . . . , `0}.
Finally, observe that for any Σ̃(a) ⊂ X ⊂ Σ̃(b) we can similarly define τX ,S

+(X), fX ,

and that fX = f `Xb for some `X : X\S +(X) → {1, . . . , `0} (the bound `0 is the same).
Hence, controlling pre-iterates of fX up to order n0 say follows from controlling pre-iterates
of fb up to order `0n0. In summary, we just need to analyze a bounded number of iterates
of a single map. In the next subsection, we consider a multi-parameter family of such
sections X and show that for some choice of parameters the section X satisfies the required
properties.

Remark 5.1. We can also apply Step 3 above to extend Ω+ ∪ Ω− to a Poincaré section

Ω̃. The construction is simpler, since we only require transversality with the flow direction
(and not necessarily almost perpendicularity). Hence the transition map f0 can be extended

to f0 : Ω̃\S +(Ω̃) → Ω̃, where S +(Ω̃) is the union of the boundary of Ω̃ and the points

that never return to Ω̃ under the flow. The transition time function Υ0 can be extended
accordingly. Similarly to the maps fλ, the map f0 is a Poincaré return map of g that
captures all flow trajectories not asymptotic to γ. Hence fλ and f0 are conjugate, with
transition time bounded from above.

5.2. Construction of Σ̂. Fix an integer n0. Let A ⊂ Σ̃ be a connected curve. The next

lemma is essential to the construction of Σ̂, and shows how to perturb A to avoid triple

intersections of pre-iterates under fb up to order `0n0. Since Σ̃ is perpendicular to the

flow, Lemma 2.4(2) implies that the stable/unstable subspaces Ês/u for the flow project

2In general, the maps fλ need not be related to the map f0 introduced in Section 4.1.
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to directions Es/u in Σ̃. (For the moment, this is purely notational and no dynamical

properties are claimed for Es/u.)

Lemma 5.2. Given a connected curve A ⊂ Σ̃ transverse to Es, Eu and ε > 0, there is
a one-parameter family {A(t)}|t|≤1 of disjoint curves, each of them ε–close to A in the

C1–norm, such that

A(t) ∩ f−ib [A(t)] ∩ f−jb [A(t)] = ∅

A(t) ∩ f−ib [A(t)] ∩ f−jb [C] = ∅

C ∩ f−ib [A(t)] ∩ f−jb [A(t)] = ∅
for all 0 < i < j ≤ `0n0 and |t| ≤ 1.

To prove Lemma 5.2, we provide a combinatorial description of the trajectories of A,
according to the transitions in the neck N that spend a long time. This combinatorial
description (decomposition) and some notation (long backward transition and parameter
η > 0) will be only used in this section.

Projection map to Ω±: The projection map to Ω± is the map p : g[−χ,χ](Ω+ ∪ Ω−) →
Ω+ ∪ Ω− defined by p(gt(x)) = x for (x, t) ∈ (Ω+ ∪ Ω−)× [−χ, χ].

This map allows to localize our analysis inside Ω±. Recall the transition map f0 studied
in Section 4.2. Observe that if B ⊂ Ω− is a curve intersecting Ω=

−, then f−1
0 (B) ⊂ Ω+ is

the union of two disjoint curves of infinite length, each of them accumulating at Ω=
+, see

Figure 5. The proof of this fact is easy. By symmetry, it is enough to prove the analogous

f−1
0

V

Ω=
−Ω=

+

I

J

f−1
0 (I)

f−1
0 (J)

Figure 5. The pre-iterates of a curve intersecting Ω=
− equals two curves of

infinite length accumulating at Ω=
+.

result for the forward iterate of f0, and we know for instance on Ω1 that ζ(ψ) → ∞ as
ψ → ψ−0 and as ψ → ψ+

0 (and similarly on the other three parts of Ω+ with ψ0 replaced by
−ψ0 or ±(π − ψ0) as appropriate).

The transition of Figure 5 is the only source of unboundedness when considering pre-
iterates of fb, since otherwise the return time of the flow is uniformly bounded. To better
analyze this phenomenon, fix η > 0 small and define

U = {x ∈ Ω− : d(x,Ω=
−) < η}, V = {x ∈ Ω− : d(x,Ω=

−) < 2η}.

Long backward transition (LBT): The point x ∈ Σ̃ has a long backward transition

(LBT) at time i if f−ib x ∈ g[−χ,χ]V and f
−(i+1)
b x ∈ g[−χ,χ]Ω+. When this happens, we say

that the LBT occurs at the point f−ib x.
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Decomposition of A: Given a curve A ⊂ Σ̃ with finite length and finitely many connected
components, write A = A0 ] · · · ]A`0n0 where

Ai = {x ∈ A : x makes the first LBT at time i}, 0 ≤ i < `0n0

A`0n0 = A \ (A0 ] · · · ]A`0n0−1).

Note that A`0n0 is the set of points with first LBT with time at least `0n0, and includes
points with no LBT. Each Ai, i < `0n0, is the disjoint union of finitely many open pieces
of A, and A`0n0 is the disjoint union of finitely many pieces of A.

Consider C = g[−χ,χ]Ω
=
+ ∩ Σ̃, which is the disjoint union of finitely many pieces of curves

asymptotic to γ under the map h̃b. Decomposing C = C0 ]C1 ] · · · ]C`0n0−1 as above, the

first LBT’s associated to C occur at the set C̃ = C0 ] f−1
b (C1) ] · · · ] f−`0n0+1

b (C`0n0−1),

equal to the disjoint union of finitely many curves asymptotic to γ under the map h̃b. Then

p[C̃] = p[C0] ] p[f−1
b (C1)] ] · · · ] p[f−`0n0+1

b (C`0n0−1)]

is the disjoint union of finitely many curves asymptotic to γ under the flow. Let H =

p[C̃] ∩ Ω=
−, which is a finite set equal to all homoclinic intersections associated to first

LBT’s. We claim that all other LBT’s accumulate in H. The proof is by induction on
the number of LBT’s. Assume that I ⊂ Ci has the second LBT at time j > i. The set

p[f
−(i+1)
b (Ci)] accumulates at Ω=

+, and f−jb (Ci) is obtained from f
−(i+1)
b (Ci) by a uniformly

bounded flow time, hence p[f−jb (Ci)] accumulates on H. The claim follows.
For η > 0 small enough, all first LBT’s of C are associated to a point of H, i.e. the piece

p[f−ib (Ci)] not only intersects V but indeed crosses Ω=
−. See Figure 6 to understand the dy-

namics of accumulations around Ω=
−. The red/green intervals in the left figure are pieces of

p[Ci]/p[Ck], and the vertical red/green curves in the right figure are p[f−ib (Ci)]/p[f−kb (Ck)],
equal to the pre-iterates right before the first LBT’s. In the figure, they define four ho-
moclinic points. We also depict an interval p(I) that makes two LBT’s. The first LBT
generates the two curves of infinite length in the left figure, both accumulating at Ω=

−. Fi-

nally, the vertical blue curves in the right figure are p[f−jb (I)], equal to the pre-iterates right
before the second LBT of I. Observe that they accumulate on each of the four homoclinic
points.

Now we are able to prove Lemma 5.2.

Proof of Lemma 5.2. To obtain a one-parameter family, it is enough to perturb A so that
the intersection conditions of the statement hold robustly. We have

{f−kb (A) : 0 ≤ k ≤ `0n0} =
{
f−kb (Ai) : 0 ≤ k ≤ i

}
︸ ︷︷ ︸

FA

∪
{
f−kb (Ai) : i < k ≤ `0n0

}
︸ ︷︷ ︸

GA

{f−kb (C) : 0 ≤ k ≤ `0n0} =
{
f−kb (Ci) : 0 ≤ k ≤ i

}
︸ ︷︷ ︸

FC

∪
{
f−kb (Ci) : i < k ≤ `0n0

}
︸ ︷︷ ︸

GC

.

Let F = FA ∪FC and G = GA ∪ GC . Since C is asymptotic to γ under the flow, FC ∪ GC
is fixed (does not depend on A) and has no double intersections. Observe that F is a finite
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f−1
0

V

Ω=
−Ω=

+

p[Ck]

p[Ci]
p[I] ⊂ p[Ci]

p[f−ib (I)]

p ◦ f−ib

Figure 6. Dynamics near homoclinic points.

family of bounded curves, obtained from pieces of A and C by uniformly bounded flow time
displacements. Let T0 be a bound on such time.

We start by controlling all possible triple intersections of A and pre-iterates of A,C.
There are three possible types of such intersections:

Type 1: A ∩ F1 ∩ F2, where F1, F2 ∈ F .
Type 2: A ∩ F ∩G, where (F,G) ∈ F × G .
Type 3: A ∩G1 ∩G2, where G1, G2 ∈ G .

For each type, we perform finitely many C1 perturbations onA to prevent triple intersections
robustly.

Type 1: We can assume that F1 ∈ FA. If F2 ∈ FA, then the intersection A ∩ F1 ∩ F2 is
associated to flow displacements of time ≤ T0. By (2.4), the flow has finitely many closed
orbits of length ≤ T0. Hence we can perform an arbitrarily small C1 perturbation of A to
destroy these intersections robustly. If F2 ∈ FC , the same applies to guarantee that A∩F1

does not intersect F2 robustly.

Type 2: The set A ∩ F =
⋃
F∈F{A ∩ F} is finite, and the set A ∩ G =

⋃
G∈G {A ∩ G}

is countable with a finite set of accumulation points, coming from pre-iterates of Ω=
+. A

C1 perturbation of order O(ε) of A changes A ∩F by O(ε) inside A, and A ∩ G around
its accumulation points by o(ε) inside A, hence we can destroy all such triple intersections
robustly.

Type 3: We divide this type into three subtypes.

◦ Type 3.1: A ∩ f−kb (Ai) ∩ f−mb (Aj), with k > i and m > j.

◦ Type 3.2: A ∩ f−kb (Ai) ∩ f−mb (Cj), with k > i, m > j and k − i ≤ m− j.
◦ Type 3.3: A ∩ f−kb (Ci) ∩ f−mb (Aj), with k > i, m > j and k − i ≤ m− j.
The idea is to push this intersection to V . The hardest case is Type 3.1, where all three
sets are simultaneously perturbed. Let us start with it. Assuming that k − i ≤ m − j,
iterate the intersection k − i times (the intersection belongs to f−mb (Aj) and hence can ac-

tually be iterated m times), so that f−ib (Ai)∩f−(m−k+i)
b (Aj) 6= ∅. We show that a small C1
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perturbation of Ai makes this intersection empty inside U . This is enough for us, since inter-
sections outside U are associated to uniformly bounded flow times, which can be treated as

in Type 1. Actually, we show how to guarantee that p[f−ib (Ai)] ∩ p[f
−(m−k+i)
b (Aj)] ∩ U = ∅.

The argument is similar to Type 2. Since the set Ω=
− ∩ p[f−ib (Ai)] is finite and all accu-

mulation points of Ω=
− ∩ p[f

−(m−k+i)
b (Aj)] are contained in H, a C1 perturbation of order

O(ε) of the piece Bi ⊂ Ai such that p[f−ib (Bi)] = p[f−ib (Ai)] ∩ U changes p[f−ib (Ai)] by

O(ε), and Ω=
−∩p[f

−(m−k+i)
b (Aj)] around its accumulation points by o(ε). Therefore a small

perturbation guarantees that p[f−ib (Ai)] ∩ p[f
−(m−k+i)
b (Aj)] ∩ U = ∅.

Types 3.2 and 3.3 are simpler, since C is not perturbed. In Type 3.2, we perform the

same argument described above to have p[f−ib (Ai)] ∩ p[f
−(m−k+i)
b (Cj)] ∩ U = ∅. Again,

Ω=
−∩p[f−ib (Ai)] is finite and all accumulation points of Ω=

−∩p[f
−(m−k+i)
b (Cj)] are contained

in H. A C1 perturbation of order O(ε) of the piece Bi ⊂ Ai such that p[f−ib (Bi)] =

p[f−ib (Ai)] ∩ U changes p[f−ib (Ai)] by O(ε), while Ω=
− ∩ p[f

−(m−k+i)
b (Cj)] remains fixed, so

we can make p[f−ib (Ai)] ∩ p[f
−(m−k+i)
b (Cj)] ∩ U = ∅.

In Type 3.3, once again Ω=
−∩p[f−ib (Ci)] is finite (and contained in H) and all accumulation

points of Ω=
−∩p[f

−(m−k+i)
b (Aj)] are contained in H. A C1 perturbation of order O(ε) of the

pieceBj ⊂ Aj such that p[f
−(m−k+i)
b (Bj)] = p[f

−(m−k+i)
b (Aj)]∩U changes p[f

−(m−k+i)
b (Aj)],

while Ω=
−∩ p[f−ib (Ci)] remains fixed, so we can make p[f−ib (Ci)]∩ p[f

−(m−k+i)
b (Aj)]∩U = ∅.

To finish the lemma, we deal with triple intersections of C and pre-iterates of A. There
are also three types of such intersections:

Type 1’: C ∩ F1 ∩ F2, where F1, F2 ∈ FA.
Type 2’: C ∩ F ∩G, where (F,G) ∈ FA × GA.
Type 3’: C ∩G1 ∩G2, where G1, G2 ∈ GA.

The analysis of these types is simpler than the previous ones, since C is fixed.

Type 1’: Proceed as in Type 1.

Type 2’: Proceed as in Type 2.

Type 3’: Proceed as in Type 3.1, guaranteeing that, in its notation, p[f−ib (Ai)]∩p[f
−(m−k+i)
b (Aj)]∩

U 6= ∅. �

Using Lemma 5.2, we now construct a parametric family of sections.

Step 4 (Construction of a parametric family Σ̂(~t ) of sections): For each 1 ≤ i ≤
m+ n, choose finitely many families {Ai,j(t)}|t|≤1, 1 ≤ j ≤ Ni. Given ~t = (ti,j) 1≤i≤m+n

1≤j≤Ni
, we

require that Bi(~ti) = Bi(ti,1, . . . , ti,Ni) is a topological disc whose boundary is the polygon

defined by {Ai,j(ti,j)}1≤j≤Ni and such that Da(xi) ⊂ Bi(~ti) ⊂ Db(xi) for i = 1, . . . ,m+ n.
See Figure 7. We require that

Σ̂(~t ) =
⊎

1≤i≤m+n

Bi(~ti)

defines a cross-section to the flow satisfying the following conditions:
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(H1) {Ai,j(t)}|t|≤1 satisfies Lemma 5.2 for every 1 ≤ i ≤ m+ n, 1 ≤ j ≤ Ni.

(H2) Ai1,j1(t) t f−kb (Ai2,j2(t′)) for all distinct pairs (i1, j1), (i2, j2) ∈ {(i, j) : 1 ≤ i ≤ m +

n, 1 ≤ j ≤ Ni}, |t|, |t′| ≤ 1 and 0 ≤ k ≤ `0n0. In particular, Ai1,j1(t) ∩ f−kb (Ai2,j2(t′))
is at most countable.

xi

Z Eu

Es
Da(xi)

Db(xi)

Bi(~ti)

Ai,j(ti,j)

Figure 7. Construction of Bi(~ti).

Here is how we guarantee (H2). Since {Ai,j(t)}|t|≤1 satisfies Lemma 5.2, it is transverse
to Es, Eu. The pre-iterates of pieces of curves that make no LBT are associated to bounded
flow times, hence can be perturbed to satisfy (H2). Now, if A makes its first LBT at time

i, then up to a compact component the infinite curves composing f
−(i+1)
b (A) belong to

the stable cone, and so are transverse to every Ai,j(t) after a small perturbation. The

transversality implies that each compact component of f−kb (Ai2,j2(t′)) intersects Ai1,j1(t) in

finitely many points, therefore the intersection Ai1,j1(t)∩f−kb (Ai2,j2(t′)) is at most countable.

To finish the construction of Σ̂, we show that the space of parameters ~t such that

S +(Σ̂(~t )) has a triple intersection up to the `0n0’th pre-iterate of fb has zero Lebesgue

measure. For that, we analyze all possible triple intersections. Recall that S +(Σ̂(~t )) =

∂Σ̂(~t ) ∪ {τ
Σ̂(~t )

= ∞}. Since {τ
Σ̂(~t )

= ∞} is asymptotic to γ, there are not even double

intersections associated to it. We have six remaining possibilities for triple intersections:

◦ Ai,j(ti,j) ∩ f−kb [Ai,j(ti,j)] ∩ f−pb [Ai,j(ti,j)]: this intersection is empty, by (H1).

◦ Ai1,j1(ti1,j1) ∩ f−kb [Ai2,j2(ti2,j2)] ∩ f−pb [Ai3,j3(ti3,j3)] with (i3, j3) 6= (i1, j1) or (i3, j3) 6=
(i2, j2): by (H2), Ai1,j1(ti1,j1) ∩ f−kb [Ai2,j2(ti2,j2)] is at most countable. If we fix all pa-
rameters except ti3,j3 , there are at most countably many choices for ti3,j3 such that the
triple intersection is non-empty.
◦ Ai,j(ti,j) ∩ f−kb [Ai,j(ti,j)] ∩ f−pb [{τ

Σ̂(~t )
=∞}]: this intersection is empty, by (H1).

◦ Ai1,j1(ti1,j1)∩f−kb [Ai2,j2(ti2,j2)]∩f−pb [{τ
Σ̂(~t )

=∞}] with (i1, j1) 6= (i2, j2): the intersection

Ai1,j1(ti1,j1) ∩ f−pb [{τ
Σ̂(~t )

=∞}] is at most countable, since every compact component of

f−pb [{τ
Σ̂(~t )

= ∞}] is transverse to Ai1,j1(ti1,j1) and hence intersects it in finitely many

points. Thus, if we fix all parameters except ti2,j2 , there are at most countably many
choices for ti2,j2 such that the triple intersection is non-empty.
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◦ {τ
Σ̂(~t )

=∞} ∩ f−kb [Ai,j(ti,j)] ∩ f−pb [Ai,j(ti,j)]: this intersection is empty, by (H1).

◦ {τ
Σ̂(~t )

= ∞} ∩ f−kb [Ai2,j2(ti2,j2)] ∩ f−pb [Ai3,j3(ti3,j3)] with (i2, j2) 6= (i3, j3): this case is

similar to the fourth one, since again {τ
Σ̂(~t )

=∞}∩f−kb [Ai2,j2(ti2,j2)] is at most countable.

The section Σ̂: Define Σ̂ = Σ̂(~t ), where ~t is any parameter such that S +(Σ̂(~t )) has no
triple intersections up to the `0n0’th pre-iterate under fb.

5.3. Construction of Σ0. The final step in the construction, which leads to the section Σ0,

is to make small flow displacements in Σ̂ so that the Poincaré return time of Σ0 is at least
Tχ > 0 and Σ0 is almost perpendicular to the flow direction. We measure the perpendicu-
larity using a new parameter ε� χ. For each 1 ≤ i ≤ m+n, let pi : g[−χ,χ]Db(xi)→ Db(xi)

be the flow projection. Write Σ̂ =
⋃

1≤i≤m+nBi, and let tmin be the minimal flow time
defined by fb.

Step 5 (Refinement of Σ̂): For each 1 ≤ i ≤ m+ n, construct a family Qi = {Q} such
that:

◦ each Q ∈ Qi is contained in a su–disc of radius < ε and

Bi ⊂
⋃
Q∈Qi

g[− 1
3
tmin,

1
3
tmin]Q;

◦ Q ∩ g[− 1
100

tmin,
1

100
tmin]Q

′ = ∅ for all distinct Q,Q′ ∈ Qi.
◦ pi[∂Q] is transverse to Es, Eu for all Q ∈ Qi;
◦ there are no triple intersections between S +(Σ̂) and

⋃
1≤i≤m+n
Q∈Qi

pi[∂Q] up to the `0n0’th

pre-iterate under fb.

Observe that the smaller ε is, the more perpendicular is Q to the flow. To create Qi, first

consider a refinement R̂i = {R̂} of Bi by finitely many compact curves transverse to Es, Eu,

see Figure 8. Proceeding similarly to the proof of [LS19, Lemma 2.7], displace each R̂ in
the flow direction to obtain R, so that Ri = {R} is a disjoint family and the displacements

of neighbor R̂’s differ at least tmin/50. For each R ∈ Ri, choose yR ∈ R and apply Step 4
to construct R ⊂ Q ⊂ Ddiam(R)(yR) satisfying the above conditions, where R is the flow
projection of R to Ddiam(R)(yR).

The section Σ0: Define Σ0 =
⋃

1≤i≤m+n
Q∈Qi

Q.

By the first two conditions in Step 5, the corresponding Poincaré return time of Σ0 is
bounded below by a constant Tχ > 0 which is independent of ε.

5.4. The first return map f . We now define a first return map f which will eventually
be shown to satisfy the Chernov axioms. Recall that, by construction, all flow trajectories
intersect Σ0 infinitely often except those forward and backward asymptotic to γ.

Return time function: The return time function of Σ0 is τ = τ+ : Σ0 → (0,∞] such
that τ(x) = inf{t > 0 : gt(x) ∈ Σ0}. Define also τ− : Σ0 → [−∞, 0) by τ−(x) = sup{t < 0 :
gt(x) ∈ Σ0}.
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Z Eu

Es

Db(xi)

Ddiam(R)(yR)

g[−χ,χ](R̂)

Q

R̂

R

R̂

Bi

Figure 8. Construction of Σ0: refine Σ̂ displacing each component to im-
prove perpendicularity and preserving no triple intersections.

We have τ(x) = ∞ if and only if x is an asymptotic vector, hence {τ = ∞} is a finite
union of compact curves, each of them contained in g[−χ,χ]Ω

=
+.

Primary singular sets S ±
P : The primary singular set SP = S +

P is defined as

SP = {x ∈ Σ0 : τ(x) <∞ and gτ(x)(x) ∈ ∂Σ0} ∪ {τ =∞}.

Similarly, the primary singular set S −
P is defined as

S −
P = {x ∈ Σ0 : τ−(x) > −∞ and gτ−(x)(x) ∈ ∂Σ0} ∪ {τ− = −∞}.

Note that S ±
P are closed sets. Proceeding similarly to Section 4.3, we partition a neigh-

borhood of {τ = ∞} into homogeneity bands. For that, fix a sufficiently large integer n0

(how large n0 is will depend on a finite number of conditions, which include the validity of
Lemma 5.9 and the estimates in Section 6).

Homogeneity bands on Σ0: For each n ≥ n0, the homogeneity band with index n is
Dn = D>

n ∪D<
n where

D>
n =

{
x ∈ int(Σ0) ∩ g[−χ,χ]Ω+ : 1 + 1

(n+1)2 < |c(x)| < 1 + 1
n2

}
D<
n =

{
x ∈ int(Σ0) ∩ g[−χ,χ]Ω+ : 1− 1

n2 < |c(x)| < 1− 1
(n+1)2

}
.

Secondary singular sets S ±
S : The secondary singular set SS = S +

S is

SS =
⋃
n≥n0

∂Dn.
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The secondary singular set S −
S is

S −
S = {gτ(x)(x) : x ∈ SS}.

Let X0 = int(Σ0), S + = SP ∪SS, and S − = S −
P ∪S −

S .

First return map f : Define the map f : X0\S + → X0\S − to be the first return map
of the flow to Σ0, i.e. f(x) = gτ(x)(x).

The map f has the same regularity of gt, hence it is C2. It has uniformly bounded
derivatives away from {τ = ∞}. Since Σ0 is almost perpendicular to the flow direction,
the hyperbolicity properties of f away from {τ = ∞} are almost the same as those of the
flow. We lose control as we approach {τ = ∞}, and the homogeneity bands Dn enable us

to recover this control. Since Σ0 is obtained from small flow displacements of Σ̂ ⊂ Σ̃, the
first return map f is a small perturbation (in the flow direction) of (a restriction of) fb and,
for trajectories near asymptotic vectors, fb is a small perturbation of f0. Hence, we can
understand f inside homogeneity bands by studying f0 inside homogeneity bands. Let us
be more specific in the relation between f and f0. Since we are interested in the transitions
in the neck, define

Σ+ =
{
x ∈ Σ0 ∩ g[−χ,χ]Ω+ : ||c(x)| − 1| < 1

n2
0

and fx ∈ g[−χ,χ]Ω−
}

Σ− = f(Σ+) =
{
x ∈ Σ0 ∩ g[−χ,χ]Ω− : ||c(x)| − 1| < 1

n2
0

and f−1x ∈ g[−χ,χ]Ω+

}
It is clear that f �Σ+ : Σ+ → Σ−.

Coordinate maps p± and t±: The coordinate maps p+ : Σ+ → Ω+ and t+ : Σ+ → [−χ, χ]
are defined by the equality z = gt+(z)[p+(z)] for z ∈ Σ+. The coordinate maps p− : Σ− → Ω−
and t− : Σ− → [−χ, χ] are defined analogously.

The coordinate maps have the same regularity of gt, hence they are C2. Since Σ0 and
Ω are uniformly transversal to the flow direction, we have that ‖dp±1

± ‖ ≈ 1. By the first
inclusion of (5.1), p+ is surjective. It is also injective, because if x ∈ Σ+ then x, fx are
uniquely characterized as being the starting/ending point of the transition in the neck.
Therefore, p+ is a bijection. By symmetry, the same holds for p−. Recall the definition of
Cn in Section 4.3. We note that:

◦ Cn = p+(Dn) for all n ≥ n0.
◦ f = p−1

− ◦ f0 ◦ p+ in Σ+.

Since Es,u are defined in Σ±,Ω± as the projections of Ês,u onto the respective tangent
spaces, the maps p± preserves these subspaces. Using that ‖dp±1

± ‖ ≈ 1, we obtain that
‖df �Es,ux ‖ ≈ ‖df0 �Es,u

p+(x)
‖ for x ∈ Σ+. In the next two subsections, we will estimate

‖df0 �Es,u ‖ inside homogeneity bands and some related bounds.

5.5. Excursion times in the neck. In the notation of Section 4.2, let x = x(t) be a
bouncing/crossing geodesic undergoing an excursion in the neck. Recall from Section 4.2
that Υ0 (more precisely 2Υ0) is the transition time from Ω+ to Ω−. Similarly, we define Υ
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to be the time taken to pass from Σ+ to Σ−. Since f = p−1
− ◦ f0 ◦ p+ on Σ+, we have the

relation

Υ(x) = −t+(x) + 2Υ0(x) + t−(f(x)),(5.2)

where x is the starting point of x in Σ+. Since |t±| ≤ χ, Lemma 4.4 implies the following
estimate.

Lemma 5.3. If x is a geodesic with entry vector in Dn then Υ(x) ≈ n
r−2
r .

Next, we estimate the tail of Υ. Let Leb denote the Lebesgue measure on Σ+ in Clairaut
coordinates.

Lemma 5.4. Leb[{x ∈ Σ+ : Υ(x) > n}] ≈ n−
2r
r−2 .

Proof. The push-forward of Leb under p+ is equivalent to the Lebesgue measure of Ω+,
hence we just need to estimate the Lebesgue measure of p+{x ∈ Σ+ : Υ(x) > n}. Since
|t±| ≤ χ, equation (5.2) gives that

Leb [p+{x ∈ Σ+ : Υ(x) > n}] ≈ Leb [{x ∈ Ω+ : 2Υ0(x) > n}] .

By Lemma 4.5, Leb[C<
n ] ≈ n−3 and Leb[C>

n ] ≈ n−3, therefore Leb[Cn] ≈ n−3. Letting
Uk =

⋃
`>k

C`, it follows that

Leb[Uk] ≈
∑
`>k

`−3 ≈ k−2.

By Lemma 4.4, there exists C > 1 independent of k such that C−1k
r−2
r ≤ 2Υ0(x) ≤ Ck

r−2
r

for every geodesic x with entry vector in Ck. For such k, we have the following:

◦ If k > (Cn)
r
r−2 then 2Υ0(x) ≥ C−1k

r−2
r > n.

◦ If k ≤
(
C−1n

) r
r−2 then 2Υ0(x) ≤ Ck

r−2
r ≤ n.

This implies the inclusions

U
(Cn)

r
r−2
⊂ {x ∈ Ω+ : 2Υ0(x) > n} ⊂ U

(C−1n)
r
r−2

and, since Leb
[
U

(C±1n)
r
r−2

]
≈
(
n

r
r−2
)−2

= n−
2r
r−2 , the proof is complete. �

Remark 5.5. From Remark 5.1, f is conjugate to the extended transition map f0, and

Υ is cohomologous to the extended function 2Υ0. More specifically, if h : Σ0 → Ω̃ is the
conjugacy with h ◦ f = f0 ◦ h then Υ− 2Υ0 ◦ h is a coboundary for f .

5.6. Hyperbolicity properties of f on Σ+. We now establish some hyperbolicity prop-
erties of f �Σ+ . Our reference metric is the δ–Sasaki metric ‖ · ‖ = ‖ · ‖δ−Sas for a small
δ > 0. Recall that this metric is equivalent to the Sasaki metric ‖ · ‖Sas and also to the
Clairaut metric ‖ · ‖C. Among the Chernov axioms, the only one that requires a precise

multiplicative constant is (A2.5). Recall that Ês/u are the stable/unstable subspaces for gt,

which project to directions Es/u on Σ0 and Ω. Let P denote such projection. Since Σ0,Ω

are nowhere perpendicular to Ês,u, we have ‖P±1‖ ≈ 1.

Lemma 5.6. Lebesgue almost every x ∈ Σ0 has an LSM/LUM W
s/u
x for f .
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Proof. We prove the statement for LSM (the argument for LUM is the same, by time

reversion). Since every x ∈ Σ0 has invariant directions Es/u, it is enough to show that there
is no fast convergence of trajectories to S +, i.e. that 1

n log d(fnx,S +) 6→ 0 for a.e. x ∈ Σ0.
To see this, let α > 0 and consider the set

Aα,n = {x ∈ Σ0 : d(fnx,S +) < e−αn}.
By the Borel-Cantelli lemma, it is enough to show that

∑
n≥1

Leb[Aα,n] < ∞ for every α >

0, in which case lim supAα,n has zero Lebesgue measure and so does the set {x ∈ Σ0 :
1
n log d(fnx,S +)→ 0}. We have

Aα,n = {x ∈ Σ0 : d(fnx,SP) < e−αn} ∪ {x ∈ Σ0 : d(fnx,SS) < e−αn}.
If B is the first set in the above union, then fn(B) is covered using finitely many sets of
measure ≈ e−αn, one for each curve of SP. Hence Leb(fn(B)) � e−αn and so, by f–
invariance, we have Leb(B)� e−αn. If C is the second set in the above union, then fn(C)

is covered using
⌈
eαn/2

⌉
sets of measure ≈ e−αn, namely one to cover all of

⋃
k≥eαn/2 Dk

and the others to cover Dn0 , . . . ,Ddeαn/2e−1. Again by f–invariance, we get that Leb(C)�
eαn/2 · e−αn = e−αn/2. Hence

Leb(Aα,n)� e−αn + e−αn/2 � e−αn/2.

The proof is complete. �

By Lemma 2.4(3), there are continuous functions x ∈ Ω+ 7→ esx, e
u
x such that e

s/u
x ∈ TxΩ+

is a unit vector spanning E
s/u
x . Since our analysis is local, we write f0(x) = f0(θ, ψ) =

(θ ± ζ(ψ),±ψ) omitting the entry ±ε0. We focus on the case f0(x) = (θ + ζ(ψ),±ψ) since
the other sign is treated the same way. In this notation,

(df0)x = (df0)(θ,ψ) =

[
1 ζ ′(ψ)
0 ±1

]
.

If x is the geodesic defined by x ∈ Ω+ \ Ω=
+, then (df0)x ◦ P = P ◦ (dg2Υ0(x))x and so

‖(df0)x‖ ≈ ‖(dg2Υ0(x))x‖. By equation (2.1), we have ‖df0e
s
x‖ � 1 for x ∈ Ω+ \ Ω=

+.

Lemma 5.7. The following are true.

(1) There is a Hölder continuous function a : Ω+ → R such that Eux is spanned by

[
a(x)

1

]
for all x ∈ Ω+.

(2) For all x ∈ Ω+, there a C1+Lip function Θ such that W u
x is locally the graph {(Θ(ψ), ψ)}

of Θ.

Part (1) says that Eu is not horizontal in the (θ, ψ) coordinates.

Proof. Recall that the definition of Ω+ depends on the small parameter χ; hence the homo-

geneity bands Cn are only defined for large n. Let x ∈ Ω+ \ Ω=
+. Writing esx =

[
e1(x)
e2(x)

]
, we

have

df0e
s
x =

[
e1(x) + ζ ′(x)e2(x)

±e2(x)

]
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where ζ ′ ≈ n3− 2
r in Cn by Lemma 4.6. Since ‖df0e

s
x‖ � 1, we get that |e2| � n−3+ 2

r and
in particular e2 → 0 as n→∞. In other words, esx → (1, 0) as n→∞, see Figure 9. Since

θ

ψ

esx

eux

(Θ(ψ), ψ)

Figure 9. We have esx → (1, 0) as n→∞, hence W u
x is not horizontal.

x 7→ Eux is Hölder continuous (Theorem 2.6) and Eu is transverse to Es, part (1) follows.

For part (2), recall that by Theorem 2.6 the leaves Ŵ u
x are uniformly C1+Lip. This

implies that W u
x are uniformly C1+Lip for x ∈ Ω+. Since W u

x is transverse to the horizontal
direction (1, 0), the implicit function theorem implies that we can locally write W u

x as the
graph {(Θ(ψ), ψ)} of a C1+Lip function Θ. This completes the proof. �

Lemma 5.8 (Growth bounds). If x ∈ Dn then ‖df �Eux ‖ ≈ n
3− 2

r .

Proof. Since ‖df �Eux ‖ ≈ ‖df0 �Eu
p+(x)

‖, we need to prove that ‖df0 �Eux ‖ ≈ n3− 2
r for

x ∈ Cn. We use the Clairaut metric. By Lemma 5.7(1), there exists a : Ω+ → R continuous

such that Eux is spanned by

[
a(x)

1

]
for x ∈ Ω+. If x = (θ, ψ) ∈ Cn, Lemma 4.6 gives that

df0

[
a(x)

1

]
=

[
a(x) + ζ ′(x)
±1

]
where ζ ′(x) ≈ n3− 2

r . Hence

(5.3) ‖df0 �Eux ‖C =

∥∥∥∥[a(x) + ζ ′(x)
±1

]∥∥∥∥
C

/∥∥∥∥[a(x)
1

]∥∥∥∥
C

=
1 + |a(x) + ζ ′(x)|

1 + |a(x)|

and, since a is bounded, we obtain that ‖df0 �Eux ‖C ≈ n
3− 2

r . �

Lemma 5.9 (Distortion bounds). If x, x ∈ D>
n or x, x ∈ D<

n with x ∈W u
x , then∣∣ log ‖df �Eux ‖ − log ‖df �Eux ‖

∣∣� d(fx, fx)
1
3 .

Proof. Again, it is enough to prove the estimate for the map f0 in the Clairaut metric.
Performing a calculation analogous to the one before Lemma 5.7 and using the equivalence
between metrics, we have ‖df0 �Eux ‖C � 1 for x ∈ Ω+ \Ω=

+ and so dC(x, x)� dC(f0x, f0x)
whenever x ∈W u

x .
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Write x = (θ, ψ) and x = (θ, ψ). By equation (5.3),∣∣log ‖df0 �Eux ‖C − log ‖df0 �Eux ‖C
∣∣ =

∣∣∣∣log

(
1 + |a(x) + ζ ′(x)|

1 + |a(x)|

)
− log

(
1 + |a(x) + ζ ′(x)|

1 + |a(x)|

)∣∣∣∣
=

∣∣∣∣log

(
1 + |a(x) + ζ ′(x)|
1 + |a(x) + ζ ′(x)|

)
− log

(
1 + |a(x)|
1 + |a(x)|

)∣∣∣∣ ·
Using that log

(
|a|
|b|

)
= log

(
1 + |a|−|b|

|b|

)
≤ |a−b||b| , we obtain∣∣log ‖df0 �Eux ‖C − log ‖df0 �Eux ‖C

∣∣ ≤ ||a(x) + ζ ′(x)| − |a(x) + ζ ′(x)||
1 + |a(x) + ζ ′(x)|

+
||a(x)| − |a(x)||

1 + |a(x)|

≤ |ζ ′(x)− ζ ′(x)|
1 + |a(x) + ζ ′(x)|

+
|a(x)− a(x)|

1 + |a(x) + ζ ′(x)|
+
|a(x)− a(x)|

1 + |a(x)|
·

Since a is bounded and n0 is large, Lemma 4.6 implies that |a(x) + ζ ′(x)| ≥ 1
2 |ζ
′(x)| and so∣∣log ‖df0 �Eux ‖C − log ‖df0 �Eux ‖C

∣∣ ≤ 2
|ζ ′(x)− ζ ′(x)|
|ζ ′(x)|

+ 2|a(x)− a(x)|.(5.4)

This estimate holds for all x, x ∈ C<
n or x, x ∈ C>

n . Assuming that x ∈ W u
x , then by

Lemma 5.7(2) we can write the latter expression as a function of ψ and apply the mean
value theorem to get that∣∣log ‖df0 �Eux ‖C − log ‖df0 �Eux ‖C

∣∣ ≤ 2

∣∣ζ ′(ψ)− ζ ′(ψ)
∣∣∣∣ζ ′(ψ)

∣∣ + 2|a(ψ)− a(ψ)|

≤ 2
‖ζ′′‖∞
|ζ′(ψ)| |ψ − ψ|+ 2|a(ψ)− a(ψ)|.

Also by Lemma 5.7(2), the restriction of a to W u
x is CLip, i.e. the map ψ 7→ a(ψ) is CLip,

hence |a(ψ) − a(ψ)| � |ψ − ψ| ≤ dC(x, x) � dC(f0x, f0x). To estimate the other term,

apply Lemma 4.6 to get that
‖ζ′′‖∞
|ζ′(ψ)| � n2 and so by Lemma 4.5

‖ζ′′‖∞
|ζ′(ψ)| |ψ − ψ| �

[
n2|ψ − ψ|

2
3

]
|ψ − ψ|

1
3 � |ψ − ψ|

1
3 ≤ dC(x, x)

1
3 � dC(f0x, f0x)

1
3 .

Combining these estimates, we conclude the proof of the lemma. �

Lemma 5.10 (Uniform bounds on jacobian of holonomies). There is a constant κ > 0 such
that if x, x ∈ D>

n or x, x ∈ D<
n with x ∈W s

x then∣∣ log ‖df �Eux ‖ − log ‖df �Eux ‖
∣∣� d(x, x)κ.

Proof. As usual, we prove the corresponding estimate for f0, taking the Clairaut metric
and assuming that f0(θ, ψ) = (θ + ζ,±ψ). Let x = (θ, ψ) and x = (θ, ψ). Fix κ0 > 0 such
that x 7→ a(x) is κ0–Hölder continuous (see Lemma 5.7(2)), i.e. |a(x)− a(x)| � dC(x, x)κ0 .
By (5.4), ∣∣log ‖df0 �Eux ‖C − log ‖df0 �Eux ‖C

∣∣ ≤ 2

∣∣ζ ′(ψ)− ζ ′(ψ)
∣∣∣∣ζ ′(ψ)

∣∣ + 2|a(x)− a(x)|

≤ 2
‖ζ′′‖∞
|ζ′(ψ)| |ψ − ψ|+ 2|a(x)− a(x)|.
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Again,
‖ζ′′‖∞
|ζ′(ψ)| |ψ − ψ| �

[
n2|ψ − ψ|

2
3

]
|ψ − ψ|

1
3 � |ψ − ψ|

1
3 ≤ dC(x, x)

1
3 . The lemma follows

with κ = min
{

1
3 , κ0

}
. �

We end this section with an estimate of the variation of Υ on stable/unstable manifolds.

Lemma 5.11. If x,x are both bouncing/crossing geodesics with entry vectors x, x ∈ Σ+

such that x ∈W s/u
x then

|Υ(x)−Υ(x)| � d(x, x) + d(fx, fx).

Proof. For χ > 0 small enough, let pΣ0 : g[−χ,χ]Σ0 → Σ0 and tΣ0 : g[−χ,χ]Σ0 → [−χ, χ] be
the coordinate maps of the flow box g[−χ,χ]Σ0. These maps have the same regularity as the

flow gt, hence in particular are Lipschitz. Since the leaves Ŵ s/u are uniformly transverse

to the flow direction, d(x, y) ≈ d(x, pΣ0(y)) whenever x ∈ Σ0 and y ∈ Ŵ s/u
x is close to x.

Fix x ∈ Σ+ and x ∈ W
s/u
x . By definition, x = pΣ0(y) for some y ∈ Ŵ

s/u
x , i.e. y =

gtΣ0
(y)(x). We also have fx = gΥ(x)(x) and z := gΥ(x)(y) ∈ Ŵ s/u

fx . Hence f(x) = pΣ0(z) =

g−tΣ0
(z)(z) = gtΣ0

(y)+Υ(x)−tΣ0
(z)(x), so

Υ(x) = Υ(x) + tΣ0(y)− tΣ0(z).

Since

◦ |tΣ0(y)| = |tΣ0(y)− tΣ0(x)| � d(x, y) ≈ d(x, x) and
◦ |tΣ0(z)| = |tΣ0(z)− tΣ0(fx)| � d(z, fx) ≈ d(f(x), fx),

we conclude that |Υ(x)−Υ(x)| ≤ |tΣ0(y)|+ |tΣ0(z)| � d(x, x) + d(fx, fx). �

6. The first return map f satisfies the Chernov axioms

In Section 5.4, we defined the first return map f : X0\S + → X0\S −, and in Sections 5.5
and 5.6 we obtained precise estimates for trajectories that approach the degenerate closed
geodesic γ. Even though the rate of hyperbolicity of gt in a neighborhood of γ is weak,
geodesics spend a long time during the transition (Lemma 5.3) and so the accumulated
hyperbolicity is large (Lemma 5.8). We now prove that f satisfies the Chernov axioms
(A1)–(A8) stated in Section 3.1.

Theorem 6.1. The first return map f satisfies the Chernov axioms (A1)–(A8).

Proof. Recall that the parameters r ≥ 4, ε0 > 0 are fixed and we are choosing χ, δ, η > 0
small enough, and n0 ∈ N large. We consider the δ-Sasaki metric, cf. Section 2.1, which is
equivalent to the Clairaut metric on T 1A, cf. Section 2.2. Let T : X0 \S + → (0,∞) be the
Poincaré return time defined by f . We have inf(T) ≥ Tχ > 0, cf. Section 5.3.

Verification of (A1): Recall that X0 = int(Σ0), cf. Section 5.4. Take X̂ = X = Σ0,
which is a compact Riemannian surface with the metric induced by the δ–Sasaki metric.
We have that S +,S − are closed subsets of X, cf. Section 5.4. The regularity of f is the
same of gt, hence it is a C2 diffeomorphism. This proves axiom (A1).

Verification of (A2): Recall that the directions E
s/u
x are the flow projections of Ê

s/u
x ,

defined for all x ∈ X. By Lemma 2.4(1), {Es/ux } are df–invariant. On Σ+, f has high rate
of hyperbolicity by Lemma 5.8, hence we just need to estimate the hyperbolicity of f on
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X0 \ Σ+. Since each su–disc is tangent to Ês/u at its center and the su–discs used in the
construction of Σ0 have radii smaller than η (see Step 5 in Section 5.3), there is C = C(η) > 1
with lim

η→0
C(η) = 1 such that C−1‖dgT(x) �Ês/ux

‖ ≤ ‖df �
E
s/u
x
‖ ≤ C‖dgT(x) �Ês/ux

‖ for all

x ∈ X0 \S +. We estimate the hyperbolicity along Eux . The set

Y = {gt(x) : x ∈ X0 \ Σ+ and 0 ≤ t ≤ T(x)}
is at distance > ε0/2 from γ. Letting m1 = inf(u+ �Y ), Proposition 2.5 implies that
0 < m1 <∞ and so equation (2.1) for Eu gives that

‖dgT(x) �Êux
‖ ≥ C−1

δ exp

[∫ T(x)

0
u+(gtx)dt

]
≥ C−1

δ exp [inf(T)m1] =: Λu.

If δ > 0 is small enough then Λu > 1. Hence, for δ, η small enough we have ‖df �Eu ‖ ≥
C−1‖dgT(x) �Êu ‖ ≥ C−1Λu > 1. Arguing similarly with Esx, we find Λs < 1 such that

‖df �Es ‖ ≤ CΛs < 1. Choosing 1 < Λ < C−1 min{Λ−1
s ,Λu}, we have that ‖df �Eu ‖ > Λ

and ‖df−1 �Es ‖ > Λ. Finally, choose α = α(Λ) > 0 small enough, and for x ∈ X define the
cones

Csx = {vs + vu : vs,u ∈ Es,ux and ‖vu‖ < α‖vs‖}
Cux = {vs + vu : vs,u ∈ Es,ux and ‖vs‖ < α‖vu‖}.

Hence:

◦ Condition (A2.1) follows from Lemma 2.4(3).
◦ Condition (A2.2) follows from Lemma 2.4(2).
◦ Condition (A2.3) follows from Lemma 2.4(4), since X ∩Deg = ∅.
◦ Condition (A2.4) follows from Lemma 2.4(1).
◦ Condition (A2.5) follows because ‖df �Eu ‖, ‖df−1 �Es ‖ > Λ and α > 0 is small.

Verification of (A3). Recall that S + = SP ∪SS, where

SP = {x ∈ Σ0 : τ(x) <∞ and gτ(x)(x) ∈ ∂Σ0} ∪ {τ =∞},

SS =
⋃
n≥n0

∂Dn.

By construction, ∂Σ0 is transverse to Eu, hence by df–invariance the set {x ∈ Σ0 : τ(x) <
∞ and gτ(x)(x) ∈ ∂Σ0} is as well. We also know that {τ = ∞} is contained in the stable
manifold of Deg, hence it is transverse to Eu. This shows that SP is transverse to Eu,
but also SS since the curves ∂Dn converge in the C1 norm to {τ = ∞}. Another way to
see this later property is observing that, in Clairaut coordinates, {τ = ∞} is contained in
{ψ = ψ0} on Ω1 (with suitable modifications on the remainder of Ω+) while the two curves
composing ∂Dn are of the form {ψ = ψn} with lim

n→∞
ψn = ψ0.

Verification of (A4). The Liouville measure µ on M induces a Liouville measure µΣ0

on Σ0, invariant under f . We consider the ergodicity of fn with respect to µΣ0 . Since the
invariant manifolds of Deg have zero Liouville measure, the suspension flow (f,T) induced
by f is isomorphic to the flow gt, hence ergodic. The suspension flows (f,T) and (fn,Tn)
are isomorphic (Tn denotes the n–th Birkhoff sum), hence (fn,Tn) is ergodic and so fn is
ergodic.
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Verification of (A5). The leaves W
s/u
x are flow projections of the leaves Ŵ

s/u
x which,

by Theorem 2.6, are uniformly C1+Lip. Hence the same holds for the leaves W
s/u
x .

Verification of (A6). We claim that ψ(s) ≈ s
1
3 satisfies (A6). To see that, observe that

if x, y belong to the same connected component of Σ0 \ Σ+ then∣∣∣log ‖Df �Eux ‖ − log ‖Df �Euy ‖
∣∣∣� d(fx, fy)

1
3 ,

since outside Σ+ the map f has the same regularity as gt. Inside Σ+, Lemma 5.9 gives
the same estimate if both x, y ∈ D>

n or x, y ∈ D<
n . If W is a LUM and x, y belong to a

same connected component of W ∩Sn−1, then for all 0 ≤ k < n either fkx, fky belong to
the same connected component of Σ0 \ Σ+ or fkx, fky ∈ D>

nk
or fkx, fky ∈ D<

nk
for some

nk ≥ n0. Since we also have d(fkx, fky) ≤ Λk−nd(fnx, fny) for 0 ≤ k < n, we conclude
that ∣∣ log ‖Dfn �Eux ‖ − log ‖Dfn �Euy ‖

∣∣ ≤ n−1∑
k=0

∣∣ log ‖Df �Eu
fkx
‖ − log ‖Df �Eu

fky
‖

�
n∑
k=1

d(fkx, fky)
1
3 �

n∑
k=1

Λ
1
3

(k−n)d(fnx, fny)
1
3 � d(fnx, fny)

1
3 .

Verification of (A7). As in the verification of (A6), if x, x belong to the same connected
component of Σ0 \ Σ+ or both x, x ∈ D>

n or both x, x ∈ D<
n then∣∣ log ‖Df �Eux ‖ − log ‖Df �Eux ‖

∣∣ ≤ d(x, y)κ.

Indeed, the first case holds because the restriction of f to Σ0 \ Σ+ has bounded C2 norm,
and the latter cases follow from Lemma 5.10. By symmetry, it is enough to verify (A7) for
unstable holonomies, so let W1,W2 be sufficiently small and close enough LSM’s, and let
H : W1 → W2 be the (unstable) holonomy map. By classical Pesin theory (see e.g. [BP07,
Theorem 8.6.13]), the Jacobian JH of H is given by the equation

log JH(x) =

∞∑
i=0

(
log
∥∥Df �Eu

f−ix

∥∥− log
∥∥Df �Eu

f−iH(x)

∥∥).
By the uniform hyperbolicity of f , we have d(f−ix, f−iH(x)) ≤ Λ−id(x,H(x)) for all i ≥ 0
and, since f−ix, f−iH(x) belong to the same connected component of Σ0 \ Σ+ or are both
in the same D>

n or D<
n , we conclude that

| log JH(x)| ≤
∞∑
i=0

∣∣∣ log
∥∥Df �Eu

f−ix

∥∥− log
∥∥Df �Eu

f−iH(x)

∥∥∣∣∣
�

∞∑
i=0

d(f−ix, f−iH(x))κ �
∞∑
i=0

Λ−κid(x,H(x))κ � 1.

Verification of (A8). Let W be a LUM. By (A3), Eu is transverse to the boundaries
of homogeneity bands and so W ∩S1 is at most countable. When it is countable, we can
write W ∩ S1 = {xn, xn+1, . . .} where |c(xn)| = 1 ± 1

n2 and xn → x∞ ∈ Σ0 ∩ g[−δ,δ]Ω
=
+.
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Writing xn = (εn, θn, ψn) in Clairaut coordinates, we obtain that ρ(xn, x∞) ≈ |ψn − ψ∞| ≈
|c(xn)− c(x∞)| ≈ n−2, which proves (A8.1). For (A8.2), note that by Lemma 5.8

θ0 := lim inf
δ→0

sup
|W |<δ

∑
n≥n0

1
Λn
≈
∑
n≥n0

1

n3− 2
r
≈ 1

n
2− 2

r
0

< 1,

for n0 large enough, so (A8.2) follows. Finally, (A8.3) follows from our construction of Σ0,
which was made to prevent triple intersections of SP up to the n0’th pre-iterate under f .
In the terminology of Section 3.1, this gives that KP,n0 = 3, which is obviously smaller than

min{θ−1
0 ,Λ}n0 for n0 large enough. �

7. Proof of Theorem 1.1 and statistical limit laws

In this section, we prove the results mentioned in the introduction, Theorem 1.1 and
Remark 1.2 as well as various statistical limit laws.

In the previous sections, we constructed a first return map f : Σ0 → Σ0 that satisfies
the Chernov axioms. The return time function τ : Σ0 → (0,∞) defined in Section 5.4 is
bounded below but not above. We have f = gτ (i.e. f(x) = gτ(x)(x)).

By Theorem 3.1, f is modelled by a Young tower with exponential tails: there is a subset
Y ⊂ Σ0 with Leb(Y ) > 0 and a function σ : Y → N such that F = fσ : Y → Y is “nice”
(uniformly hyperbolic with product structure and bounded distortion) and Leb(σ > n)→ 0
exponentially quickly as n→∞. Note that

F = fσ = (gτ )σ = gϕ where ϕ =

σ−1∑
`=0

τ ◦ f `.

Hence, we have shown that the geodesic flow gt is modelled by a suspension flow over
F : Y → Y with roof function ϕ.

Next we estimate the tails of ϕ. Recalling the definition of Σ+ in Section 5.4, τ = Υ is
unbounded on Σ+, while τ is bounded on Σ0 \Σ+. By Lemma 5.4, µΣ0(τ > n) ≈ Leb(Υ >

n) ≈ n−(a+1) where a = r+2
r−2 . Since σ has exponential tails, a standard argument (see

for example [Mar04, CZ05a]) shows that µΣ0(ϕ > n) � (log n)a+1n−(a+1). In particular,

µΣ0(ϕ > n)� n−(a+1−ε) for any ε > 0.
To apply the recent work of [BBM19], we also require the following “bounded Hölder

constants” property for ϕ.

Lemma 7.1. We have |ϕ(x) − ϕ(x)| � d(x, x) for x, x ∈ Y with x ∈ W s
x , and |ϕ(x) −

ϕ(x)| � d(Fx, Fx) for x, x ∈ Y with x ∈W u
x .

Proof. This is essentially Lemma 5.11. Assume first that x ∈W u
x . If x, x ∈ Σ+ then τ = Υ,

and so by Lemma 5.11 we have that |τ(x)− τ(x)| � d(fx, fx). Since the same estimate is
trivially true for x, x ∈ Σ0\Σ+, it follows that |τ(x)−τ(x)| � d(fx, fx) for all x, x ∈ Σ0 with
x ∈ W u

x . By the hyperbolicity of f , this estimate implies that |ϕ(x) − ϕ(x)| � d(Fx, Fx)
for all x, x ∈ Y with x ∈W u

x . The argument along stable manifolds is similar. �

In the terminology of [BBM19, Section 6], we have shown that gt is a “Gibbs-Markov
flow”. The condition (H) in [BBM19, Section 6] follows from Lemma 7.1 by [BBM19,
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Lemma 8.3].3 The main remaining hypothesis in [BBM19] is “absence of approximate
eigenfunctions”. This can be verified using ideas from [BBM19, Section 8.4]. The general
setup there applies by Lemma 7.1. Since gt is a geodesic flow and hence has a contact
structure, it follows from [BBM19, Remark 8.11] that absence of approximate eigenfunctions
is automatic.

By [BBM19, Theorem 6.4], we can now deduce decay of correlations for the geodesic flow

gt with rate t−(a−ε) as claimed in Theorem 1.1 for a certain class of observables. However,
these observables belong to a regularity class defined in terms of the abstract suspension
flow over F with unbounded roof function ϕ. In order to work with sufficiently smooth
observables on the underlying phase space M , it is necessary to introduce a new Poincaré
map g with bounded roof function.

Remark 7.2. In the corresponding decay questions for billiards, we would often take g
to be the billiard collision map. However, for the geodesic flow, there is no such natural
candidate for g.

To construct g, we adjoin the cross-section Ω0 to Σ0. Recall that Σ0 is constructed by

small flow displacements of Σ̂. Since Σ̂ ∪ Ω0 is a global Poincaré section for the geodesic
flow gt, the same holds for Σ = Σ0 ∪ Ω0. Let g : Σ → Σ be the corresponding Poincaré
return map. Also, let h : Σ0 → (0,∞) be the first return time to Σ under gt. Then g = gh
and h is bounded above and below.

Let ∂tφ = d
dt(φ ◦ gt)|t=0 denote the derivative in the flow direction. An observable

φ : M → R is “sufficiently smooth” in Theorem 1.1 if ∂jtφ is Hölder for j = 0, . . . , k, for
some k sufficiently large independent of ε and φ. (Actually, it suffices that φ and ψ are both
Hölder and that one of them is sufficiently smooth.)

In particular, when r ≥ 4 is an even integer, an observable φ is sufficiently smooth if it
is Ck for k sufficiently large. Otherwise, the flow is not smooth (nor is M) and we require
in addition that the observable is sufficiently flat at the degenerate geodesic γ.

Proof of Theorem 1.1. We are now in the situation of [BBM19, Sections 7.1 and 7.2] (where
gt and g are called Tt and f , and there is no counterpart of our f). Most of the assumptions
therein follow from the existence of the Young tower, and the other assumptions (7.2),
(7.4), (7.5) are immediate (see [BBM19, Remark 7.2] for extra information). The remaining
assumptions of [BBM19, Corollary 8.1] (i.e. condition (H) and absence of approximate
eigenfunctions) have been dealt with above. Hence we conclude from [BBM19, Corollary 8.1]
the desired polynomial decay for Hölder observables that are sufficiently smooth. �

Turning to decay of correlations for the global Poincaré map g, we can write F = gϕ
∗

where ϕ∗ : Y → N is the return time to Y under g. Hence

gϕ = F = gϕ
∗

= (gh)ϕ
∗

3Condition (8.2) in [BBM19, Lemma 8.3] is stated more generally in terms of a separation time s. It is
standard in the Young tower set up that the estimate in terms of the metric d in Lemma 7.1 is stronger, e.g.
apply condition (7.3) from [BBM19] with n = 1.
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so it follows that ϕ =
∑ϕ∗−1

`=0 h ◦ g`. Since h is bounded above and below, ϕ∗ has the same
tails as ϕ, hence [BMT21, Proposition 5.1] gives that

1

na+1 log n
� µΣ0(ϕ∗ > n)� (log n)a+1

na+1
·

This says that g : Σ → Σ is modelled by a Young tower with polynomial tails with tail
rate essentially of order n−(a+1). The upper and lower bounds in Remark 1.2 now follow
from [You99] and [BMT21, Theorem 7.4(a)] respectively.

7.1. Statistical limit laws. Since g : Σ → Σ is modelled by a Young tower with polyno-
mials tails, it is possible to read off numerous statistical limit laws for Hölder observables
on Σ. Many of these pass over to the flow. The results in this subsection do not rely on
Theorem 1.1 and hence are not restricted to sufficiently smooth observables.

Since a = r+2
r−2 > 1, the return time function ϕ∗ : Y → N lies in L2. Hence it follows

from [MV16, Corollary 2.1] that the central limit theorem (CLT) holds for the map g.

Namely, let φ : Σ → R be Hölder with
∫

Σ φdµΣ = 0. Then n−1/2
∑n−1

j=0 φ ◦ gj converges in

distribution (with respect to µΣ) to a (typically nondegenerate) normal distribution. (At
the level of the one-sided Young tower obtained by quotienting stable leaves, the CLT was
proved by [You99, Theorem 4].) By [Zwe07], the convergence in distribution can equally be
taken with respect to Lebesgue measure on Σ.

Statistical limit laws for the flow gt follow by inducing from those for maps, see e.g.
[MT04, MZ15, KM16]. Here it is convenient to apply [BM18, Theorem 5.5]. (The roof
function ϕ and return times τ and σ are denoted by H, h and τ respectively in [BM18].)
Again ϕ ∈ L2. The underlying assumptions on Y and conditions (5.3)–(5.4) at the beginning
of [BM18, Section 5] are automatic consequences of the fact that Y is the base of a Young
tower. The assumptions on gt in conditions (5.1)–(5.2) of [BM18] follow from Proposition 2.5
and (2.1). Finally, the assumptions on ϕ in conditions (5.1)–(5.2) of [BM18] were verified in
Lemma 7.1. By [BM18, Theorem 5.5] the CLT holds for the flow. Namely, let φ : M → R
be Hölder with

∫
M φdµ = 0. Then t−1/2

∫ t
0 φ ◦ gs ds converges in distribution (with respect

to µ or Lebesgue measure) to a (typically nondegenerate) normal distribution.
A refinement of the CLT is the functional CLT or weak invariance principle (WIP).

Given φ : M → R Hölder with
∫
M φdµ = 0, we define Wn(t) = n−1/2

∫ nt
0 φ◦gs ds. Then Wn

converges weakly (with respect to µ or Lebesgue measure) in C([0, 1]) to Brownian motion
W by [BM18, Theorem 5.5].

Finally, we briefly mention applications to homogenization of deterministic fast-slow sys-
tems where the aim is to prove convergence, as the time separation goes to infinity, to a
stochastic differential equation driven by the Brownian motion W . See [CFK+19] for a
recent survey. Using rough path theory, it is sufficient [KM16, KM17] to check that the
fast dynamics satisfies certain statistical limit laws. As we now explain, our geodesic flow
examples gt satisfy all of these requirements for all r ≥ 4.

First, we require a multidimensional version of the WIP (for observables v : M → Rd).
Again this holds for g by [MV16] and for the flow by [MZ15]. However, the WIP does
not suffice to specify stochastic integrals, and for this one requires the so-called iterated
WIP. Once more, this holds for g by [MV16, Corollary 2.3] and for the flow by [BM18,
Theorem 5.5]. The remaining ingredients needed for homogenization are moment bounds



POLYNOMIAL DECAY OF CORRELATIONS IN NONPOSITIVE CURVATURE 45

and iterated moment bounds. Since h is bounded above and below, such bounds for the
flow follow by [KM16, Proposition 7.5] from the corresponding bounds for the map g. For
two-sided Young towers, such as we have here, optimal bounds for moments and iterated
moments were very recently obtained by [FV22]; in particular they hold in the full range
r ∈ [4,∞).

Appendix A. On two theorems of Gerber & Wilkinson

In this appendix we show how to adapt the results of Gerber & Wilkinson [GW99] to
prove Theorem 2.6. More specifically, we show how to obtain [GW99, Theorems I and II]
for surfaces with degenerate closed geodesic, see Section 2.3 for the definition.

In [GW99], Theorems I and II are proved for Cr metrics of nonpositive curvature, where
r ≥ 4 is an integer, under two assumptions on the surface:

(1) If γ is a geodesic that is not closed, then there is no infinite time interval I for which
K(γ(t)) = 0, for all t ∈ I.

(2) If γ is a closed geodesic, then there is a t such that K vanishes to order at most r − 3.

See the statements of the theorems and the remark in [GW99, p. 43]. It is clear that surfaces
with degenerate closed geodesic satisfy assumption (1), regardless of the value of r ∈ [4,∞)
(integer or not). But assumption (2), for non-integer r, makes no sense. Our goal is to check
that, even though surfaces with degenerate closed geodesic do not satisfy (2), all estimates
of Gerber & Wilkinson remain true, and so does Theorem 2.6. The reason is that (2) is
used to obtain a control on how the curvature approaches zero: if γ is a closed geodesic of
zero curvature, then there are constants C1, C2 > 0 such that

(A.1) − C1dist(p, γ)r−2 ≤ K(p) ≤ −C2dist(p, γ)r−2

in a neighborhood of γ. This estimate does hold for surfaces with degenerate closed geodesic,
as we now explain. Let S be such a surface. The region containing the closed geodesic γ
with zero curvature is the surface of revolution N , which we call the neck. The profile
function is ξ(s) = 1 + |s|r, hence by the curvature formula given in Section 2.2 we have:

(2)’ There are constants C1, C2 > 0 such that

−C1|s|r−2 ≤ K(s, θ) ≤ −C2|s|r−2,

where (s, θ) are the Clairaut coordinates on the neck N .

It is clear that (2)’ is (A.1) in our context. In the sequel, we check that [GW99, Theorems
I and II] hold under assumptions (1) and (2)’. We warn the reader that, while [GW99] uses
Fermi coordinates (s, a), we will maintain our use of the Clairaut coordinates (s, θ, ψ). Let
H− and H+ be the stable and unstable horocycle foliations of S.

Theorem A.1. Let S be a surface with degenerate closed geodesic. Then:

(i) The leaves of H− and H+ are uniformly C1+Lip.
(ii) The tangent distributions TH− and TH+ are Hölder continuous.

The proof of Theorem A.1 requires two general lemmas [GW99, Lemmas 3.1 and 3.2],
which we reproduce below (only the items that we explicitly refer to are listed).
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Lemma A.2 (Lemma 3.1 of [GW99]). Let K,K0,K1 : [A,B]→ R be continuous functions
and u, u0, u1 : [A,B]→ R be solutions of the Riccati equations u′+u2+K = 0, u′i+u

2
i +Ki =

0, i = 0, 1. Let y = u1 − u0 and ĵi(t) = exp
[
−
∫ B
t ui(τ) dτ

]
, i = 0, 1, and let j0, j1 be

solutions of the Jacobi equations j′′i +Kiji = 0, i = 0, 1. Then the following hold:

(ii) y(B) = y(A)ĵ0(A)ĵ1(A) +
∫ B
A [K0(t)−K1(t)]̂j0(t)ĵ1(t)dt.

(iii) ĵi(B) = 1 and ĵi satisfies the Jacobi equation ĵ′′i + Kiĵi = 0 for i = 0, 1; moreover, if

u1 ≥ 0 on [A,B], then 0 ≤ ĵ1 ≤ 1 on [A,B] and ĵ′1(A) ≤ 1/(B −A).
(v) If K is nonpositive and u(A) ≥ 0, then

u(B) ≥ u(A)

(B −A)u(A) + 1

and this estimate is an equality whenever K is identically zero.
(vi) If 0 ≤ j0(A) ≤ j1(A), 0 ≤ j′0(A) ≤ j′1(A) and K1(t) ≤ K0(t) ≤ 0 for all t ∈ [A,B],

then j0(B) ≤ j1(B).

Lemma A.3 (Lemma 3.2 of [GW99]). Let f : S → R be a nonpositive C2 function on a

C2 compact surface S. Define L := sup
{∣∣∣ d2

dt2
f(σ(t))

∣∣∣ : σ geodesic and t ∈ R
}

. Then

|f(p)− f(q)| ≤
√

2L
√
−f(p)d(p, q) +

L

2
d(p, q)2

for all p, q ∈ S.

Given v ∈ T 1S, let k−(v) and k+(v) be the curvature at v of the stable and unstable
horocycles. Recall from Section 2.1 that k± = u±, and that k± = 0 only at T 1γ. The next
result is a lower bound on the curvatures of horocycles, which is [GW99, Lemma 3.3] in our
context.

Lemma A.4. Let S be a surface with degenerate closed geodesic. There is a constant
C3 > 0 with the following property: if v = (s, θ, ψ) ∈ T 1N in Clairaut coordinates, then

k±(v) ≥ C3 max{|s|(r−2)/2, |ψ|(r−2)/r}.

Proof. In [GW99], this lemma is proved in Section 4. It considers a geodesic that visits the
flat region of S in the time interval [−T, 0], and decomposes [−T, 0] according to whether an
estimate as in assumption (2)’ holds or not. In our case, the estimate always holds, hence
we do not decompose [−T, 0]. The other ingredient is [GW99, Lemma 4.2], a lemma due to
K. Burns, which holds in our case in Clairaut coordinates, also due to assumption (2)’. �

Using the above lemma, we can control the curvature of the horocycles in terms of the
Gaussian curvature at the basepoint. This estimate is [GW99, Lemma 3.4] in our context.

Lemma A.5. Let S be a surface with degenerate closed geodesic. There is a constant
C4 > 0 such that for any v ∈ T 1S with basepoint p ∈ S it holds

k±(v) ≥ C4

√
−K(p).



POLYNOMIAL DECAY OF CORRELATIONS IN NONPOSITIVE CURVATURE 47

Proof. We first assume that v = (p, ψ) = (s, θ, ψ) ∈ T 1N . By assumption (2)’, −K(p) ≤
C1|s|r−2. By Lemma A.4, we have k±(v) ≥ C3C

−1/2
1

√
−K(p) for v ∈ T 1N . Now, since

k±(v) is continuous and positive outside T 1N , there is C > 0 such that

k±(v) ≥ C
√
−K(p)

for v 6∈ T 1N . Taking C4 = min{C3C
−1/2
1 , C}, the proof is complete. �

As done in [GW99, pp. 51 and 52], Lemmas A.2, A.3 and A.5 imply the next result.

Lemma A.6. Let S be a surface with degenerate closed geodesic. There are constants
C5, C6 > 0 with the following property. Let γ0, γ1 be geodesics, let Ki(t) = K(γi(t)) and
ui : [A,B] → R be a solution of the Riccati equation u′i + u2

i + Ki = 0, i = 0, 1. If
u0(t) ≥ k+(γ0(t)) for all A ≤ t ≤ B and u1(A) ≥ 0, then

|u1(B)− u0(B)| ≤ C5ε+ C6(B −A)ε2 + |u1(A)− u0(A)|̂j0(A)ĵ1(A),

where ε := max{d(γ0(t), γ1(t)) : t ∈ [A,B]} and ĵi(t) := exp
(
−
∫ B
t ui(τ) dτ

)
as defined in

Lemma A.2, i = 0, 1.

Proof of part (i) of Theorem A.1. Let S be a surface with degenerate closed geodesic, and
let γ0, γ1 be geodesics on the same unstable horocycle W ⊂ S. We estimate |k+(γ′0(0)) −
k+(γ′1(0))| in terms of ε := d(γ0(0), γ1(0)). Since t 7→ d(γ0(0), γ1(t)) is convex (K ≤ 0) and
d(γ0(t), γ1(t)) → 0 as t → +∞, we have d(γ0(t), γ1(t)) ≤ ε for all t ≤ 0. Let ui be the
unstable Riccati solutions along γi, i = 0, 1. Applying Lemma A.6 with A = −1/ε and
B = 0, we have

|k+(γ′1(0))− k+(γ′0(0))| = |u1(0)− u0(0)| ≤ C5ε+ C6ε+ |u1(A)− u0(A)|̂j0(A)ĵ1(A).

Since ui ≥ 0, we have 0 ≤ ĵi ≤ 1 and, by Lemma A.2(iii), ĵ′i(A) ≤ 1
B−A = ε, hence

|k+(γ′1(0))− k+(γ′0(0))| ≤ C5ε+ C6ε+ max
i=0,1

ui(A)ĵi(A) ≤ (C5 + C6 + 1)ε.

�

Next, we prove part (ii) of Theorem A.1. We will need two auxiliary lemma, the first
being [GW99, Lemma 3.6] in our context. Recall that k+, k− are the curvatures of the
stable and unstable horocycles.

Lemma A.7. Let S be a surface with degenerate closed geodesic. There is a constant
C7 > 0 such that for all v ∈ T 1S it holds

1

C7
k+(v) ≤ k−(v) ≤ C7k+(v).

Proof. As in Lemma A.5, we divide the proof into two cases. Start assuming v ∈ T 1N .
Assumptions (1) and (2)’ allow to apply a result of Gerber & Nitica [GN99, Theorem 3.1],
and obtain the upper bound

k±(v) ≤ C max{|s|(r−2)/2, |ψ|(r−2)/r}
for v = (s, θ, ψ) ∈ T 1N in Clairaut coordinates. This and Lemma A.4 imply that

1

C ′
k+(v) ≤ k−(v) ≤ C ′k+(v).
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for some C ′ > 0. The case v 6∈ T 1N follows as in the proof of Lemma A.5. �

The second auxiliary lemma is a simple estimate on solutions of the Riccati equation.

Lemma A.8 (Lemma 3.7 of [GW99]). Let K : [A,B]→ (−∞, 0] continuous. If u0, u1 are
solutions of the Riccati equation u′ + u2 +K = 0 and u1(t) ≥ u0(t) > 0 for t ∈ [A,B], then

exp
[∫ B
A u1(t) dt

]
exp

[∫ B
A u0(t) dt

] ≤ u1(A)

u0(A)
·

Proof of part (ii) of Theorem A.1. We wish to show that |k+(v0) − k+(v1)| ≤ Cd(v0, v1)α

for all v0, v1 ∈ T 1S. As in [GW99], we divide the proof into five steps.

Step 1. It is enough to show that |k+(v0)− k+(v1)| ≤ Cd(v0, v1)α for v0, v1 with the same
basepoint. Indeed, given v0, v1 with basepoints p0, p1, let v′1 ∈ T 1

p1
S be the vector spanning

a geodesic negatively asymptotic to the geodesic spanned by v0. By part (i), we have
|k+(v′1)− k+(v0)| ≤ Cd(p0, p1). Since S has nonpositive curvature, Busemann functions are
(uniformly) C2 and so d(v′1, v1) ≤ Cd(v0, v1). Hence, if |k+(v′1)−k+(v1)| ≤ Cd(v′1, v1)α then

|k+(v0)− k+(v1)| ≤ Cd(p0, p1) + Cd(v0, v1)α ≤ 2Cd(v0, v1)α.

Step 2. Given p ∈ S and v0, v1 ∈ T 1
pS, let ω be the angle between v0 and v1. We can

assume that |ω| < ω0 for ω0 small. Let vr ∈ T 1
pS, 0 ≤ r ≤ 1, be the continuous family of

unit vectors making angle rω with v0, and let γr be the variation of geodesics with γr(0) = p
and γ′r(0) = −vr. Define

T := max{T0 : the curve r ∈ [0, 1] 7→ γr(t) has length ≤
√
ω for all 0 ≤ t ≤ T0},

and consider the scalar function jr(t) associated to the perperdicular Jacobi field generated
by the variation of geodesics γr. By definition, jr(0) = 0, j′r(0) = ω, and∫ 1

0
jr(T ) dr =

√
ω.

Comparing jr with the solution of the Jacobi equation in zero curvature (cf. Lemma A.2(vi)),
we also have jr(T ) ≥ ωT . Therefore T ≤ 1/

√
ω. Similarly, comparing with the case of

constant curvature Kmin = inf K, we obtain that jr(T ) ≤ ω√
−Kmin

sinh(
√
−KminT ). If ω0 is

small enough, then T > 1. Now, as in [GW99, pp. 55], applying Lemma A.6 and Lemma A.7
we obtain

|k+(v0)− k+(v1)| ≤ C8

√
ω + C9

(
exp

[
−
∫ T

1
u0(t)dt

])β (
exp

[
−
∫ T

1
u1(t)dt

])β
for constants β,C8, C9 > 0.

Step 3. We estimate exp
[∫ T

1 w0(t)dt
]
, where w0 = j′0/j0 satisfies w′0 + w2

0 + K ◦ γ0 = 0

with w0(0) = ∞ and w0(t) > 0 for t > 0. Proceeding as in [GW99, pp. 56–57], there is a
constant C10 > 0 such that

exp

[
−
∫ T

1
w0(t)dt

]
≤ C10

√
ω.
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Step 4. Assume that k+(v0) 6= 0. Since w0(1) > u0(1), Lemma A.8 implies that

exp
[∫ T

1 w0(t) dt
]

exp
[∫ T

1 u0(t) dt
] ≤ w0(1)

u0(1)
·

By Lemma A.2(v), we have u0(1) ≥ u0(0)
u0(0)+1 and so w0(1)

u0(1) ≤
w0(1)(u0(0)+1)

u0(0) = w0(1)(u0(0)+1)
k+(v0) .

Since K is bounded from below, u0(0) and w0(1) are bounded from above and so there is a
constant C11 > 0 such that

exp

[
−
∫ T

1
u0(t) dt

]
≤ C11

k+(v0)
exp

[
−
∫ T

1
w0(t) dt

]
.

Step 5. By Steps 3 and 4, if k+(vi) 6= 0 then

exp

(
−
∫ T

1
ui(t) dt

)β
≤ C12

k+(vi)β
ωβ/2.

for some C12 > 0. By Step 2,

|k+(v0)− k+(v1)| ≤ C8

√
ω + C9C12 min{k+(v0), k+(v1)}−βωβ/2.

Recalling that ω := dist(v0, v1), we conclude the proof, since:

◦ if min{k+(v0), k+(v1)} ≤ ω1/4, then |k+(v0)− k+(v1)| ≤ k+(v0) + k+(v1) ≤ 2ω1/4;

◦ if min{k+(v0), k+(v1)} > ω1/4, then |k+(v0)− k+(v1)| ≤ C8
√
ω + C9C12ω

β/4.

�
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