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Abstract

This pre-preprint will eventually be part of a paper on “Superdiffusive ho-
mogenisation”. It is being made available now for easy reference in other work.

1 Introduction

Tyran-Kamińska [14, 15] initiated the study of convergence to stable Lévy processes
for deterministic dynamical systems. In particular, necessary and sufficient conditions
for convergence in the Skorohod J1 topology were given in the setting of Gibbs-Markov
maps (uniformly expanding maps with a countable alphabet). This was extended
in Jung, Péne & Zhang [8] to the case of dynamical systems that are nonuniformly
hyperbolic with exponential tails in the sense of Young [17]. Vector-valued observables
of Gibbs-Markov maps were considered by Chevyrev et al. [7].

The results in [8] are restricted to scalar observables. Also, their results are
formulated specifically for dispersing billiards with flat cusps. In this paper, we
extend to the case of vector-valued observables. At the same time, we formulate the
results in an abstract setting to facilitate future applications.

Notation We write an � bn if there are constants C > 0, n0 ≥ 1 such that
an ≤ Cbn for all n ≥ n0. As usual, an = o(bn) means that an/bn → 0 and and an ∼ bn
means that an/bn → 1.

Define the unit sphere Sd−1 = {x ∈ Rd : |x| = 1} ⊂ Rd where | | denotes Euclidean
distance. We denote by Ba(c) the open ball of radius a centred at c.

2 Setup

We consider dynamical systems (f,Σ, µ) that are nonuniformly hyperbolic with ex-
ponential tails in the sense of Young [17]. In particular, Σ is a metric space with
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Borel probability measure µ, and f : Σ → Σ is a mixing measure-preserving trans-
formation. Moreover, there is an inducing set Y ⊂ Σ with µ(Y ) > 0 and a return
time τ : Y → Z+ (not necessarily the first return time) such that F = f τ maps Y
into Y and the tail probabilities µ(τ > n) decays exponentially with n. In addition,
there is an at most countable partition {Yj : j ≥ 1} such that Yj is a union of stable
leaves and that the quotient map F̄ : Ȳ → Ȳ is a full-branch Gibbs-Markov map
with respect to the corresponding partition {Ȳj}.

We are interested in proving a statistical limit law for vector-valued observables
satisfying certain properties described below.

First, we suppose that there is a function R : Σ → Z+ constant on sets of the
form fkYj for all j ≥ 1 and 0 ≤ k ≤ (τ |Yj)−1. We require that R is regularly varying
with exponent α ∈ (1, 2). That is

µ(R > t) ∼ `(t)t−α as t→∞ (2.1)

where ` : (0,∞)→ (0,∞) is a slowly varying function.
Introduce bn > 0 such that bαn ∼ n`(bn) as n → ∞. Given e > 0, define De

n =
{b−1
n R > e}. We require that for every e > 0, there exist θ1 > 1 and C > 0 such that

µ(De
n ∩ f−jDe

n) ≤ Cn−θ1 for all 1 ≤ j ≤ n. (2.2)

This assumption means that large values of R are not too clustered.
Let {Σi, i ∈ I} be a finite collection of disjoint subsets of Σ such that the Σi are

unions of sets fkYj as above. We suppose that

µ(R1Σi > t) ∼ ci`(t)t
−α as t→∞ (2.3)

for each i ∈ I, where ci > 0, and
∑

i∈I ci = 1.
Next, fix vectors ωi ∈ Rd \ {0} for i ∈ I. Define

Z : Σ→ Rd, Z =
∑
i∈I

ωiR1Σi .

We assume without loss that the ωi are distinct. (Otherwise, combine the Σi and
add the ci corresponding to a common value of ωi.) Then Z is regularly varying with
spectral measure ν on Sd−1 given by

ν =
(∑
i∈I

ci|ωi|α
)−1∑

i∈I

ci|ωi|αδω̂i ,

where ω̂i = ωi/ωi ∈ Sd−1. This means that

lim
t→∞

µ(|Z| > rt, Z/|Z| ∈ E)

µ(|Z| > t)
= r−αν(E) (2.4)
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for all r > 0 and all Borel sets E ⊂ Sd−1 with ν(∂E) = 0.
Let Gα be the corresponding d-dimensional α-stable law with characteristic func-

tion

E eis·Gα = exp
{
−
∫
Sd−1

|s · x|α
(

1− i sgn(s · x) tan
πα

2

)
cos

πα

2
Γ(1− α) dν(x)

}
for s ∈ Rd. Then Z is in the domain of attraction of Gα. That is, if Z1, Z2, . . . are
i.i.d. copies of Z, then b−1

n

(∑n
j=1 Zj − n

∫
Σ
Z dµ

)
→d Gα.

Let Z̃ = Z −
∫

Σ
Z dµ. We define the sequence of processes

WZ
n (t) = b−1

n

[nt]−1∑
j=0

Z̃ ◦ f j, t ∈ [0, 1],

on (Σ, µ). Let Lα denote the α-stable Lévy process corresponding to the stable law
Gα. We regard WZ

n and Lα as random elements in the càdlàg space D([0, 1],Rd). The
strong J1 Skorohod topology [13, 16] on D([0, 1],Rd) is metrized by

d(u1, u2) = inf
λ

(
sup
[0,1]

|u1 ◦ λ− u2|+ sup
[0,1]

|λ− Id|
)
.

Theorem 2.1. Assume that f : Σ → Σ is mixing and nonuniformly hyperbolic with
exponential tails in the sense of Young [17], and that conditions (2.1) to (2.3) are
satisfied. Then WZ

n →w Lα in the strong J1 topology.

Remark 2.2. For a more general class of observables, we can consider integrable
observables V : Σ → Rd with

∫
Σ
V dµ = 0 such that H = V − Z̃ has the property

that

b−1
n max

k≤n

∣∣ k−1∑
j=0

H ◦ f j
∣∣→p 0 on (X,µ).

Define

W V
n (t) = b−1

n

[nt]−1∑
j=0

V ◦ f j, t ∈ [0, 1].

Then it is immediate that W V
n →w Lα in the strong J1 topology.

It is standard, see for example [3, 7, 10, 11], that in many situations of interest,
Hölder observables lead to a first return observable V satisfying these assumptions.

3 Preliminaries about Gibbs-Markov maps and

Young towers

Recall that F = f τ : Y → Y is a full-branch Gibbs-Markov map with ergodic
invariant probability measure µY . For standard facts about Gibbs-Markov maps, we
refer to [1, 2].
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Proposition 3.1. Let g ∈ L2(Y ) with
∫
Y
g dµY = 0, and suppose that g is constant

on partition elements. Then∣∣∣∣ max
1≤k≤n

∣∣∣ k−1∑
j=0

g ◦ F j
∣∣∣∣∣∣∣
L2(Y )

≤ Cn1/2|g|L2(Y )

where C > 0 is a constant independent of g and n.

Proof. Let {Yj : j ≥ 1} be the partition for F . For θ ∈ (0, 1), we define the symbolic
metric dθ(y, y

′) = θs(y,y
′) where s(y, y′) is the least integer n ≥ 0 such that F ny

and F ny′ lie in distinct partition elements. Given v : Y → R continuous, we define
‖v‖θ = ‖v‖∞ + |v|θ where |v|θ = supy 6=y′ |v(y)− v(y′)|/dθ(y, y′).

Define the transfer operator P : L1(Y )→ L1(Y ) (so
∫
Y
Pv w dµY =

∫
Y
v w◦F dµY

for v ∈ L1(Y ), w ∈ L∞(Y )). Then (Pv)(y) =
∑

j p(yj)v(yj) where yj is the unique
preimage of y under F |Yj. There exists θ ∈ (0, 1), fixed from now on, and C > 0,
such that 0 < p(y) ≤ Cµ(Yj) and |p(y) − p(y′)| ≤ Cµ(Yj)dθ(y, y

′) for all y, y′ ∈ Yj,
j ≥ 1. It follows easily that ‖Pg‖θ � |g|L1(Y ) ≤ |g|L2(Y ).

There exist constants γ ∈ (0, 1), C > 0 such that ‖P nv‖θ � γn‖v‖θ for all
continuous v : Y → R with

∫
Y
v dµY = 0 and all n ≥ 1. Define χ =

∑∞
n=1 P

ng. Then
‖χ‖∞ ≤

∑∞
n=1 ‖P n−1Pg‖θ � ‖Pg‖θ � |g|L2(Y ).

Now define the martingale-coboundary decomposition

g = m+ χ ◦ F − χ

where |m|L2(Y ) � |g|L2(Y ). Since m ∈ kerP , it follows easily that
∥∥∑

j<nm ◦
F j
∣∣
L2(Y )

= n1/2‖m|L2(Y ). Moreover, {m◦F j, j ≥ 0} is a sequence of reverse martingale

differences, so by Doob’s inequality,
∣∣maxk≤n |

∑
j<km ◦ F j|

∣∣
L2(Y )

≤ 2n1/2|m|L2(Y ).

Hence ∣∣∣max
k≤n

∣∣∑
j<k

g ◦ F j
∣∣∣∣∣
L2(Y )

≤ 2n1/2|m|L2(Y ) + 2|χ|L∞(Y ) � n1/2|g|L2(Y )

as required. �

Define the Young tower f∆ : ∆→ ∆,

∆ = {(y, `) ∈ Y × Z : 0 ≤ ` < τ(y)}, f∆(y, `) =

{
(y, `+ 1) ` ≤ τ(y)− 2

(Fy, 0) ` = τ(y)− 1

with ergodic f∆-invariant probability measure µ∆ = (µY × counting)/τ̄ where τ̄ =∫
Y
τ dµY .
For n ≥ 1, define the lap number Nn : ∆→ Z+ to be the integer satisfying

Nn(x)−1∑
j=0

τ(F jy) ≤ n+ ` <

Nn(x)∑
j=0

τ(F jy) (3.1)

for x = (y, `) ∈ ∆.
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Proposition 3.2. There exists C > 0 such that
∣∣max1≤k≤n |Nk−kτ̄−1|

∣∣
L2(∆)

≤ Cn1/2

for all n ≥ 1.

Proof. Write τk =
∑k−1

j=0 τ ◦ F j. Then, for x = (y, `) ∈ ∆,

τNn(x)(y)− τ(y) ≤
Nn(x)−1∑
j=0

τ(F jy)− ` ≤ n ≤
Nn(x)∑
j=0

τ(F jy)− ` ≤ τNn(x)(y) + τ(FNn(x)y).

Hence,

|nτ̄−1 −Nn(x)| ≤ τ̄−1|τNn(x)(y)− τ̄Nn(x)|+ τ̄−1 max{τ(y), τ(FNn(x)y)}
≤ τ̄−1 max

0≤k≤n
|τk(y)− kτ̄ |+ τ̄−1 max

0≤k≤n
τ(F ky)

where we used that Nn ≤ n. Now, |max0≤k≤n τ(F ky)|L2(∆) ≤ n1/2|τ |L2(∆). Applying
Proposition 3.1 with g = τ − τ̄ ,∣∣max

k≤n
|τNk(x)(y)− τ̄Nk(x)|

∣∣
L2(∆)

� n1/2.

The result follows. �

Let A consist of subsets of Σ that are unions of partition elements. Let B consist
of subsets of Σ that are unions of local stable leaves (in other words 1B is constant
along local stable leaves for such subsets B). Clearly, A ⊂ B.

Theorem 3.3. Suppose that f is mixing. Then there exist constants C > 0, γ ∈ (0, 1)
such that ∣∣µ(A ∩ f−nB)− µ(A)µ(B)| ≤ Cγn

for all A ∈ A, B ∈ B, n ≥ 1.

Proof. In general, the Young towers associated to f are mixing only up to a finite
cycle. However, since f is mixing, we can reduce by [5, Section 10] (see also [4,
Section 4.1]) to the case when f∆ : ∆→ ∆ is mixing.

The observables 1A and 1B on Σ lift to observables on the two-sided tower. Since
A,B ∈ B, the observables project to observables on the one-sided tower obtained by
quotienting stable leaves. Moreover, 1A is dynamically Hölder. By Young [17],∣∣µ(A ∩ f−nB)− µ(A)µ(B)| � ‖1A‖ |1B|∞ γn.

The result follows since ‖1A‖ = |1A|∞ ≤ 1 and |1B|∞ ≤ 1. �
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4 Proof of Theorem 2.1

In this section, we prove Theorem 2.1. We largely follow the approach in [8, Section 4]
which was written specifically for billiards with flat cusps in the case d = 1. Our
verification of Condition II below is more dynamical than the probabilistic argument
in [8].

Let Nn =
∑n

j=1 δ( j
n
, b−1
n Z̃◦fj−1), where Z̃ = Z −

∫
Σ
Z dµ. Then Nn is a random

point process on (0,∞)× (Rd \ {0}).
The Lévy measure Π corresponding to the Lévy process Lα is given by

Π(B) = α

∫
Sd−1

∫ ∞
0

1B(rx)r−α−1 dr dν(x).

Let N be the Poisson point process on (0,∞)×(Rd\{0}) with mean measure Leb×Π.
By [14, Theorem 4.1] (see also [15, Theorem 1.2] and [8, Proposition 4.4]), to prove

Theorem 2.1 it is enough to verify two conditions:

Condition I (Point process convergence). Nn →w N as n→∞ in the space of
point measures defined on (0,∞)× (Rd \ {0}).

Condition II (Vanishing small values). For every γ > 0,

lim
ε→0

lim sup
n→∞

µ

(
max

1≤k≤n

∣∣∣k−1∑
j=0

(
Z̃1{|Z̃|<bnε}

)
◦ f j − k

∫
Σ

Z̃1{|Z̃|<bnε} dµ
∣∣∣ > bnγ

)
= 0.

These conditions are verified in the next two subsections.

4.1 Point process convergence

In this subsection, we verify Condition I. We follow [8, Section 4.5] using [12, Theo-
rem 2.1]. It is enough to prove convergence of Nn to N on

(0,∞)× U, U = Rd \Ba0(0)

for each fixed a0 > 0.
Fix a0 and let

An = {|Z̃| > a0bn}.
Let W be the ring of subsets of U generated by sets of the type {x ∈ Rd : a < |x| <
a′, x/|x| ∈ E}, where a0 < a < a′ and E ⊂ Sd−1 is open with ν(∂E) = 0. Note that
W generates the Borel sigma-algebra on U and that Π(∂W ) = 0 for all W ∈ W .

For a collection F of measurable subsets of Σ, define

Qp(F) = sup
A∈F

B∈σ(
⋃
j≥p f

−jF)

∣∣µ(A ∩B)− µ(A)µ(B)
∣∣.
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Let Jn = b−1
n Z̃. By [12, Theorem 2.1], to prove Condition I it suffices to prove the

following:

Lemma 4.1. (a) limn→∞ µ
(
J−1
n W |An

)
= Π(W |U) for all W ∈ W.

(b) Q1(J−1
n W0) = o(µ(An)) for every finite subset W0 of W.

Proof of Lemma 4.1(a). Without loss, we may suppose that W = {x ∈ Rd : a <
|x| < a′, x/|x| ∈ E} where a0 < a < a′ and E ⊂ Sd−1 is open with ν(∂E) = 0. Since

Z − Z̃ is constant, it follows from (2.4) and the definition of Π that

lim
n→∞

µ
(
J−1
n W |An

)
= lim

n→∞

µ
(
|Z̃| ∈ (abn, a

′bn), Z̃/|Z̃| ∈ E
)

µ(|Z̃| > a0bn)

= lim
n→∞

µ
(
|Z| ∈ (abn, a

′bn), Z/|Z| ∈ E
)

µ(|Z| > a0bn)
= aα0 (a−α − (a′)−α)ν(E).

On the other hand,

Π(W |U) =
Π(W )

Π(U)
=

(a−α − (a′)−α)ν(E)

a−α0

,

so the result is proved. �

Next, we prove Lemma 4.1(b).

Proposition 4.2. There is a constant C > 0 such that µ(An) ∼ Cn−1 as n→∞.

Proof. Since Z − Z̃ is constant, it suffices to redefine An = {|Z| > a0bn}.
For i ∈ I, let ai = a0/|ωi| and c′i = cia

−α
i . By (2.3) and using that ` is slowly

varying,

µ(R1Σi > aibn) = c′i`(aibn)b−αn ∼ c′i`(aibn)`(bn)−1n−1 ∼ cin
−1.

Hence µ(An) =
∑

i∈I µ(R1Σi > aibn) ∼ Cn−1 with C =
∑

i∈I c
′
i. �

Let θ1 > 1 be as in (2.2). Without loss, we can suppose that θ1 ∈ (1, 2).

Proposition 4.3. There exists C > 0 such that µ(An ∩ f−kAn) ≤ Cn−θ1 for all
k, n ≥ 1.

Proof. By Theorem 3.3,
∣∣µ(An ∩ f−kAn)− µ(An)2

∣∣� γk for all k ≥ 1. By Proposi-
tion 4.2, µ(An)2 � n−2 ≤ n−θ1 . Hence µ(An ∩ f−kAn)� n−θ1 uniformly in k ≥ n.

Set e = a0/(2
∑

i∈I |ωi|). Then

An ⊂ {2|Z| > a0bn} ⊂ {R > ebn} = De
n

with De
n as in (2.2). Hence An∩f−kAn ⊂ De

n∩f−kDe
n and, by (2.2), µ(An∩f−kAn)�

n−θ1 uniformly in 1 ≤ k ≤ n.
Combining the estimates for k ≤ n and k ≥ n yields the desired result. �
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Now fix W0 ⊂ W finite, and let Qn,p = Qp(J−1
n W0).

Proposition 4.4. Qn,p ≤ Cγp for all n, p ≥ 1.

Proof. Let A ∈ J−1
n W0, B ∈ σ

(⋃
j≥p f

−jJ−1
n W0

)
. Write B = f−pB′ where B′ ∈

σ
(⋃

j≥0 f
−jJ−1

n W0

)
. Then |µ(A ∩B)− µ(A)µ(B)| � γp by Theorem 3.3. �

Let τAn(x) = min{n ≥ 1 : fn(x) ∈ An} for x ∈ Σ.

Lemma 4.5. Qn,1 ≤ Qn,p+1 + µ(An ∩ {τAn ≤ p}) + µ(An)µ(τAn ≤ p) for all n, p ≥ 1.

Proof. This is identical to [8, Lemma 4.9]. We give the short argument for com-
pleteness.

Let A ∈ J−1
n W0 and B ∈ σ

(⋃
j≥1 f

−jJ−1
n W0

)
. Note that A ⊂ An by definition of

W .
Suppose that W0 = {W1, . . . ,WK}. Observe that there exists a function g :

({0, 1}K)N → {0, 1} such that 1B = g(Y1, Y2, . . .), where Yi =
(
1J−1

n W1
, . . . , 1J−1

n WK

)
◦

f i. Define B′ ∈ σ
(⋃

j≥p+1 f
−j(J−1

n W0)
)

by

1B′ = g(0, . . . , 0, Yp+1, Yp+2, . . .).

Then |Cov(1A, 1B′)| ≤ Qn,p+1. Moreover, |1B − 1B′| ≤ 1{τAn≤p}, so∣∣Cov(1A, 1B)− Cov(1A, 1B′)
∣∣ ≤ µ

(
A ∩ {τAn ≤ p}

)
+ µ(A)µ(τAn ≤ p)

≤ µ(An ∩ {τAn ≤ p}) + µ(An)µ(τAn ≤ p).

The result follows. �

Proof of Lemma 4.1(b). Let pn = [nθ2 ] where 0 < θ2 < θ1 − 1 < 1. Applying
Proposition 4.3,

µ(An ∩ {τAn ≤ pn}) = µ

(
An ∩

pn⋃
k=1

f−kAn

)

≤
pn∑
k=1

µ(An ∩ f−kAn)� pnn
−θ1 = o(n−1).

Using Proposition 4.2 and invariance of µ under f ,

µ(τAn ≤ pn) = µ

( pn⋃
k=1

f−kAn

)
≤

pn∑
k=1

µ(f−kAn) = pnµ(An)� pnn
−1 = o(1).

Hence it follows from Proposition 4.2 and Lemma 4.5 that Qn,1 ≤ Qn,pn+1 +o(µ(An)).
By Propositions 4.2 and 4.4, Qn,pn+1 = o(n−1) = o(µ(An)), so Qn,1 = o(µ(An)). �
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4.2 Vanishing small values

In this subsection, we verify Condition II. It is convenient to work at the level of
the tower f∆ : ∆ → ∆. Define the measure-preserving semiconjugacy π : ∆ → Σ,
π(y, `) = f `y. Let ∆i = π−1Σi i ∈ I. Abusing notation, we denote lifted observables

R ◦ π : ∆→ Z+, Z̃ ◦ π : ∆→ Rd and so on simply by R, Z̃ and so on.
Fix i ∈ I and set R(i) = R1∆i

. Let

R̃
(i)
ξ = R(i)1{ωiR∈Bξ(Z̄)} −

∫
∆

R(i)1{ωiR∈Bξ(Z̄)} dµ∆, ξ > 0.

The main step in the proof is:

Lemma 4.6. There is a constant C > 0 such that

lim sup
n→∞

b−1
n

∣∣∣∣max
1≤k≤n

∣∣∣ k−1∑
j=0

R̃
(i)
εbn
◦ f j∆

∣∣∣∣∣∣∣
L1(∆)

≤ Cε1−α/2 for all ε > 0.

Most of the remainder of this subsection is concerned with proving Lemma 4.6.
At the end of the subsection, we show that Condition II follows from the lemma.

We begin with the following consequence of condition (2.2).

Proposition 4.7. Let θ1 > 1 be as in condition (2.2) and let β ∈ (0, α). Then
µ∆(R > n and R ◦ f j > n)� n−βθ1 for all 1 ≤ j ≤ nβ.

Proof. Recall that bαn ∼ n`(bn) so there exists K > 0 such that bn ≤ Kn1/β for all n.
Taking e = 1/K in (2.2),

µ∆(R > n1/β and R ◦ f j > n1/β)

≤ µ∆(R > K−1bn and R ◦ f j > K−1bn)� n−θ1 ,

for all 1 ≤ j ≤ n. The result follows. �

Let 1 ≤ η ≤ ξ. Define H = Hξ : Y → [0,∞), s = sη : Y → Z,

H(y) =
∑

0≤j≤τ(y)−1

(R(i)1{ωiR∈Bξ(Z̄)})(y, j), s(y) = #{0 ≤ j ≤ τ(y)− 1 : R(y, j) > η}.

Note that H = H ′ +H ′′ +H ′′′, where

H ′(y) = 1{s(y)=1}
∑
j<τ(y)

(R(i)1{R>η}1{ωiR∈Bξ(Z̄)})(y, j),

H ′′(y) =
∑
j<τ(y)

(R(i)1{R≤η}1{ωiR∈Bξ(Z̄)})(y, j),

H ′′′(y) = 1{s(y)≥2}
∑
j<τ(y)

(R(i)1{R>η}1{ωiR∈Bξ(Z̄)})(y, j).
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Proposition 4.8. Let δ > 0. There exists M > 0 and C > 0 such that

(a) |H ′|L2(Y ) ≤ C`(ξ)1/2ξ1−α/2,

(b) |H ′′|L2(Y ) ≤ Cη1−α/2+δ,

(c) |H ′′′|L2(Y ) ≤ Cξ1+δηδ−αθ1/2,

for all 1 ≤ η ≤ ξ satisfying M log ξ ≤ ηα/2 and ξ > |Z̄|.

Proof. We use throughout that R(i) ≤ R for all i.
(a) Observe that H ′ ≤ ξi where ξi = |ωi|−1(ξ + |Z̄|). Also for 0 ≤ n ≤ ξi,

µY (H ′ = n) ≤ µY (y ∈ Y : R(y, j) = n for some 0 ≤ j < τ(y)})

≤
∫
Y

τ(y)−1∑
j=0

1{y∈Y :R(y,j)=n} dµY = τ̄µ∆(R = n).

Hence

|H ′|2L2(Y ) =
∑
n≤ξi

n2µY (H ′ = n) ≤ τ̄
∑
n≤ξi

n2µ∆(R = n)�
∑
n≤ξi

nµ∆(R ≥ n).

Using (2.3) and applying Karamata’s inequality, we conclude that |H ′|2L2(Y ) �
`(ξi)ξ

2−α
i � `(ξ)ξ2−α as required.

(b) Let q > 2, ε > 0 and observe that |R1{R≤η}|qLq(∆) �
∑

j≤η j
q−1µ∆(R ≥ j) �

ηq+ε−α. Let gj(y) = (R1{R≤η}) ◦ f j∆(y, 0). Since f∆ is measure-preserving,

∣∣∣∑
j<k

gj

∣∣∣q
Lq(Y )

=

∫
Y

∣∣∣∑
j<k

gj

∣∣∣q dµY ≤ ∫
Y

τ(y)−1∑
`=0

∣∣∣∑
j<k

(R1{R≤η}) ◦ f j∆(y, `)
∣∣∣q dµY (y)

= τ̄

∫
∆

∣∣∣∑
j<k

(R1{R≤η}) ◦ f j∆
∣∣∣q dµ∆ ≤ τ̄ kq|R1{R≤η}|qLq(∆) � kqηq+ε−α.

Note also that H ′′ ≤
∑

j<τ gj. Since τ has exponential tails, there exists c0 > 0 such
that

|H ′′|2L2(Y ) ≤
∞∑
k=1

∣∣∣1{τ=k}
∑
j<k

gj

∣∣∣2
L2(Y )

�
∞∑
k=1

e−c0k
∣∣∣∑
j<k

gj

∣∣∣2
Lq(Y )

�
∞∑
k=1

e−c0k(kη(q+ε−α)/q)2 � η2(q+ε−α)/q.

The desired estimate follows for q and ε sufficiently close to 2 and 0.
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(c) Since τ has exponential tails, there exists c1 > 0 such that k2µY (τ = k)� e−c1k.
Let

M = αθ1/c1, ε ∈ (0, α/2).

Suppose that 1 ≤ η ≤ ξ satisfies M log ξ ≤ ηα/2. In particular, M log ξ ≤ ηα−ε. For
any y ∈ {τ = k, s ≥ 2}, there exist 0 ≤ j1 < j2 < k such that R(y, j1) > η and
R(y, j2) > η. By Proposition 4.7,

µY (τ = k, s ≥ 2) ≤ τ̄
∑

0≤j1<j2<k

µ∆(R ◦ f j1∆ > η and R ◦ f j2∆ > η)

≤ kτ̄
∑

1≤j<k

µ∆(R > η and R ◦ f j∆ > η} � k2η−(α−ε)θ1 ,

for all k ≤ ηα−ε and hence for k ≤M log ξ.
Noting that H ′′′(y)� 1{s(y)≥2} ξτ(y),

|H ′′′|2L2(Y ) � ξ2

∫
Y

1{s≥2} τ
2 dµY

� ξ2
∑

k≤M log ξ

k2µY (τ = k, s ≥ 2) + ξ2
∑

k>M log ξ

k2µY (τ = k).

Now, ∑
k≤M log ξ

k2µY (τ = k, s ≥ 2)�
∑

k≤M log ξ

k4η−(α−ε)θ1 � (log ξ)5η−(α−ε)θ1 ,∑
k>M log ξ

k2µY (τ = k)�
∑

k>M log ξ

e−c1k � ξ−c1M ≤ η−c1M = η−αθ1 .

Hence, |H ′′′|2L2(Y ) � ξ2(log ξ + 1)5η−(α−ε)θ1 and the result follows for ε sufficiently
small. �

Corollary 4.9. There is a constant C > 0 such that

lim sup
n→∞

b−1
n n1/2‖Hεbn‖L2(Y ) ≤ Cε1−α/2 for all ε > 0.

Proof. Recall that θ1 > 1. Choose ω ∈ (0, 1/α) sufficiently close to 1/α that
ωαθ1> 1. We apply Proposition 4.8 with ξ = εbn, η = nω. (Note that for all ε > 0,
|Z̄| ∈ Rd, the constraints 1 ≤ η ≤ ξ, M log ξ ≤ ηα/2, ξ > |Z̄| are satisfied for n
sufficiently large.) Then

|H ′|L2(Y ) � ε1−α/2bn

(`(εbn)

`(bn)

)1/2(
`(bn)b−αn

)1/2 ∼ ε1−α/2bnn
−1/2.

Also, |H ′′|L2(Y ) � nω(1−α/2+δ) = o(bnn
−1/2) for δ > 0 sufficiently small. Finally,

|H ′′′|L2(Y ) � b1+δ
n nδω−ωαθ1/2. Since ωαθ1 > 1, we can shrink δ if necessary so that

bδnn
δωn−ωαθ1/2 = o(n−1/2). Hence, |H ′′′|L2(Y ) = o(bnn

−1/2). �

11



Define ψξ : ∆→ [0,∞) by ψξ(y, `) =
∑

0≤j<`(R
(i)1{ωiR∈Bξ(Z̄)})(y, j).

Corollary 4.10. There exists C > 0 such that

lim sup
n→∞

b−1
n

∣∣max
k≤n

ψεbn ◦ fk∆
∣∣
L1(∆)

≤ Cε1−α/2 for all ε > 0.

Proof. Define hξ : ∆ → [0,∞) by hξ(y, `) = H(y). Then maxk≤n hξ ◦ fk∆(y, `) ≤
maxk≤nHξ(F

ky). Since τ has exponential tails,∣∣max
k≤n

hξ ◦ fk∆
∣∣
L1(∆)

≤ τ̄−1

∫
Y

τ max
k≤n

Hξ ◦ F k dµY

�
∣∣max
k≤n

Hξ ◦ F k
∣∣
L2(Y )

� n1/2|Hξ|L2(Y ).

Hence it follows from Corollary 4.9 that lim supn→∞ b
−1
n |maxk≤n hεbn ◦ fk∆|L1(∆) �

ε1−α/2. Since 0 ≤ ψεbn ≤ hεbn , we obtain the desired estimate for maxk≤n ψεbn ◦fk∆. �

Define Qn,ξ : ∆ → R by Qn,ξ = Nn

∫
Y
Hξ dµY − n

∫
∆
R(i)1{ωiR∈Bξ(Z̄)} dµ∆ where

Nn is the lap number (3.1).

Proposition 4.11. There exists C > 0 such that

lim sup
n→∞

b−1
n

∣∣max
k≤n
|Qk,εbn|

∣∣
L2(∆)

≤ Cε1−α/2 for all ε > 0.

Proof. Observe that Qn,ξ = (Nn − nτ̄−1)
∫
Y
Hξ dµY . Hence

|Qn,ξ| ≤ |Nn − nτ̄−1|
∫
Y

Hξ dµY ≤ |Nn − nτ̄−1| |Hξ|L2(Y ).

The result follows from Proposition 3.2 and Corollary 4.9. �

Proof of Lemma 4.6. Let H̃ξ = Hξ −
∫
Y
Hξ dµY . Define Gn,ξ : Y → R and gn,ξ :

∆→ R,

Gn,ξ = max
k≤n

∑
j<k

H̃ξ ◦ F j, gn,ξ(y, `) = Gn,ξ(y).

By Proposition 3.1 and Corollary 4.9,

lim sup
n→∞

b−1
n |Gn,εbn|L2(Y ) � lim sup

n→∞
b−1
n n1/2|Hεbn|L2(Y ) � ε1−α/2.

Since τ has exponential tails,∫
∆

|gn,εbn| dµ∆ = τ̄−1

∫
Y

τ |Gn,εbn| dµY � |Gn,εbn|L2(Y ),

so

lim sup
n→∞

b−1
n

∫
∆

|gn,εbn| dµ∆ � ε1−α/2. (4.1)
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Next, by the definition of the lap number Nn,

n−1∑
j=0

(R(i)1{ωiR∈Bξ(Z̄)})(f
j
∆(y, `)) =

Nn(y,`)−1∑
j=0

Hξ(F
jy) + ψξ(f

n
∆(y, `))− ψξ(y, `),

and so
n−1∑
j=0

R̃
(i)
ξ (f j∆(y, `)) =

Nn(y,`)−1∑
j=0

H̃ξ(F
jy) + ψξ(f

n
∆(y, `))− ψξ(y, `) +Qn,ξ(y, `).

Since Nn ≤ n for all n,

max
k≤n

∣∣∣ k−1∑
j=0

R̃
(i)
ξ ◦ f

j
∆(y, `)

∣∣∣� max
k≤n

∣∣∑
j<k

H̃ξ(F
jy)
∣∣+ max

k≤n
ψξ(f

k
∆(y, `)) + max

k≤n
|Qk,ξ(y, `)|.

In other words,

max
k≤n

∣∣∣ k−1∑
j=0

R̃
(i)
ξ ◦ f

j
∆

∣∣∣� gn,ξ + max
k≤n

ψξ ◦ fk∆ + max
k≤n
|Qk,ξ|.

Setting ξ = εbn, the result follows from (4.1), Corollary 4.10 and Proposition 4.11. �

We can now complete the verification of Condition II. First notice that

R(i)1{|Z̃|<ξ} = R(i)1{|ωiR(i)−
∫
∆ Z dµ|<ξ} = R(i)1{ωiR∈Bξ(Z̄)}.

Hence
Z1{|Z̃|<ξ} =

∑
i

ωiR
(i)1{ωiR∈Bξ(Z̄)}

and so

Z1{|Z̃|<ξ} −
∫

∆

Z1{|Z̃|<ξ}dµ∆ =
∑
i

ωiR̃
(i)
ξ .

By Lemma 4.6,

lim sup
n→∞

b−1
n

∣∣∣∣max
1≤k≤n

∣∣∣ k−1∑
j=0

(
Z1{|Z̃|<εbn}

)
◦ f j∆ − k

∫
∆

Z1{|Z̃|<εbn}dµ∆

∣∣∣∣∣∣∣
L1(∆)

� ε1−α/2.

Also, by Proposition 3.1 with g = 1{|Z̃|<εbn} −
∫

∆
1{|Z̃|<εbn}dµ∆,∣∣∣∣max

1≤k≤n

∣∣∣ k−1∑
j=0

1{|Z̃|<εbn} ◦ f
j
∆ − k

∫
∆

1{|Z̃|<εbn}dµ∆

∣∣∣∣∣∣∣
L2(∆)

� n1/2.

Combining these two estimates yields

lim sup
n→∞

b−1
n

∣∣∣∣max
1≤k≤n

∣∣∣ k−1∑
j=0

(
Z̃1{|Z̃|<εbn}

)
◦ f j∆ − k

∫
∆

Z̃1{|Z̃|<εbn}dµ∆

∣∣∣∣∣∣∣
L1(∆)

� ε1−α/2.

Hence Condition II follows from Markov’s inequality and the fact that π : ∆→ Σ is
a measure-preserving semiconjugacy.
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systems. Stoch. Dyn. 10 (2010) 263–289.

[16] W. Whitt. Stochastic-process limits. Springer Series in Operations Research,
Springer-Verlag, New York, 2002. An introduction to stochastic-process limits
and their application to queues.

[17] L.-S. Young. Statistical properties of dynamical systems with some hyperbolicity.
Ann. of Math. 147 (1998) 585–650.

15


