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Abstract

This pre-preprint will eventually be part of a paper on “Superdiffusive ho-
mogenisation”. It is being made available now for easy reference in other work.

1 Introduction

Tyran-Kaminska [14, 15] initiated the study of convergence to stable Lévy processes
for deterministic dynamical systems. In particular, necessary and sufficient conditions
for convergence in the Skorohod 7; topology were given in the setting of Gibbs-Markov
maps (uniformly expanding maps with a countable alphabet). This was extended
in Jung, Péne & Zhang [8] to the case of dynamical systems that are nonuniformly
hyperbolic with exponential tails in the sense of Young [17]. Vector-valued observables
of Gibbs-Markov maps were considered by Chevyrev et al. [7].

The results in [8] are restricted to scalar observables. Also, their results are
formulated specifically for dispersing billiards with flat cusps. In this paper, we
extend to the case of vector-valued observables. At the same time, we formulate the
results in an abstract setting to facilitate future applications.

Notation We write a,, < b, if there are constants C' > 0, ng > 1 such that
a, < Cb, for all n > ny. As usual, a,, = o(b,) means that a, /b, — 0 and and a,, ~ b,
means that a, /b, — 1.

Define the unit sphere S*! = {z € R? : |z| = 1} C R? where | | denotes Euclidean
distance. We denote by B,(c) the open ball of radius a centred at c.

2 Setup

We consider dynamical systems (f, %, 1) that are nonuniformly hyperbolic with ex-
ponential tails in the sense of Young [17]. In particular, ¥ is a metric space with



Borel probability measure p, and f : ¥ — X is a mixing measure-preserving trans-
formation. Moreover, there is an inducing set Y C 3 with pu(Y) > 0 and a return
time 7 : Y — Z%' (not necessarily the first return time) such that F' = f7 maps Y
into Y and the tail probabilities p(7 > n) decays exponentially with n. In addition,
there is an at most countable partition {Y; : j > 1} such that Y} is a union of stable
leaves and that the quotient map F' : Y — Y is a full-branch Gibbs-Markov map
with respect to the corresponding partition {Y;}.

We are interested in proving a statistical limit law for vector-valued observables
satisfying certain properties described below.

First, we suppose that there is a function R : ¥ — Z* constant on sets of the
form f*Y; forall j > 1and 0 < k < (T]y;) — 1. We require that R is regularly varying
with exponent o € (1,2). That is

WR>1t) ~ L)t ast— oo (2.1)

where £ : (0,00) — (0,00) is a slowly varying function.
Introduce b, > 0 such that b ~ nfl(b,) as n — oco. Given e > 0, define DS =
{b, 'R > e}. We require that for every e > 0, there exist 6; > 1 and C' > 0 such that

p(DENfDE)y < Cn™® forall1 <j<n. (2.2)

This assumption means that large values of R are not too clustered.
Let {¥;,7 € Z} be a finite collection of disjoint subsets of ¥ such that the ¥; are
unions of sets f*Y; as above. We suppose that

W(Rly, > 1) ~cl(t)t™™ ast— o0 (2.3)

for each i € Z, where ¢; > 0, and ),y ¢; = 1.
Next, fix vectors w; € R?\ {0} for i € Z. Define

Z:S R, Z=> wRly,
€L

We assume without loss that the w; are distinct. (Otherwise, combine the ¥; and
add the ¢; corresponding to a common value of w;.) Then Z is regularly varying with
spectral measure v on S%! given by
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where @; = w;/w; € ST, This means that
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for all r > 0 and all Borel sets £ C S with v(OF) = 0.
Let GG, be the corresponding d-dimensional a-stable law with characteristic func-
tion

Ee'¥C = exp { - / |s - x]o‘<1 —isgn(s - z)tan %) cos % I'l—a) du(x)}
gd—1

for s € R% Then Z is in the domain of attraction of G,. That is, if Z;, Z,,... are
L.i.d. copies of Z, then b,' (Y7, Z; —n [, Z du) —a Ga-

Let Z =2 — fz Z dp. We define the sequence of processes

[nt]—1

WEt) =b," Y Zofi, telo1],

J=0

on (X, ). Let L, denote the a-stable Lévy process corresponding to the stable law
Go. We regard WZ and L,, as random elements in the cadlag space D([0, 1], R?). The
strong J; Skorohod topology [13, 16] on D([0, 1], R%) is metrized by

d(uq,ug) = inf (sup |ug 0 A — ug| +sup |\ — Id|).
A [0,1] [0,1]
Theorem 2.1. Assume that f : X — ¥ is mixzing and nonuniformly hyperbolic with
exponential tails in the sense of Young [17], and that conditions (2.1) to (2.3) are
satisfied. Then W% —., L, in the strong Jy topology.

Remark 2.2. For a more general class of observables, we can consider integrable
observables V : ¥ — R? with fz Vdu = 0 such that H = V — Z has the property

that
k-1

bgl%lgf\z;Hofijo on (X, 1).
-

Define

nt]—1

[
Wy () =b," > Vof, telo1]
=0

Then it is immediate that WY —,, L, in the strong J; topology.
It is standard, see for example [3, 7, 10, 11], that in many situations of interest,
Holder observables lead to a first return observable V' satisfying these assumptions.

3 Preliminaries about Gibbs-Markov maps and
Young towers

Recall that FF = f7 : Y — Y is a full-branch Gibbs-Markov map with ergodic
invariant probability measure puy. For standard facts about Gibbs-Markov maps, we
refer to [1, 2J.



Proposition 3.1. Let g € L*(Y') with [, gduy = 0, and suppose that g is constant
on partition elements. Then

< On'?|glregyy
L(Y)

max
1<k<n

k-1
S gor
=0

where C' > 0 s a constant independent of g and n.

Proof. Let {Y;:j > 1} be the partition for F. For 6 € (0, 1), we define the symbolic
metric dg(y,y’) = 0°¥¥) where s(y,y/) is the least integer n > 0 such that F"y
and F™y' lie in distinct partition elements. Given v : Y — R continuous, we define
ol = ol + felo where [olo = supy s [o(y) — v(3/) /oy, o)

Define the transfer operator P : L'(Y') — L'(Y) (so [, Pvwdpy = [, vwoF duy
for v € L'(Y), w € L®(Y)). Then (Pv)(y) = >, p(y;)v(y;) where y; is the unique
preimage of y under F|Y;. There exists § € (0,1), fixed from now on, and C' > 0,
such that 0 < p(y) < Cp(Y;) and [p(y) — p(y)| < Cu(Y;)de(y,y') for all y,y" € Y},
j > 1. It follows easily that ||Pglle < [g]r1(v) < |9]2(v)-

There exist constants v € (0,1), C' > 0 such that ||P"v|ls < ~"||v|¢ for all
continuous v : Y — R with fY vdpy =0 and all n > 1. Define y = > | P"g. Then
Ixlloo < 3202y 1P Pglle < 1Pgllo < [glray).

Now define the martingale-coboundary decomposition

g=m+xoF —x
where |m|r2y) < |glr2(v). Since m € ker P, it follows easily that || D jen ™M O
Fi ‘LQ(Y) = n'/2||m|2(y). Moreover, {moFJ, j > 0} is a sequence of reverse martingale

differences, so by Doob’s inequality, | maxy<,|> ., m o FJ < 2n'2\m| 2¢y).
< j<k (Y)

| ‘ L2(Y)
Hence

<9 1/2 9 - 1/2
ey =" Im|r2(vy + 2[X[L ) < 077Gl L2y

o F
pax 2o
as required. [
Define the Young tower fa : A — A,
(y,+1) (<7(y)—2
(Fy,0)  f=7(y)—1

with ergodic fa-invariant probability measure pua = (uy X counting)/7 where 7 =

fY T d,LLY
For n > 1, define the lap number N, : A — Z* to be the integer satisfying

A={(y,)) eY xXZ:0<t<7(y)}, fA(y,K):{

Np(z)—1 ‘ Ny (z) A
Yo r(Fly)<ntl< ) r(Fly) (3.1)
j=0 j=0

for x = (y,/0) € A.



Proposition 3.2. There exists C > 0 such that ‘ maxi<g<n |Ng— kT~ < Cn'/?

for alln > 1.

1
HL2(A)

Proof. Write 75, = Z?;é 70 FJ. Then, for x = (y,/) € A,

TN () () — T(y) < T(Fly) - <n < T(Fiy) — 0 < 7, () (y) + T(FN@y).

7_-71‘7—Nn($) (y) - 7_-]\[n(x)‘ + 7_—71 max{r(y), T<FNn(x)y)}

<
< ——1 1= ——1 k
<7 Orgggnlm(y) kT|+7T OrgggnT(F y)

where we used that N, < n. Now, | maxo<p<, 7(F*y)|r2(a) < n'/?

Proposition 3.1 with g =7 — 7,

17|r2(a). Applying

‘ Iknggf ’TNk(x)<y) - 71Nk(£)||L2(A) < n1/2'

The result follows. [

Let A consist of subsets of 3 that are unions of partition elements. Let B consist
of subsets of ¥ that are unions of local stable leaves (in other words 15 is constant
along local stable leaves for such subsets B). Clearly, A C B.

Theorem 3.3. Suppose that f is mixzing. Then there exist constants C > 0, v € (0,1)
such that

(AN f"B) — p(A)u(B)| < Cy"
forallAec A, BeB, n>1.

Proof. In general, the Young towers associated to f are mixing only up to a finite
cycle. However, since f is mixing, we can reduce by [5, Section 10] (see also [4,
Section 4.1]) to the case when fa : A — A is mixing,.

The observables 14 and 1 on X lift to observables on the two-sided tower. Since
A, B € B, the observables project to observables on the one-sided tower obtained by
quotienting stable leaves. Moreover, 14 is dynamically Hélder. By Young [17],

(AN f7"B) — p(A)u(B)| < [[1all 18] 7"

The result follows since [[14]| = [1a]e < 1 and |1p]s < 1. [ |



4 Proof of Theorem 2.1

In this section, we prove Theorem 2.1. We largely follow the approach in [8, Section 4]
which was written specifically for billiards with flat cusps in the case d = 1. Our
verification of Condition II below is more dynamical than the probabilistic argument
in [8].

Let N, = Z;L=1 5(%7b;150fj,1), where Z = Z — |5 Z dp. Then N, is a random
point process on (0,00) x (R\ {0}).

The Lévy measure Il corresponding to the Lévy process L, is given by

B)=a /S /0 T lra)r dr dv(a),

Let NV be the Poisson point process on (0, 00) x (R%\ {0}) with mean measure Leb xII.
By [14, Theorem 4.1] (see also [15, Theorem 1.2] and [8, Proposition 4.4]), to prove
Theorem 2.1 it is enough to verify two conditions:

Condition I (Point process convergence). N, —, N as n — oo in the space of
point measures defined on (0,00) x (R4 \ {0}).

Condition II (Vanishing small values). For every v > 0,

k—
li_r)%limsupu(121];{%1 Z {|Z|<b 6} ofl — k/z Zl{|§|<bne} d,u’ > b,{y) =0.

n—00
Jj=

These conditions are verified in the next two subsections.

4.1 Point process convergence

In this subsection, we verify Condition I. We follow [8, Section 4.5] using [12, Theo-
rem 2.1]. It is enough to prove convergence of N, to N on

(0,00) x U, U =R\ B, (0)

for each fixed ay > 0.
Fix ag and let

A, ={|Z] > aghy}-

Let W be the ring of subsets of U generated by sets of the type {z € R?: a < || <

d, x/|z| € E}, where agp < a < @’ and E C S is open with v(9F) = 0. Note that

W generates the Borel sigma-algebra on U and that II(0W) = 0 for all W € W.
For a collection F of measurable subsets of ¥, define

QF) = swp [W(AN B) = p(A)p(B)|.
BGO'(szp fﬁj]‘—)



Let J, = b;lz By [12, Theorem 2.1], to prove Condition I it suffices to prove the
following:

Lemma 4.1. (a) lim,_, p(J,;'WIA,) = L(W|U) for all W € W.
(b) Q1(J,;"Wy) = o((A,)) for every finite subset Wy of W.

Proof of Lemma 4.1(a). Without loss, we may suppose that W = {z € R? : a <
lz| < d, z/|z| € E} where ag < a < a’ and E C S%! is open with v(0F) = 0. Since
7 — Z is constant, it follows from (2.4) and the definition of II that

1(|Z| € (ab,,a'by), Z)|Z| € E)

lim p(J,'W|A4,) = lim
n—00

oo u(1Z] > agbn)
. u(|Z] € (ab,,a'b,), Z/|Z| € E) B o
= — ag(a™® = () *)W(E).
. w121 > ach,) el

On the other hand,

Owiv) = = ,

so the result is proved. [ |
Next, we prove Lemma 4.1(b).
Proposition 4.2. There is a constant C' > 0 such that u(A,) ~ Cn~' as n — co.

Proof. Since Z — Z is constant, it suffices to redefine A, = {|Z| > agb, }.

For i € Z, let a; = ao/|w;| and ¢, = ¢;a;“. By (2.3) and using that ¢ is slowly

varying,
p(Rls, > azb,) = cil(a;b,)b,* ~ cil(abn)l(b,) 'n~t ~ c;nt.
Hence pu(A,) = >, w(Rly, > a;b,) ~ Cn~' with C =", ;¢ |
Let 6, > 1 be as in (2.2). Without loss, we can suppose that 6, € (1,2).

Proposition 4.3. There exists C' > 0 such that u(A, N f*A,) < Cn=% for all
k,n>1.

Proof. By Theorem 3.3, |,LL<An Nf*A,) - M(AH)Q‘ < ~¥ for all k£ > 1. By Proposi-
tion 4.2, u(A,)? < n=?2 <n~%. Hence u(A, N f~*A,) < n~% uniformly in k > n.
Set e = ag/(2) ;7 |wi]). Then
A, C{2|Z] > aph,} C {R > eb,} = D¢

with D¢ asin (2.2). Hence A, Nf~%A, C DENf D¢ and, by (2.2), u(A,Nf*A,) <
n~% uniformly in 1 < k < n.
Combining the estimates for £ < n and k > n yields the desired result. [ |

7



Now fix Wy C W finite, and let Q,,, = Q,(J,, "W).
Proposition 4.4. Q, , < CY? for all n,p > 1.
Proof. Let A € J;'W,, B € O'(szp f7J W), Write B = fPB’ where B’ €
U(szo f7J, "W). Then |u(AN B) — p(A)u(B)| < 47 by Theorem 3.3. |
Let 74, (z) = min{n > 1: f"(z) € A,} for x € 3.
Lemma 4.5. Q,1 < Qi1+ (A, N {74, <p})+ u(A,)u(ra, <p) foralln,p>1.

Proof. This is identical to [8, Lemma 4.9]. We give the short argument for com-
pleteness.

Let A€ J,"Wy and B € o(U,, f77J,"Wo). Note that A C A, by definition of
W. -

Suppose that Wy = {Wy,...,Wgk}. Observe that there exists a function g :
({0, 1}¥)N — {0,1} such that 15 = g(Y1,Ys,...), where Y; = (1,1, ..., 1-1y, ) ©

f?. Define B’ € 0(U;sp1 [ (J,"W0)) by
]-B’ = 9(07 s 707Yp+17}/p+27 . )
Then | Cov(1la,1p)| < Qpp+1. Moreover, [1p — 1p/| < 1, <4y, SO

|Cov(14,15) — Cov(1a,1p)

< p(An{ra, <p}) +p(A)pu(ra, <p)
< pw(An N {74, <p}) + pw(An)p(Ta, < p).

The result follows. |

Proof of Lemma 4.1(b). Let p, = [n%] where 0 < 6, < 6, — 1 < 1. Applying
Proposition 4.3,

w(An N {14, <po}) = < me’fA)
Z (A, N fRA) < pan™™ = o(n™h).

Using Proposition 4.2 and invariance of p under f,
Pn
(ra, <pa) = (U frA ) <Y u(f A = pap(An) < pant = o(1).
k=1

Hence it follows from Proposition 4.2 and Lemma 4.5 that Q,,1 < Q,, , +1+0((Ay)).
By Propositions 4.2 and 4.4, Q,,,.+1 = o(n™ ') = o(u(4,)), so Q1 =o(u(4,)). W



4.2 Vanishing small values

In this subsection, we verify Condition II. It is convenient to work at the level of
the tower fa : A — A. Define the measure-preserving semiconjugacy m : A — X,
7(y,l) = fly. Let A; = 77'%; i € Z. Abusing notation, we denote lifted observables

Rom:A—7ZT, Zom: A — R? and so on simply by R, Z and so on.
Fix i € T and set R®¥) = Rl,,. Let

R = ROV repyzyy ~ /A ROV rezy dias &> 0.

The main step in the proof is:

Lemma 4.6. There is a constant C > 0 such that

k-1
lim sup b | max RY < Ce =2 forall e > 0.
n%oop " 1<k<n j;() Ebn LY(A) o f

Most of the remainder of this subsection is concerned with proving Lemma 4.6.
At the end of the subsection, we show that Condition II follows from the lemma.
We begin with the following consequence of condition (2.2).

Proposition 4.7. Let 6, > 1 be as in condition (2.2) and let B € (0,«). Then
pa(R>n and Ro f7 >n) < n™ P for all 1 < j < nP.

Proof. Recall that b% ~ nf(b,) so there exists K > 0 such that b, < Kn'/? for all n.
Taking e = 1/K in (2.2),

pa(R > n'? and Ro f7 > n'/%)
< pa(R > K7 'b, and Ro f/ > K7'b,) < n™%,

for all 1 < j <n. The result follows. [ |

Let 1 <n <¢. Define H=H¢:Y —[0,00), s=5,:Y = Z,

Hy)= Y (Rrep@)W.4), sy)=#{0<j<r(y)—1:R(y.j) >n}

0<j<7(y)—1

Note that H = H' + H” + H", where

H'(y) = = Lgs)=1 Z 1{R>n}1{w1ReB§( )})(y )

J<7(y)
H"(y) = Z (R()l{R<n}1{wlR€B§( (W, 7)),
J<7(y)
H"(y) = Ls(y)>2) Z N romy Vwsrepe2) (U5 9)-
]<T



Proposition 4.8. Let 6 > 0. There exists M > 0 and C' > 0 such that
(a) [H'|r2vy < CUE)PE2,
(b) [H"|2(y) < Ctm/2%0,
(¢) [H"|p2ivy < CE P02,

for all 1 < n < € satisfying Mlog& < n®/? and &€ > |Z|.

Proof. We use throughout that RW < R for allj.
(a) Observe that H' < & where & = |w;| 1€ +|Z]). Also for 0 < n < &,

py(H =n) <puy(y €Y : R(y,j) =n for some 0 < j < 7(y)})
T(y)—1

= / Liyey:R(y,j)=n} dpty = Tha(R = n).
Yoj=o

j=

Hence

H oy = > _ 0Py (H =n) <7 Y _n’ua(R=n) < Y npa(R >n).

n<§; n<§; n<§;

Using (2.3) and applying Karamata’s inequality, we conclude that |H’ \%Q(Y) <
0(&)E27 < 0(€)E27 as required.

(b) Let ¢ > 2, ¢ > 0 and observg that |R1{RS7I}’[]L¢1(A) < Y, i AR > ) <
nite. Let g;(y) = (Rl{r<yy) © fa(y,0). Since fa is measure-preserving,

q
’Zgj L) /y’.zgj
Jj<k i<k

. 1q
- T/ ‘ Z(Rl{RSﬁ}) © fi‘ dNA < 7ik'q|R1{R§n}|%q(A) < qunq-i-e—oa.
Al
Jj<k

T(y)-1
q . q
iy < [ 3| S BLnen) o (00| dus)
Y'o=0 = j<k

Note also that H” <> i<r 9j- Since T has exponential tails, there exists ¢g > 0 such
that

o0 2 00 2
[H" L2y < 2’1“:’“} D iy, <220
k=1 i<k L) k=1 i<k L)
< Z e_COk(kn(q+e—a)/q)2 < 772(q+e—cv)/q_
k=1

The desired estimate follows for ¢ and e sufficiently close to 2 and 0.

10



(c) Since 7 has exponential tails, there exists ¢; > 0 such that k*uy (7 = k) < e~

Let
M = aby/cq, e€ (0,a/2).

Suppose that 1 < n < ¢ satisfies M log& < n*/2. In particular, M logé < n°~¢. For
any y € {7 = k, s > 2}, there exist 0 < j; < jo < k such that R(y,j;1) > n and
R(y, j2) > n. By Proposition 4.7,

py(r=k, s>2)<7 Z pa(Ro fil >nand Ro f2 > 1)

0<j1<j2<k

< kT Z ua(R >mnand Ro fi >t < k2~ (a—h

1<j<k

for all £ < n®~¢ and hence for £k < M logé.
Noting that H”’(y) < lysy)>2) 57’(@}),

[H" F20v) < 52/ Lissoy 72 dpy

<<£ Z k’2,LLy(T = /{7 S > 2 Z /{ZZMY )

k<M log& k>Mlogé
Now,
Z Fuy(r=Fk s>2) < Z kin~@=9% <« (log &)°n~ (@9
k<M log& k<Mlog¢
Z kQMY(T — k) << Z e—Clk < 5_01M S T]_ClM — n—ael.
k>Mlog ¢ k>Mlogé

Hence, |H"|7:) < &*(log& + 1)°7=(@=9% and the result follows for e sufficiently
small. n

Corollary 4.9. There is a constant C' > 0 such that

limsup b, 'n/?(|Ha, || 2y < Ce""%  for all e > 0.

n—oo

Proof. Recall that #; > 1. Choose w € (0,1/a) sufficiently close to 1/a that
wab;> 1. We apply Proposition 4.8 with £ = €b,,, n = n“. (Note that for all € > 0,
|Z| € R?, the constraints 1 < n < &, Mlogé < 0?2, & > |Z| are satisfied for n
sufficiently large.) Then

((eby,)
((bn)
Also, |H"|p2ryy < n@U070/249) = o(b,n~1/2) for § > 0 sufficiently small. Finally,

|H’”|L2 < biHIpdw—wabi/2 - Gince waf; > 1, we can shrink d if necessary so that
b5n5“n_wa91/2 = o(n"/?). Hence, |H"|12(yy = o(b,n~1/?). [

1/2
|H,|L2 < 61 a/2b ( > (E(bn)b;a)l/Q -~ el_a/2bnn_1/2.

11



Define e A — [0> 00) by @D{(y,@ = Zogjd(R(i)1{wiReB§(Z)})(y,j)-
Corollary 4.10. There exists C' > 0 such that

limsup b, }maxqﬁebnofA‘Ll(A < Ce=? forall e > 0.

n—oo
Proof. Define he : A — [0,00) by he(y,£) = H(y). Then maxj<, he o fR(y,£) <
maxg<, He(F¥y). Since 7 has exponential tails,
‘ rilgéii{hg o fﬁ}Ll(A <71 /YTI]?aXHg o F*dyy

< [ max He o F¥| ) < 02| Helpzgr.

Hence it follows from Corollary 4.9 that limsup,,_,. b, maxy<, he, © fA‘Ll <
€'=2/2_ Since 0 < 1y, < hg, , we obtain the desired estimate for maxg<, Yo, o fk. M

Define Q¢ : A = R by Que = N, [, Hedpy — n [ R 1{wZR€B§(Z dua where
N,, is the lap number (3.1).

Proposition 4.11. There exists C' > 0 such that

. —1 1-a/2
hin_)solip b, | max \Qk,eanLQ(A) < Ce for all e > 0.
Proof. Observe that Q¢ = (N, —n7") [, He dpiy. Hence
Quel < Vo =77 [ Hedpy <N = 7! [Hloy
Y

The result follows from Proposition 3.2 and Corollary 4.9. |

Proof of Lemma 4.6. Let ITIS = H¢ — [, Hedpy. Define Gpe : Y — R and gy :
A — R,

nf = maxz Hg o F gmg(y,f) = Gné(y)-

T <k

By Proposition 3.1 and Corollary 4.9,

limsup b, ' |Gy b, | 12(v) < limsup b, 21|, L2y < € o/2,

n—o0 n—oo

Since 7 has exponential tails,

/ ’gn,ebn’ dluA = 77—_1 / 7_|Gn,ebn| dny < ’Gn,ebn |L2(Y)>
A Y
SO

n—oo

limsup b, /A |Gn.cb, | dpin < €772, (4.1)

12



Next, by the definition of the lap number N,

n—1 Ny (y,0)—1
> (B0 yyrepezny) AW, 0) = Y He(Fy) + e(fA(y, 0) — ey, 0),
=0 J=0

and so
n-1 Nu(y,£)—1
SR = Y HlFy) + vl SR, ) — el 0) + Quely, ).
j=0 Jj=0

Since N,, < n for all n,

max
k<n

k—1

>R 0 A0 < mpax | 3 He(Py)| + v 300 €0) + x| Qe O
§=0 T <k B -

In other words,

max
k<n

k—1 o A
> B o A
j=0

Setting & = €b,,, the result follows from (4.1), Corollary 4.10 and Proposition 4.11. W

k
fA+I}£l§3(|Qk,§|-

We can now complete the verification of Condition II. First notice that

ROy 5 = B mo— ), zaw<ey = B L nene2))-

Hence '
271 = ZwiR(l)l{wiReBg@)}
and so
L2120 —/AZl 121<e 0 sz
By Lemma 4.6,
k—1
s e |37 (215100 0 o= [ Z1cgina| o
n—00 1<k<n s {I1Z|<ebn} A {1Z]<ebn} LA
Also, by Proposition 3.1 with g = 1{|va|<6bn} — fA 1{|§|<Ebn}d;m,
k—1
max 1 o j—k/1~ d ’ < n'?.
1<k<n ; {1Z]<ebn} fa A UZl<ebn} fa ()
Combining these two estimates yields
k—1
1 -1 72 - Y ~ _ 1-a/2
llin_i}ip b, lréll?g}% z; (Zl{|z|<ebn}> ° fa k?/A Zl{‘ZKebn}duA‘ s <€ .
]:

Hence Condition II follows from Markov’s inequality and the fact that 7 : A — X is
a measure-preserving semiconjugacy.
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