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Abstract. We consider deterministic homogenization for discrete-time fast–slow systems of the form

Xk+1 = Xk + n−1an(Xk,Yk) + n−1/2bn(Xk,Yk), Yk+1 = TnYk

and give conditions under which the dynamics of the slow equations converge weakly to an Itô diffusion X as n → ∞. The drift
and diffusion coefficients of the limiting stochastic differential equation satisfied by X are given explicitly. This extends the results
of Kelly–Melbourne (J. Funct. Anal. 272 (2017) 4063–4102) from the continuous-time case to the discrete-time case. Moreover, our
methods (p-variation rough paths) work under optimal moment assumptions.

Combined with parallel developments on martingale approximations for families of nonuniformly expanding maps in Part 1 by
Korepanov, Kosloff and Melbourne, we obtain optimal homogenization results when Tn is such a family of maps.

Résumé. Nous étudions l’homogénéisation déterministe des systèmes lents-rapides en temps discret de la forme suivante

Xk+1 = Xk + n−1an(Xk,Yk) + n−1/2bn(Xk,Yk), Yk+1 = TnYk

et donnons des conditions sous lesquelles la dynamique des équations lentes converge en loi vers une diffusion d’Itô X quand n → ∞.
Nous calculons explicitement la dérive et les coefficients de diffusion de l’équation différentielle stochastique vérifiée par X. Ceci étend
les résultats de Kelly–Melbourne (J. Funct. Anal. 272 (2017) 4063–4102) du temps continu au temps discret. De plus, notre méthode
(chemins rugueux en p-variation) fonctionne sous des conditions de moments optimales.

Nous obtenons aussi des résultats optimaux d’homogénéisation quand Tn est une famille de transformations non uniformé-
ment dilatantes. Ces résultats exploitent les développements parallèles dans la partie 1 (par Korepanov, Kosloff et Melbourne) sur
l’approximation par des martingales pour ce type de transformations.
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1. Introduction

In this article, we are primarily concerned with homogenization of deterministic, discrete-time, fast–slow systems of the
form

(1.1) X
(n)
k+1 = X

(n)
k + n−1an

(
X

(n)
k , Y

(n)
k

) + n−1/2bn

(
X

(n)
k , Y

(n)
k

)
, Y

(n)
k+1 = TnY

(n)
k ,

where X
(n)
k takes values in R

d , Y
(n)
k takes values in a metric space �, and an, bn : Rd × � → R

d and Tn : � → � are

suitable functions. The only source of randomness in the dynamics is the initial condition Y
(n)
0 which we sample from a

(not necessarily ergodic) probability measure λn on �.
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Our main result, Theorem 2.17, provides sufficient conditions for the dynamics xn(t) = X
(n)
�nt� to converge in law

(which we write in symbols as xn →λn X), with respect to the uniform topology, to the solution of a stochastic differential
equation (SDE)

(1.2) dX = ã(X)dt + σ(X)dB

with explicit formulae for the coefficients ã and σ . Our assumptions on the system involve only moment bounds and a
suitable (iterated) weak invariance principle on the fast dynamics Tn. In the companion paper, Part 1 [18], it is shown
how these assumptions can be verified for a large class of families Tn of nonuniformly hyperbolic dynamical systems.
See Section 1.1 for an illustrative example of a system to which our results apply.

The programme to study homogenization of deterministic systems of the form (1.1) was initiated in [21], and has seen
recent growth in a number of works, including [13,15,16]. See our survey paper [6] for an overview. The contribution
of this article is three-fold. The first two of these contributions are novel even when we suppose that an ≡ a, bn ≡ b,
Tn ≡ T are independent of n. First, we are able to deal with discrete-time dynamics in the same way as continuous-time
dynamics. This should be compared to [14,15] in which results for discrete-time dynamics are only obtained in the special
case a(x, y) = a(x), b(x, y) = b(x)v(y) and the case of general a, b is only handled for continuous-time dynamics in
[1,16].

Second, we are able to work under optimal moment assumptions, and our results apply to the full range of systems
in which one expects a weak invariance principle to hold for the fast dynamics. This extends (even for continuous-time
dynamics) the results of [1,15,16] in which only a subrange can be handled (specifically, in Assumptions 2.3(i) and
2.12(i) it now suffices that q > 1 rather than q > 3 as was the case previously; in particular the required control on
ordinary moments is reduced from 6 + ε to 2 + ε). In [6] we indicate a simplified version of this second contribution for
the case a(x, y) = a(x), b(x, y) = b(x)v(y).

In particular, when Tn = T is independent of n, our results apply to uniformly hyperbolic (Axiom A) systems [24],
and to large classes of nonuniformly hyperbolic systems [26,27]. A detailed account of discrete-time dynamical systems
T for which our assumptions are verified can be found in [15, Sec. 10] and [16, Sec. 1]; our results on homogenization
apply to all the systems therein without restriction on the form of a and b and under optimal moment bounds.

Our third contribution is to incorporate families of fast dynamical systems Tn and measures λn. Such fast–slow systems
were studied in the situation of exact multiplicative noise (which does not require rough path theory) in [17]. As mentioned
above, in Part 1 [18], the assumptions in the current paper are verified for a range of families Tn.

The main tool in showing convergence of the system (1.1) is rough path theory [20], which we apply in the càdlàg
setting in conjunction with the method in [16]. We note here that our second contribution outlined above (optimal moment
assumptions) is due to switching from α-Hölder to p-variation rough path topologies (which is analogous to the mode
of convergence in the classical Donsker theorem, see e.g. [6, Sec. 3.2]). Our results employ the stability of “forward”
(Itô) rough differential equations (RDEs) with jumps recently studied in [12], which we extend herein to the Banach
space setting (though we restrict attention to the case of level-2 rough paths). The works [4,5,9] also study RDEs in the
presence of jumps, but primarily focus on “geometric” (Marcus) notions of solution.

1.1. Illustrative example

Let � = [0,1]. For γ ≥ 0, we consider the intermittent map T : � → �,

(1.3) Ty =
{

y
(
1 + 2γ yγ

)
, y ≤ 1/2,

2y − 1, y > 1/2.

This is a prototypical example of a slowly mixing dynamical system [22]; the specific example is due to [19]. We describe
in this subsection the homogenization results for the associated fast–slow systems which follow from this paper together
with Part 1 [18], and compare these results with earlier works.

For γ < 1, there exists a unique T -invariant ergodic absolutely continuous probability measure μ. We further restrict
to γ < 1/2, where the central limit theorem holds: for v : � → R

m Hölder continuous with
∫
�

v dμ = 0, the random

variables n−1/2 ∑n−1
j=0 v ◦ T j defined on the probability space (�,μ) converge in law to a (typically nondegenerate)

normal distribution.
Consider a discrete-time fast–slow system of the form (1.1) with an ≡ a, bn ≡ b, Tn ≡ T independent of n, and T such

an intermittent map. Here a, b : Rd ×� →R
d are suitably regular functions such that

∫
b(x, y)dμ(y) = 0 for all x ∈R

d .

Define the càdlàg random process xn(t) = X
(n)
[nt].
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Prior results establish convergence xn →μ X, for X the solution of an SDE (1.2), provided that b is a product b(x, y) =
h(x)v(y) with h : Rd → R

d×m sufficiently smooth and v : � → R
m as above. It was proved first for γ < 2

11 in [15] using
a discrete-time version of Hölder rough paths [14], and extended to the range γ < 2

5 in [6] using p-variation rough paths
with jumps [12].

Part 1 by Korepanov et al. [18] develops the smooth ergodic theory side of things and together with [6] covers the
optimal range γ ∈ (0, 1

2 ) in the case when b(x, y) = h(x)v(y) is a product. In the current paper, Theorem 2.10 enables
two improvements to these prior results. First, the restriction that b is a product is now redundant. Second, we show that
xn →λ X for an enlarged class of measures λ. In particular, the hypotheses of Theorem 2.10 are verified in [18] for the
most natural choice λ = Leb for all γ ∈ (0, 1

2 ).
In addition, we consider the general setting (1.1) where T , a, b and λ are allowed to depend on n ∈ N ∪ {∞}. This

requires our main result Theorem 2.17. For example, consider the case where Tn is a family of intermittent maps with
parameters γn limiting on γ∞ ∈ (0,1/2). In [17], convergence results of the form xn →μn X and xn →μ∞ X were
obtained for the special case bn(x, y) = hn(x)vn(y) with hn exact. Theorem 2.17 combined with results in [18] yields the
same convergence results without restrictions on bn, and also shows that xn →Leb X. The coefficients ã and σ in (1.2)
are given by

ã(x) =
∫

�

a∞(x, y)dμ∞(y) +
d∑

k=1

∞∑
�=1

∫
�

bk∞(x, y)
∂b∞
∂xk

(
x,T �∞y

)
dμ∞(y),(1.4)

σ(x)2 =
∫

�

b∞(x, y) ⊗ b∞(x, y)dμ∞(y)

+
∞∑

�=1

∫
�

{
b∞(x, y) ⊗ b∞

(
x,T �∞y

) + b∞
(
x,T �∞y

) ⊗ b∞(x, y)
}

dμ∞(y),

(1.5)

where bk∞ is the kth column of b∞. The details of how to apply Theorem 2.17 and the results in Part 1 [18] are given in
Section 2.3.

The article is structured as follows. In Section 2 we state the main result of this article, Theorem 2.17, which gives
precise conditions for the dynamics (1.1) to converge to the solution of an SDE. In Section 3 we collect the necessary
material on càdlàg rough path theory in the Banach space setting. In Section 4 we prove Theorem 2.17. In Section 5 we
give the version of Theorem 2.17 for the continuous-time dynamics. In the Appendix, we give a Banach-space version of
homogeneous Besov-variation and Besov–Hölder rough path embeddings.

2. Discrete-time fast–slow systems. Statement of the main result

In this section we state our main result, Theorem 2.17. In fact, we first state a simplified version, Theorem 2.10, which
applies to the case that an, bn, Tn and λn do not depend on n. We state the results separately not only because it eases
our presentation, but also because Theorem 2.10 is slightly stronger than the naive restriction of Theorem 2.17 to the n-
independent case (namely Assumption 2.3 below is weaker than the naive restriction of Assumption 2.12). In Section 2.3,
we show that our assumptions are satisfied for the intermittent maps considered in Section 1.1.

For the remainder of this section, we fix a metric space (�,ρ).

Definition 2.1. For κ ∈ [0,1) and m ≥ 1, let Cκ(�,Rm) denote the space of continuous Rm-valued functions on � such
that

|v|Cκ := sup
y∈�

∣∣v(y)
∣∣ + sup

y,y′∈�

|v(y) − v(y′)|
ρ(y, y′)κ

< ∞.

We write Cκ(�) whenever m = 1. For α ≥ 0, define Cα,κ(Rd × �,Rd) to be the space of functions a = a(x, y) :
R

d × � → R
d such that

|a|Cα,κ :=
∑

|k|≤�α�
sup
x∈Rd

∣∣Dka(x, ·)∣∣
Cκ +

∑
|k|=�α�

sup
x,x′∈Rd

|Dka(x, ·) − Dka(x′, ·)|Cκ

|x − x′|α−�α� < ∞,

where Dk acts on the x component.
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For the remainder of the section, we fix parameters q ∈ (1,∞], κ, κ̄ ∈ (0,1), and α > 2 + d
q

. For T > 0, a metric

space E, and a càdlàg function f : [0, T ] → E, we define f − : [0, T ] → E by f −(t) = lims↑t f (s) for t ∈ (0, T ] and
f −(0) = f (0).

2.1. n-Independent case

We now describe the assumptions and preliminary results required to state Theorem 2.10. We fix a ∈ C1+κ̄,0(Rd ×�,Rd)

and b ∈ Cα,κ(Rd × �,Rd), and consider for every integer n ≥ 1 the discrete-time dynamical system posed on R
d × �

(2.1) X
(n)
k+1 = X

(n)
k + n−1a

(
X

(n)
k , Yk

) + n−1/2b
(
X

(n)
k , Yk

)
, Yk+1 = T Yk,

where T : � → � is a Borel measurable map, X
(n)
0 = ξn ∈ R

d , and Y0 is drawn randomly from a Borel probability
measure λ on �. Our first assumption deals with the function a.

Assumption 2.2. There exists ā ∈ C1+κ̄ (Rd,Rd ) such that for all x ∈R
d

∣∣∣∣∣n−1
n−1∑
k=0

a(x,Yk) − ā(x)

∣∣∣∣∣ →λ 0 as n → ∞.

To state our assumption on b, we need to introduce further notation. For v,w ∈ Cκ(�,Rm) and 0 ≤ s ≤ t ≤ 1, define
Wv,n(t) ∈R

m and Wv,w,n(s, t) ∈R
m×m by

(2.2) Wv,n(t) = n−1/2
∑

0≤k<�nt�
v(Yk), Wv,w,n(s, t) =

∫ t

s

(
W−

v,n(r) − Wv,n(s)
) ⊗ dWw,n(r),

where we recall that W−
v,n(r) = lims↑r Wv,n(s). Note in particular that

(2.3) Wv,w,n(t) := Wv,w,n(0, t) = n−1
∑

0≤k<�<�nt�
v(Yk) ⊗ w(Y�).

Whenever v = w, we write simply Wv,n for Wv,v,n.
For a subspace Cκ

0 (�) of Cκ(�), we let Cκ
0 (�,Rm) denote the space of all v ∈ Cκ(�,Rm) such that vi ∈ Cκ

0 (�) for
all i = 1, . . . ,m, and we let C

α,κ
0 (Rd × �,Rd) denote the subspace of all f ∈ Cα,κ(Rd × �,Rd) for which f (x, ·) ∈

Cκ
0 (�,Rd) for all x ∈R

d .

Assumption 2.3. There exists a closed subspace Cκ
0 (�) of Cκ(�) such that b ∈ C

α,κ
0 (Rd × �,Rd) and such that

(i) for all v,w ∈ Cκ
0 (�) there exists K = Kv,w,q > 0 such that for all n ≥ 1 and 0 ≤ k, � ≤ n∣∣Wv,n(k/n) − Wv,n(�/n)

∣∣
L2q (λ)

≤ Kn−1/2|k − �|1/2

and ∣∣Wv,w,n(k/n, �/n)
∣∣
Lq(λ)

≤ Kn−1|k − �|,
(ii) there exists a bilinear operator B0 : Cκ

0 (�) × Cκ
0 (�) → R such that for every m ≥ 1 and every v ∈ Cκ

0 (�,Rm), it
holds that (Wv,n,Wv,n) →λ (Wv,Wv) as n → ∞ in the sense of finite-dimensional distributions, where Wv is an
R

m-valued Brownian motion and

W
ij
v (t) =

∫ t

0
Wi

v dWj
v +B0

(
vi, vj

)
t.

Remark 2.4. One should compare Assumption 2.3(i) to [15, Thm. 9.1] and [16, Assump. 2.2] in which one imposes the
restriction q > 3. As mentioned in the introduction, we are able to deal with the optimal moment condition q > 1 by
working with p-variation rather than Hölder rough path topologies.
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Remark 2.5. Assumptions 2.2 and 2.3 are verified for a large class of dynamical systems in [15, Sec. 10] and [16, Sec. 1].
In these references, as in Section 1.1, there is a T -invariant ergodic Borel probability measure μ on �, and we choose
Cκ

0 (�) = {v ∈ Cκ(�) : ∫
�

v dμ = 0} and ā = ∫
�

a(·, y)dμ(y).
The measure μ plays no role in the proof of Theorem 2.10 and hence we do not mention it in our assumptions.

Remark 2.6. Under the assumption that λ is T -stationary, the simpler bounds∣∣Wv,n(1)
∣∣
L2q (λ)

≤ K and
∣∣Wv,w,n(1)

∣∣
Lq(λ)

≤ K for all n ≥ 1

imply Assumption 2.3(i).

Proposition 2.7. Suppose Assumption 2.3(i) holds. Then there exists K > 0 such that for all n ≥ 1, 0 ≤ k, � ≤ n, and
v,w ∈ Cκ

0 (�),

(2.4)

∣∣Wv,n(k/n) − Wv,n(�/n)
∣∣
L2q (λ)

≤ K|v|Cκ n−1/2|k − �|1/2,∣∣Wv,w,n(k/n, �/n)
∣∣
Lq(λ)

≤ K|v|Cκ |w|Cκ n−1|k − �|.

Proof. As in [16, Prop. 2.7], the constants in Assumption 2.3(i) have the required dependence on |v|Cκ and |w|Cκ by the
uniform boundedness principle. �

Proposition 2.8. Suppose Assumption 2.3 holds. Then

(a) for all v ∈ Cκ
0 (�,Rm), the limit limn→∞ n−1 ∑n−1

k=0 Eλ(v
ivj )(Yk) exists and the covariance of Wv is given by

EWi
v(1)Wj

v (1) =B
(
vi, vj

) +B
(
vj , vi

)
,

where

B
(
vi, vj

) =B0
(
vi, vj

) + 1

2
lim

n→∞n−1
n−1∑
k=0

Eλ

(
vivj

)
(Yk),

(b) the bilinear operators B,B0 : Cκ
0 (�) × Cκ

0 (�) → R are bounded.

Proof. (a) It follows from Assumption 2.3 that

EλW
i
v,n(1)W

j
v,n(1) → EWi

v(1)Wj
v (1),

and

(2.5) EλW
ij
v,n(1) → EW

ij
v (1) =B0

(
vi, vj

)
,

where we have used the fact that Itô integrals have zero mean. By (2.3), we have

Wi
v,n(1)W

j
v,n(1) =W

ij
v,n(1) +W

ji
v,n(1) + n−1

n−1∑
k=0

(
vivj

)
(Yk).

Taking expectations on both sides and letting n → ∞ yields the desired result.
(b) Boundedness of B0 follows from (2.5) and (2.4) with k = 0, � = n. By definition of B, we have |B(v,w)| ≤

|B0(v,w)| + 1
2 |v|C0 |w|C0 , yielding boundedness of B. �

Lemma 2.9. Suppose Assumption 2.3 holds. Then the quadratic form

ij (x) =B
(
bi(x, ·), bj (x, ·)) +B

(
bj (x, ·), bi(x, ·)), i, j = 1, . . . , d,

is positive semi-definite and the unique positive semi-definite σ satisfying σ 2 =  is Lipschitz.
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Proof. Positive semi-definiteness of  follows from Proposition 2.8(a). Moreover, b lies in Cα,κ(Rd × �,Rd) with
α > 2 + d

q
≥ 2, so  is C2 with globally bounded derivatives to second order. The conclusion now follows from [25,

Thm. 5.2.3]. �

As a consequence of Lemma 2.9 and [25, Cor. 5.1.2], for a Brownian motion B on R
d and a Lipschitz function

ã : Rd → R
d , there is a unique strong solution to the SDE

(2.6) dX = ã(X)dt + σ(X)dB, X(0) = ξ.

In particular, the SDE (2.9) has uniqueness in law.

Theorem 2.10. Suppose that Assumptions 2.2 and 2.3 hold and that limn→∞ ξn = ξ ∈Rd . Define the càdlàg path

(2.7) xn : [0,1] → R
d, xn(t) = X

(n)
�nt�.

Then xn →λ X in the uniform topology as n → ∞, where X is a weak solution of the SDE (2.6), where B is a standard
Brownian motion in R

d , σ is defined as in Lemma 2.9, and ã is the Lipschitz function given by

ãi (x) = āi (x) +
d∑

k=1

B0
(
bk(x, ·), ∂kb

i(x, ·)), i = 1, . . . , d.

We omit the proof of Theorem 2.10, which follows from trivial modifications to the proof in Section 4 of Theorem 2.17.

2.2. General case

We now state the assumptions and preliminary results required for our main result, Theorem 2.17. We fix functions
an ∈ C1+κ̄,0(Rd × �,Rd), and b∞, bn ∈ Cα,κ(Rd × �,Rd) satisfying

sup
n≥1

|an|C1+κ̄,0 + |bn|Cα,κ < ∞, lim
n→∞|bn − b∞|Cα,κ = 0.

For n ≥ 1, we are interested in the discrete-time fast–slow system (1.1) where Tn : � → � is a measurable map, X
(n)
0 =

ξn ∈ R
d , and Y

(n)
0 is drawn randomly from a Borel probability measure λn on �.

Assumption 2.11. There exists ā ∈ C1+κ̄ (Rd ,Rd ) such that, for all t ∈ [0,1] and x ∈ R
d ,∣∣Vn(t)(x) − t ā(x)

∣∣ →λn 0 as n → ∞,

where Vn(t) = n−1 ∑�tn�−1
k=0 an(·, Y (n)

k ).

As in (2.2), for v,w ∈ Cκ(�,Rm) and 0 ≤ s ≤ t ≤ 1, define Wv,n(t) ∈R
m, and Wv,w,n(s, t) ∈ R

m×m by

(2.8)

Wv,n(t) = n−1/2
∑

0≤k<�nt�
v
(
Y

(n)
k

)
,

Wv,w,n(s, t) =
∫ t

s

(
W−

v,n(r) − Wv,n(s)
) ⊗ dWw,n(r),

where we recall that W−
v,n(r) = lims↑r Wv,n(s). Whenever v = w, we again write Wv,n for Wv,v,n.

Recall our notational convention about subspaces Cκ
0 (�) of Cκ(�) introduced before Assumption 2.3.

Assumption 2.12. There exists a closed subspace Cκ
n (�) of Cκ(�) for each n ∈ N ∪ {∞} such that bn ∈ C

α,κ
n (Rd ×

�,Rd), and

(i) for all v = (v1, . . .), w = (w1, . . .) ∈ ∏
n∈N Cκ

n (�) with

sup
n

|vn|Cκ + |wn|Cκ < ∞,
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there exists K = Kv,w,q > 0 such that for all n ∈N and 0 ≤ k, � ≤ n∣∣Wvn,n(k/n) − Wvn,n(�/n)
∣∣
L2q (λn)

≤ Kn−1/2|k − �|1/2

and ∣∣Wvn,wn,n(k/n, �/n)
∣∣
Lq(λn)

≤ Kn−1|k − �|,
(ii) there exist bounded bilinear operators B1,B2 : Cκ∞(�) × Cκ∞(�) → R such that for every m ≥ 1 and all v =

(vn)n∈N∪{∞} with vn ∈ Cκ
n (�,Rm) and limn→∞ |vn − v∞|Cκ = 0,

(a) limn→∞ n−1 ∑n−1
k=0 Eλn(v

i
nv

j
n)(Y

(n)
k ) =B1(v

i∞, v
j∞),

(b) (Wvn,n,Wvn,n) →λn (Wv,Wv) as n → ∞ in the sense of finite-dimensional distributions, where Wv is an R
m-

valued Brownian motion and

W
ij
v (t) =

∫ t

0
Wi

v dW
j
v +B2

(
vi∞, v

j∞
)
t.

Remark 2.13. As in Remark 2.6, under the assumption that λn is Tn-stationary, the simpler bounds∣∣Wvn,n(k/n)
∣∣
L2q (λn)

≤ K(k/n)1/2 and
∣∣Wvn,wn,n(0, k/n)

∣∣
Lq(λn)

≤ Kk/n

for all 0 ≤ k ≤ n, imply Assumption 2.12(i). Also, Assumption 2.12(ii)(a) reduces to limn→∞ Eλn(v
i
nw

j
n) =B1(v

i∞,w
j∞).

Proposition 2.14. Suppose that Assumption 2.12(i) holds. Then there exists K > 0 such that for all n ∈ N, 0 ≤ k, � ≤ n,
and v,w ∈ Cκ

n (�), ∣∣Wv,n(k/n) − Wv,n(�/n)
∣∣
L2q (λn)

≤ K|v|Cκ n−1/2|k − �|1/2,∣∣Wv,w,n(k/n, �/n)
∣∣
Lq(λn)

≤ K|v|Cκ |w|Cκ n−1|k − �|.

Proof. Identical to Proposition 2.7. �

Proposition 2.15. Suppose that Assumption 2.12 holds. Let B = 1
2B1 + B2. Then, for all v = (vn)n∈N∪{∞} with

limn→∞ |vn − v∞|Cκ = 0, the covariance of Wv is given by

EWi
v(1)W

j
v (1) =B

(
vi∞, v

j∞
) +B

(
v

j∞, vi∞
)
.

Proof. Exactly the same as Proposition 2.8(a) upon replacing Wv,n by Wvn,n and Wv by Wv, and using Assump-
tion 2.12(ii)(a). �

Lemma 2.16. Suppose that Assumption 2.12 holds. Then the symmetric quadratic form

ij (x) =B
(
bi∞(x, ·), bj∞(x, ·)) +B

(
b

j∞(x, ·), bi∞(x, ·)), i, j = 1, . . . , d,

is positive semi-definite and the unique positive semi-definite σ satisfying σ 2 =  is Lipschitz.

Proof. Identical to Lemma 2.9. �

As before, by Lemma 2.16 and [25, Cor. 5.1.2], for a Brownian motion B on R
d and a Lipschitz function ã : Rd → R

d ,
there is a unique strong solution to the SDE

(2.9) dX = ã(X)dt + σ(X)dB, X(0) = ξ.

In particular, the SDE (2.9) has uniqueness in law.

Theorem 2.17. Suppose that Assumptions 2.11 and 2.12 hold, and that limn→∞ ξn = ξ ∈ R
d . Define the càdlàg path

(2.10) xn : [0,1] → R
d, xn(t) = X

(n)
�nt�.
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Then xn →λn X in the uniform topology as n → ∞, where X is a weak solution of the SDE (2.9), where B is a standard
Brownian motion in R

d , σ is defined as in Lemma 2.16, and ã is the Lipschitz function given by

ãi (x) = āi (x) +
d∑

k=1

B2
(
bk∞(x, ·), ∂kb

i∞(x, ·)), i = 1, . . . , d.

2.3. Homogenization for the illustrative example

In this subsection, we apply our main result, Theorem 2.17 in the case where the fast dynamics Tn is a family of inter-
mittent maps as in Section 1.1. Using the results from Part 1 [18], we verify the hypotheses of Theorem 2.17 and deduce
convergence to an SDE (1.2) with coefficients ã and σ as given in (1.4) and (1.5).

Recall that � = [0,1] and Tn : � → �, n ∈ N ∪ {∞}, is a family of intermittent maps as in (1.3) with parameters
γn ∈ (0, 1

2 ) such that limn→∞ γn = γ∞. Let μn be the corresponding family of Tn-invariant ergodic absolutely continuous
probability measures. Let Cκ

n (�) = {v ∈ Cκ(�) : ∫
�

v dμn = 0} and fix q ∈ (1, γ −1∞ − 1). We consider fast–slow systems
(1.1) where an, bn satisfy the regularity conditions at the beginning of Section 2.2 and bn ∈ C

α,κ
n (Rd ×�,Rd). We require

further that limn→∞ |an − a∞|∞ = 0 and that a∞(x, ·) : � →R
d is Hölder continuous for each fixed x.

To apply Theorem 2.17, we verify Assumptions 2.11 and 2.12 for appropriate families of probability measures λn. We
do this for the case λn ≡ Leb using the results in [18, Sec. 4.1]. The case λn = μn works in the same way (indeed, this is
the easier case in [18]).

Proposition 2.18. Assumption 2.11 holds with ā(x) = ∫
�

a∞(x, ·)dμ∞.

Proof. Fix x ∈R
d and define vn = an(x, ·). Then Vn(t)(x) = n−1 ∑�nt�−1

j=0 vn ◦ T
j
n and it follows from [18, Prop. 4.3(a)]

that Vn(t)(x) →Leb t
∫
�

v∞ dμ∞ = t
∫
�

a∞(x, ·)dμ∞. �

Proposition 2.19. Assumption 2.12(i) holds.

Proof. Let p = q + 1 ∈ (2, γ −1∞ ) and v = (v1, . . .), w = (w1, . . .) ∈ ∏
n∈N Cκ

n (�). By [18, Prop. 4.1], there is a constant
C > 0 such that for 0 ≤ � < k ≤ n,

∣∣Wvn,n(k/n) − Wvn,n(�/n)
∣∣
L2q (Leb)

= n−1/2
∣∣∣∣ ∑
�≤j<k

vn ◦ T
j
n

∣∣∣∣
L2(p−1)(Leb)

≤ Cn−1/2(k − �)1/2|vn|Cκ ,∣∣Wvn,wn,n(k/n, �/n)
∣∣
Lq(Leb)

= n−1
∣∣∣∣ ∑
�≤i<j<k

(
vn ◦ T i

n

) ⊗ (
wn ◦ T

j
n

)∣∣∣∣
Lp−1(Leb)

≤ Cn−1(k − �)|vn|Cκ |wn|Cκ .

These are the desired estimates. �

Proposition 2.20. Assumption 2.12(ii) holds with

B1(v,w) =
∫

�

vw dμ∞, B2(v,w) =
∞∑

�=1

∫
�

vw ◦ T �∞ dμ∞.

Proof. Assumption 2.12(ii)(a) is verified in [18, Prop. 4.3(b)]. By [18, Prop. 4.2] together with [18, Rem. 2.9],
(Wvn,n,Wvn,n) →Leb (Wv,Wv) where Wv is an R

m-valued Brownian motion and

W
ij
v (t) =

∫ t

0
Wi

v dW
j
v + E

ij∞t, E
ij∞ =

∞∑
�=1

∫
�

vi∞v
j∞ ◦ T �∞ dμ∞.

This verifies Assumption 2.12(ii)(b). �
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We can now apply Theorem 2.17. Define ã as in (1.4) and set

(x) =
∫

�

b∞(x, y) ⊗ b∞(x, y)dμ∞(y)

+
∞∑

�=1

∫
�

{
b∞(x, y) ⊗ b∞

(
x,T �∞y

) + b∞
(
x,T �∞y

) ⊗ b∞(x, y)
}

dμ∞(y).

Let σ be the unique positive semidefinite square root of  as in Lemma 2.16. By Theorem 2.17, xn →Leb X where X is
the unique solution to the SDE (1.2) with coefficients ã and σ .

3. Banach space valued càdlàg rough paths

In this section, we collect all the necessary results on càdlàg rough path theory in Banach spaces which will be needed in
the sequel.

For Banach spaces A, B, we denote their algebraic tensor product by

A⊗a B := span{a ⊗ b | a ∈A, b ∈ B}.
Given f ∈A∗ (the dual space of A), g ∈ B∗, one may define an element on (A⊗a B)∗ by

(f ⊗ g)

(
N∑

i=1

ai ⊗ bi

)
:=

N∑
i=1

f (ai)g(bi).

As a result, we consider A∗ ⊗a B∗ as a subspace of (A ⊗a B)∗. Generally, there are different (inequivalent) norms on
A⊗a B. We call a norm | · |A⊗B on the vector space A⊗a B admissible (or reasonable), if for any a ∈ A, b ∈ B, f ∈A∗,
g ∈ B∗,

(3.1) |a ⊗ b|A⊗B ≤ |a|A|b|B, |f ⊗ g|(A⊗B)∗ ≤ |f |A∗ |g|B∗ ,

where | · |(A⊗B)∗ is defined as the dual norm on (A ⊗a B, | · |A⊗B)∗. Examples of admissible norms are the projective
tensor norm and the injective tensor norm, see [23, Sec. 6.1]. One may then complete A ⊗a B under | · |A⊗B to obtain
a Banach space. All the tensor product spaces A⊗ B we consider in the sequel will implicitly be assumed to be Banach
spaces completed by such an admissible norm.

Definition 3.1. A partition over an interval [s, t] is a set P of subintervals of [s, t] of the form P = {[t0, t1], [t1, t2], . . . ,
[tk−1, tk]} with ti < ti+1 and t0 = s, tk = t . We define the mesh size of the partition as |P| := max[u,v]∈P |u − v|.

For a Banach space B and p > 0, let Vp-var([s, t],B) denote the space of all functions � : {(u, v) ∈ [s, t]2 | u ≤ v} → B
such that �(u,u) = 0 and

‖�‖p-var;[s,t] := sup
P

( ∑
[u,v]∈P

∣∣�(u,v)
∣∣p)1/p

< ∞,

where the supremum is over all partitions of [s, t].

Note that if p ≥ 1, then Vp-var([s, t],B) is a Banach space with norm ‖ · ‖p-var;[s,t]. In the sequel, we will drop the
reference to the interval [s, t] whenever [s, t] = [0, T ]. We will also occasionally refer to p-variation over not necessarily
closed intervals, i.e., (s, t] or [s, t) instead of [s, t], with the obvious interpretation.

For a Banach space B, we equip B⊕B⊗2 with the multiplication operation (a,M)(b,N) := (a + b,M + a ⊗ b + N).
Note that the multiplicative identity in B ⊕ B⊗2 is (0,0) and every element posses an inverse given by (a,M)−1 =
(−a,−M + a ⊗ a). Hence B ⊕B⊗2 is a group.

Definition 3.2. Let B be a Banach space. For a path X : [s, t] → B ⊕ B⊗2 and s ≤ u ≤ v ≤ t , define the increment
X(u, v) := (X(u, v),X(u, v)) := X(u)−1X(v). For p ≥ 1, define the (homogeneous) p-variation of X by

‖X‖p-var;[s,t] := ‖X‖p-var;[s,t] + ‖X‖1/2
p/2-var;[s,t].
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For p ∈ [2,3), a p-rough path over B is a càdlàg function X : [0, T ] → B ⊕ B⊗2 such that X(0) = 0 and ‖X‖p-var < ∞.
For p-rough paths X, X̃, we define the (inhomogeneous) rough path metric by

(3.2) ‖X; X̃‖p-var := ‖X − X̃‖p-var + ‖X− X̃‖p/2-var,

as well as the (Skorokhod-type) p-variation metric

(3.3) σp-var(X, X̃) := inf
ω∈�

{|ω| + ‖X; X̃ ◦ ω‖p-var
}
,

where � denotes the set of all continuous increasing bijections ω : [0, T ] → [0, T ], and

|ω| := sup
t∈[0,T ]

∣∣t − ω(t)
∣∣.

Let Dp-var(B) denote the space of all p-rough paths equipped with the metric σp-var. For p ∈ [1,2) define the p-
variation ‖ · ‖p-var of a path X : [0, T ] → B, as well as the metric σp-var and space Dp-var(B) in the exact same way as
above but without the component X.

The purpose of the metric σp-var is to provide convenient tightness results. In short, tightness in the metric space
(Dp-var, σp-var) is implied by tightness of p′-variation for p′ < p and tightness in the (J1) Skorokhod space, with the
latter two being simpler to check; see the proofs of Lemmas 4.5 and 4.7. Likewise for Dp-var. The same is not true if we
replace σp-var by ‖·; ·‖p-var.

We next state a basic interpolation estimate which will be helpful in the sequel. Define

‖X; X̃‖∞ = ‖X − X̃‖∞ + ‖X− X̃‖∞,

where ‖�‖∞ := sups,t |�(s, t)| (as usual, we treat X as a two parameter function by X(s, t) = X(t) − X(s)).

Lemma 3.3. For p′ ≥ p ≥ 1 and X, X̃ : [0, T ] → B ⊕B⊗2, it holds that

(3.4) ‖X; X̃‖p′-var ≤ ‖X; X̃‖1−p/p′
∞ ‖X; X̃‖p/p′

p-var.

Proof. We readily see that

‖X; X̃‖p′-var ≤ ‖X − X̃‖1−p/p′
∞ ‖X − X̃‖p/p′

p-var + ‖X− X̃‖1−p/p′
∞ ‖X− X̃‖p/p′

p/2-var,

and the conclusion follows by Hölder’s inequality aθ ā1−θ + bθ b̄1−θ ≤ (a + b)θ (ā + b̄)1−θ for θ ∈ [0,1] and a, ā, b,

b̄ ≥ 0. �

We now introduce rough integration in the level-2 rough path case. Given Banach spaces B, E , let L(B,E) denote
the space of bounded linear operators from B to E . For p ∈ [2,3) and X ∈ Dp-var(B), we call (Y,Y ′) an E -valued X-
controlled rough path if

Y ∈ Dp-var(E), Y ′ ∈ Dp-var(L(B,E)
)
,

and R ∈ Vp/2-var(E), where

(3.5) R(s, t) := Y(s, t) − Y ′(s)X(s, t).

We denote the space of X-controlled rough paths as Dp/2-var
X (E). In the following, we are interested in Rd -valued RDEs,

i.e. E = R
d . In this case, one has the following stability of rough integration. Remark that, B∗ ⊗a B∗ is a subspace of

(B ⊗ B)∗ by admissibility of norms (3.1) and therefore f ⊗ g ∈ (B ⊗ B)∗ for every f,g ∈ B∗. In particular, � in the
statement of the following lemma is well-defined.

Lemma 3.4. Let X ∈ Dp-var(B), (Y,Y ′) ∈ Dp/2-var
X (Rd), and H ∈ C2(Rd ,L(B,Rd)). Then, for every t ∈ [0, T ], the

following integral (with values in R
d ) is well-defined

(3.6) IX(Y )(t) :=
∫ t

0
H

(
Y−(s)

)
dX(s) := lim

|P |→0

∑
[u,v]∈P

�(u,v),
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where P are partitions of [0, t] and, for i = 1, . . . , d and 0 ≤ u ≤ v ≤ T ,

�(u,v)i = Hi
(
Y(u)

)
X(u,v) +

d∑
k=1

(
∂kH

i
(
Y(u)

) ⊗ (
Y ′(u)

)k)
X(u, v).

Furthermore, (H(Y ),DH(Y )Y ′) and (IX(Y ),H(Y )) are X-controlled rough paths.

Proof. The claim that (H(Y ),DH(Y )Y ′) is an X-controlled rough path follows from Taylor expansion. Indeed, defining

RH(Y)(s, t) := H
(
Y(t)

) − H
(
Y(s)

) − DH
(
Y(s)

)
Y ′(s)X(s, t),

one can check that RH(Y) ∈ V
p
2 (L(B,Rd)). Then one has the identity

�(s, t) − �(s,u) − �(u, t) = −RH(Y)(s, u)X(u, t) − (
DH(Y)Y ′)(s, u)X(u, t).

According to the generalized sewing lemma [12, Thm. 2.5], the integral IX(Y ) is well-defined, and furthermore one has
the local estimate∣∣IX(Y )(s, t) − �(s, t)

∣∣ ≤ C
[∥∥RH(Y)

∥∥
p/2-var;[s,t)‖X‖p-var;(s,t] + ∥∥DH(Y)Y ′∥∥

p-var;(s,t]‖X‖p/2-var;[s,t)
]
,

which implies that (IX(Y ),H(Y )) is also an X-controlled rough path. �

Remark 3.5. Generally, to integrate (Y,Y ′) against X, one needs Y(t) ∈ L(B,E) and Y ′(t) ∈ L(B,L(B,E)) to have the
identity Y(s, t) = Y ′(s)X(s, t) + R(s, t). In this case, one further needs the embedding L(B,L(B,E)) ↪→ L(B ⊗ B,E)

to define �(s, t) := Y(s)X(s, t) + Y ′(s)X(s, t). Luckily, in the above case where E = R
d , the embedding assumption is

replaced by the fact DH(Y)Y ′ ∈ L(B ⊗B,Rd) which follows by admissibility of norms.

The main convergence result for rough differential equations which we will require is the following. The proof, which
we omit, is essentially the same as the finite dimensional case, i.e., [12, Thm. 3.8, 3.9], thanks to admissibility of norms.

Theorem 3.6. Let A, B be Banach spaces, p ∈ [2,3), q ∈ [1,p/2], and F ∈ Cβ(Rd ,L(A,Rd)), H ∈ Cγ (Rd ,L(B,Rd))

for β > q , γ > p. Then, for any V ∈ Dq-var(A), X ∈ Dp-var(B), and Y0 ∈ R
d , there exists a unique X-controlled rough

path (Y,Y ′) ∈ Dp/2-var
X (Rd) solving the equation

(3.7) Y(t) = Y0 +
∫ t

0
F

(
Y−(s)

)
dV (s) +

∫ t

0
H

(
Y−(s)

)
dX(s).

Moreover, the solution map is locally Lipschitz in the sense that

(3.8) ‖Y − Ỹ‖p-var � ‖X; X̃‖p-var + ‖V − Ṽ ‖q-var + |Y0 − Ỹ0|,
where the proportionality constant is uniform over bounded sets of driving signals.

Recall that in (3.7),
∫ t

0 H(Y−(s))dX(s) is defined by (3.6) and that
∫ t

0 F(Y−(s))dV (s) is the classical Young integral
[12, Prop. 2.4] ∫ t

0
F

(
Y−(s)

)
dV (s) = lim

|P |→0

∑
[u,v]∈P

F
(
Y(u)

)
V (u, v),

where P are partitions of [0, t], which is well-defined since 1/q + 1/p > 1. Note that the restriction q ≤ p/2 arises from
the Young estimate ‖ ∫ ·

0(Z
−(s)−Z(0))dV (s)‖q-var � ‖Z‖p-var‖V ‖q-var and the requirement that R ∈ Vp/2-var(Rd) in the

definition (3.5).
For our purposes, it will be useful to record the following corollary stated in terms of the metrics σp-var and σq-var.

Corollary 3.7. Let notation be as in Theorem 3.6. Consider the solution map to equation (3.7)

� : Dq-var(A) ×Dp-var(B) ×R
d → Dp-var(

R
d
)
,

� : (V ,X, Y0) �→ Y.
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Let p′ > p and equip Dp-var(Rd) with the norm |Y(0)| + ‖Y‖p′-var and Dq-var(A) × Dp-var(B) × R
d with the product

metric (σq-var, σp-var, | · |). Then every point (V ,X, Y0), where V , X are continuous, is a continuity point of �.

Proof. It suffices to consider p′ ∈ (p, γ ). Let X ∈ Dp-var(B) be continuous. We claim that σp-var(Xn,X) → 0 implies
‖Xn;X‖p′-var → 0. Indeed, σp-var(Xn,X) → 0 implies the existence of {ωn}n≥1 ⊂ � satisfying both |ωn| → 0 and
‖Xn;X ◦ωn‖p-var → 0. Observe that ‖X;X ◦ωn‖∞ → 0 by continuity of X, and therefore, combining with the interpola-
tion estimate (3.4), ‖X;X ◦ ωn‖p′-var → 0. Since ‖Xn;X‖p′-var ≤ ‖Xn;X ◦ ωn‖p′-var + ‖X ◦ ωn;X‖p′-var, this proves the
claim. The same considerations apply to continuous V ∈ Dq-var(A) and q ′ > q . The result follows from Theorem 3.6 by
taking q ′ ∈ (q,β ∧ p′). �

Remark 3.8. Recall that, for the classical (J1) Skorokhod space D, a pair (x, y) ∈ D2 is a continuity point of the addition
map D2 → D, (x, y) �→ x + y, whenever one of x or y is continuous. In a similar way, if one instead equips Dp-var(Rd)

with the metric |Y(0) − Ȳ (0)| + σp′-var(Y, Ȳ ), then one can show that (V ,X, Y0) is a continuity point of � whenever one
of X or V is continuous.

We conclude this section with the following result which will be helpful in controlling the p-variation and càdlàg
modulus of continuity of paths.

Proposition 3.9. Let (O,F,P) be a probability space and let {Xt }t∈[0,T ] = {(Xt ,Xt )}t∈[0,T ] be a B ⊕ B⊗2-valued
stochastic process defined on (O,F,P). Suppose further that, for P-a.e. o ∈ O, t �→ Xo

t is càdlàg, piecewise constant,
and has jump times contained in a deterministic set {tj }0≤j≤n ⊂ [0, T ] with 0 = t0 < t1 < · · · < tn = T , such that, for
some C1,C2 > 0, β ∈ (0, 1

2 ], and q ∈ [1,∞],∣∣X(ti, tj )
∣∣
L2q (P)

≤ C1|tj − ti |β,
∣∣X(ti , tj )

∣∣
Lq(P)

≤ C2|tj − ti |2β.

If 2q > 1
β

, then for any α ∈ ( 1
2q

, β)

(3.9) E
[‖X‖2q

1/α-var

] 1
2q ≤ CT

α− 1
2q

(
C1 + C

1/2
2

)
and

(3.10) E

[∣∣∣∣ sup
ti �=tj

|X(ti, tj )| + |X(ti , tj )|1/2

|ti − tj |α− 1
2q

∣∣∣∣2q] 1
2q ≤ C

(
C1 + C

1/2
2

)
for a constant C > 0 depending only on α, β , q .

For the proof, we require the following lemma.

Lemma 3.10. Let X be as in Proposition 3.9. Then there exists a P-a.s. continuous B⊕B⊗2-valued process {X̃t }t∈[0,T ] =
{(X̃t , X̃t )}t∈[0,T ] such that X(ti) = X̃(ti) for all i = 0, . . . , n, and

(3.11)
∣∣X̃(s, t)

∣∣
L2q (P)

≤ 31−βC1|t − s|β,
∣∣X̃(s, t)

∣∣
Lq(P)

≤ 32−2β
(
C2 + C2

1

)|t − s|2β.

Proof. Let us define (X̃, X̃) for t ∈ [tj , tj+1) by

X̃(t) := X(tj ) + t − tj

tj+1 − tj
X(tj , tj+1),

X̃(0, t) := X(0, tj ) + t − tj

tj+1 − tj

(
X(0, tj+1) −X(0, tj )

)
.

To prove (3.11), consider s < t with s ∈ [tj , tj+1), t ∈ [tk, tk+1). Further we suppose that j < k (the case j = k is similar
and simpler). Then ∣∣X̃(s, t)

∣∣
L2q (P)

≤ ∣∣X̃(s, tj+1)
∣∣
L2q (P)

+ ∣∣X̃(tj+1, tk)
∣∣
L2q (P)

+ ∣∣X̃(tk, t)
∣∣
L2q (P)

≤ C1
(|tj+1 − s|β + |tj+1 − tk|β + |t − tk|β

) ≤ 31−βC1|t − s|β.
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Furthermore, one can check that

X̃(s, tj+1) = tj+1 − s

tj+1 − tj
X(tj , tj+1) + (tj+1 − s)(s − tj )

(tj+1 − tj )2
X⊗2

tj ,tj+1
,

from which it follows that ∣∣X̃(s, tj+1)
∣∣
Lq(P)

≤ (
C2 + C2

1

)|tj+1 − s|2β .

A similar estimate holds for X̃(tk, t). Hence∣∣X̃(s, t)
∣∣
Lq(P)

≤ ∣∣X̃(s, tj+1)
∣∣
Lq(P)

+ ∣∣X̃(tj+1, tk)
∣∣
Lq(P)

+ ∣∣X̃(tk, t)
∣∣
Lq(P)

+ ∣∣X̃(s, tj+1) ⊗ X̃(tj+1, tk)
∣∣
Lq(P)

+ ∣∣X̃(s, tk) ⊗ X(tk, t)
∣∣
Lq(P)

≤ 31−2β
(
C2 + C2

1

)|t − s|2β + C2
1 |t − s|2β + 21−βC2

1 |t − s|2β

≤ 32−2β
(
C2 + C2

1

)|t − s|2β. �

Proof of Proposition 3.9. Let X̃ be as in Lemma 3.10 and suppose 2q > 1
β

and α ∈ ( 1
2q

, β). Using the notation in the
Appendix, we have by Corollary A.3

E
[‖X̃‖2q

1/α-var

] 1
2q ≤ C(α,q)T

α− 1
2q E

[‖X̃‖2q

Wα,2q

] 1
2q

= C(α,q)T
α− 1

2q E

[∫∫
[0,T ]2

|X̃(s, t)|2q

B + |X̃(s, t)|qB⊗2

|t − s|2αq+1
ds dt

] 1
2q

.

Using the estimate (3.11) and the condition α < β , the final expectation is bounded by λ(C1 + C
1/2
2 ), where λ depends

only on β − α. In exactly the same way, using Corollary A.2, E[‖X̃‖2q

(α− 1
2q

)-Höl
] 1

2q ≤ C(C1 + C
1/2
2 ). The conclusion

follows since X̃(ti) = X(ti) and X is constant on [ti , ti+1). �

4. Proof of the main result

This section is devoted to the proof of Theorem 2.17. Throughout this section, we let notation be as in Section 2.2.
The first step is to reformulate the system (1.1) as a càdlàg controlled ODE. Let us fix κ ′ ∈ (0, κ̄) and θ ∈ (2, α − d

q
),

and introduce the Banach spaces

A= C1+κ ′(
R

d,Rd
)

and B = Cθ
(
R

d,Rd
)
.

We furthermore equip B⊗2 with the admissible norm as specified in [16, Prop. 4.5].
For any η ≥ 0, it holds for the point evaluation map F : Rd → L(Cη(Rd,Rd),Rd), given by F(x) : u �→ u(x), that

F ∈ Cη(Rd,L(Cη(Rd ,Rd),Rd)). We let F : Rd → L(A,Rd) and H : Rd → L(B,Rd) denote the corresponding point
evaluation maps.

The following lemma is now immediate from Theorem 3.6.

Lemma 4.1. The càdlàg RDE

(4.1) dx(t) = F
(
x−(t)

)
dV (t) + H

(
x−(t)

)
dW(t), x(0) = ξ ∈R

d

is well-posed for any (V ,W) ∈ Dβ-var([0,1],A) ×Dp-var(B) with β ∈ [1,1 + κ ′) and p ∈ [2, θ) such that β ≤ p/2.

We introduce the A-valued and B-valued paths

Vn(t) = n−1
�tn�−1∑
k=0

an

(·, Y (n)
k

)
, Wn(t) = n−1/2

�tn�−1∑
k=0

bn

(·, Y (n)
k

)
,
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and let Wn = (Wn,Wn) be the canonical level-2 lift of Wn given by

Wn(t) =
∫ t

0
Wn(r) ⊗ dWn(r).

Remark that Wn is a p-rough path over B for any p ∈ [2,3) in the sense of Definition 3.2.

Lemma 4.2. The path xn given by (2.10) is the unique solution of the càdlàg ODE

(4.2) dxn = F
(
x−
n

)
dVn + H

(
x−
n

)
dWn, xn(0) = ξn ∈R

d .

Proof. Observe that xn given by (2.10) satisfies for all 1 ≤ k ≤ n

xn(k/n) − xn

(
(k − 1)/n

) = n−1a
(
xn

(
(k − 1)/n

)
, Y

(n)
k−1

) + n−1/2b
(
xn

(
(k − 1)/n

)
, Y

(n)
k−1

)
=

∫ k/n

(k−1)/n

F
(
x−
n (s)

)
dVn(s) + H

(
x−
n (s)

)
dWn(s). �

Following Lemmas 4.1 and 4.2, we are reduced to showing convergence in law for Vn and Wn in suitable rough path
topologies and identifying the solution of the limiting RDE with an SDE. We first establish this result for the case that
the support of an and bn is uniformly bounded, i.e., there exists a compact set K ⊂ R

d such that the support of an and bn

is contained in K× � for all n ∈ N∪ {∞}.

Theorem 4.3. Suppose that Assumptions 2.11 and 2.12 hold and that the support of an and bn is uniformly bounded.
Then, for any p ∈ (2,3) and β ∈ (1,2), there exists a random variable (V ,W) in Dβ-var(A) × Dp-var(B) such that
(Vn,Wn) →λn (V ,W), and such that (V ,W) is a.s. continuous. Moreover, if β ∈ (1,1 + κ ′), p ∈ (2, θ), and β ≤ p/2,
then the RDE (4.1) driven by (V ,W) along the vector fields (F,H) is a weak solution of the SDE (2.9).

Before proving Theorem 4.3, we first state an immediate consequence of Corollary 3.7, Lemma 4.2, Theorem 4.3, and
the continuous mapping theorem.

Corollary 4.4. Suppose we are in the setting of Theorem 2.17 and that the support of an and bn is uniformly bounded.
Then, for any p > 2, xn →λn X in the p-variation norm |x(0)| + ‖x‖p-var, where X is a weak solution of the SDE (2.9).

We break the proof of Theorem 4.3 into several lemmas.

Lemma 4.5. Suppose that Assumption 2.11 holds and that the support of an is uniformly bounded. Then for every β > 1

‖Vn − V ‖β-var →λn 0,

where V : [0,1] →A is the deterministic path V (t) = t ā.

Proof. Let K ⊂ R
d be compact such that K × � contains the support of an. Then the embedding C1+κ̄ (K,Rd) ↪→ A is

compact. Observe further that, for all s, t ∈ [0,1] with |t − s| > n−1,

(4.3)
∣∣Vn(t) − Vn(s)

∣∣
C1+κ̄ ≤ 2|t − s||an|C1+κ̄,0 .

It follows that (Vn)n≥1 satisfies the compact containment condition [7, Rem. 3.7.3] and condition [7, Thm. 3.7.2(b)].
Hence, by the tightness criterion [7, Thm. 3.7.6], (Vn)n≥1 is tight in the (J1) Skorokhod space D([0,1],A) (note that [7,
Thm. 3.7.6] implies only relative compactness, but tightness is a consequence of the proof).

Observe next that, for β > 1, the interpolation estimate (3.4) implies σβ-var(X,Y ) ≤ σ∞(X,Y )1−1/β(‖X‖1-var +
‖Y‖1-var)

1/β , where σ∞ is the (J1) Skorokhod metric defined as in (3.3) with ‖·; ·‖p-var replaced by ‖·; ·‖∞. Moreover,
the map X �→ ‖X‖1-var is invariant under reparametrizations and is lower semi-continuous under the metric ‖·; ·‖∞ and
thus under the metric σ∞. It follows that, for every R ≥ 0 and every compact subset K of the classical (J1) Skorokhod
space D([0,1],A), the set {

X ∈ K | ‖X‖1-var ≤ R
}
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is compact in Dβ-var(A). Furthermore, (4.3) implies that, as a càdlàg path with values in C1+κ̄ (Rd ,Rd), Vn has 1-
variation uniformly bounded in n ≥ 1 and Y

(n)
0 ∈ �. It follows that (Vn)n≥1 is tight in Dβ-var(A). Hence, by Prokhorov’s

theorem [2, Thm. 5.1], (Vn)n≥1 is weakly relatively compact in the space of probability measures on Dβ-var(A), and by
Assumption 2.11, the only possible limit point is V . Finally, since V is continuous and deterministic, the same argument
as in the proof of Corollary 3.7 implies that ‖Vn − V ‖β-var →λn 0 for all β > 1. �

Showing convergence of Wn is more involved.

Lemma 4.6. Suppose that Assumption 2.12(i) holds and that the support of bn is uniformly bounded. Then

Eλn

[∣∣Wn(k/n) − Wn(�/n)
∣∣2q

B
]1/(2q) � n−1/2|k − �|1/2,

Eλn

[∣∣Wn(k/n, �/n)
∣∣q
B⊗2

]1/q � n−1|k − �|,
uniformly in n ≥ 1 and 0 ≤ k, � ≤ n.

Proof. For a function u :Rd →R, let us introduce the notation

�σ u(x) = u(x + σ) − u(x), and �m+1
σ = �σ ◦ �m

σ .

For s > 0 and p ≥ 1, recall the Besov space Bs
p consisting of all Lp functions u : Rd → R such that

|u|pBs
p

= |u|pLp +
∫

|σ |≤1
|σ |−sp−d

∣∣��s�+1
σ u

∣∣p
Lp dσ < ∞.

Let us further introduce the notation

�m
σ Wn(k/n, �/n;x) = n−1/2

�∑
r=k

�m
σ bn

(
x,Y (n)

r

)
.

Denote in the sequel s = k/n and t = �/n. Proposition 2.14 implies that for each m ≥ 1 (cf. [16, p. 4088])

(4.4) Eλn

[∣∣�m
σ Wn(s, t;x)

∣∣2q]1/(2q) �
∣∣�m

σ bn(x, ·)∣∣
Cκ |t − s|1/2.

Setting m = �θ + d
2q

� + 1, it follows that

Eλn

[∣∣Wn(s, t; ·)
∣∣2q

B
]
� Eλn

[∣∣Wn(s, t; ·)
∣∣2q

B
θ+d/(2q)
2q

]
= Eλn

[∫ ∣∣Wn(s, t;x)
∣∣2q dx +

∫
|σ≤1|

|σ |−2θq−2d

∫ ∣∣�m
σ Wn(s, t;x)

∣∣2q dx dσ

]
�

∫ ∣∣bn(x, ·)∣∣2q

Cκ |t − s|q dx +
∫

|σ |≤1

∫ ∣∣�m
σ bn(x, ·)∣∣2q

Cκ |t − s|q dx dσ

� |t − s|q |bn|2q

B
θ+d/(2q)
2q ;Cκ

� |t − s|q,

where the first estimate follows from the embedding B
θ+d/(2q)

2q ↪→ Cθ , the second from (4.4), the third from the defi-
nition of | · |

B
θ+d/(2q)
2q ;Cκ [16, p. 4086], and the fourth from [16, Lem. 5.5] since bn has uniformly bounded support and

supn≥1 |bn|Cα,κ < ∞ with α > θ + d/(2q).
The second estimate follows in a similar way from Proposition 2.14 upon using the bound

Eλn

[∣∣�m
x,σ �m′

x′,σ ′Wn

(
s, t;x, x′)∣∣q]1/q �

∣∣�m
σ bn(x, ·)∣∣

Cκ

∣∣�m′
σ ′ bn

(
x′, ·)∣∣

Cκ |t − s|
and the argument from [16, pp. 4089–4090] (note that this is where we require supn≥1 |bn|Cα,κ < ∞ for α > θ + d/q , so
that supn≥1 |bn|Bθ+d/q

q
< ∞). �
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Lemma 4.7 (Tightness). Suppose that Assumption 2.12(i) holds and that the support of bn is uniformly bounded. Then,
for any p > 2, it holds that

sup
n≥1

Eλn

[‖Wn‖2q
p-var

]
< ∞

and that (Wn)n≥1 is a family of tight random variables in Dp-var(B).

Proof. Consider θ ′ ∈ (θ,α− d
q
) and the space B′ = Cθ ′

(K,Rd), where K×� contains the support of all bn. We first show,
using a similar argument as in the proof of Lemma 4.5, that (Wn)n≥1 is tight in the (J1) Skorokhod space D([0,1],B ⊕
B⊗2). Indeed, Lemma 4.6 and (3.10) imply that (Wn)n≥1 satisfies condition [7, Thm. 3.7.2(b)], and, since the embedding
B′ ↪→ B is compact, that (Wn)n≥1 satisfies the compact containment condition [7, Rem. 3.7.3]. Hence, by [7, Thm. 3.7.6],
(Wn)n≥1 is tight in D([0,1],B ⊕B⊗2).

Consider now p′ ∈ (2,p). The interpolation estimate (3.4) implies σp-var(X,Y) ≤ σ∞(X,Y)1−p′/p(‖X‖p′-var +
‖Y‖p′-var)

p′/p with σ∞ defined as in the proof of Lemma 4.5. Moreover, the map X �→ ‖X‖p′-var is invariant under
reparametrizations and is lower semi-continuous under ‖·; ·‖∞ and thus under σ∞. Hence, for R > 0 and a compact
subset K of the (J1) Skorokhod space D([0,1],B ⊕B⊗2), the set{

X ∈ K | ‖X‖p′-var ≤ R
}

is compact in Dp-var(B). Considering Wn as an element of Dp′-var(B′), it follows from Lemma 4.6 and (3.9) (applied to
these new parameters) that supn≥1 Eλn[‖Wn‖2q

p′-var] < ∞. Consequently (Wn)n≥1 is tight in Dp-var(B). �

For an element π ∈ L(B,Rm) and b ∈ Cθ,κ(Rd × �,Rd), write πb : M → R
m for the function y �→ π(b(·, y)).

A direct verification shows that |πb|Cκ ≤ |π |L(B,Rm)|b|Cθ,κ (see, e.g., the proof of [16, Lem. 5.12]).
Consider the subspace of L(B,R)

L̃(B,R) = span
{
b �→ Dkbj (x) | x ∈R

d , k ∈N
d , |k| ≤ 1, j ∈ {1, . . . , d}}.

For m ≥ 1, we denote by L̃(B,Rm) the subspace of π ∈ L(B,Rm) such that πi ∈ L̃(B,R) for every i = 1, . . . ,m. We note
that L̃(B,R) does not appear in the work [16], however, due to the generality of our setting, we find it more convenient
to work with than the full space L(B,R).

Observe that, for b ∈ C
θ,κ
n (Rd × �,Rd), the map x �→ b(x, ·) is a Cθ map from R

d into the closed subspace Cκ
n (�),

and thus πb ∈ Cκ
n (�) for all π ∈ L̃(B,R).

Lemma 4.8 (Finite-dimensional projections). Let π ∈ L̃(B,Rm) for some m ≥ 1 and suppose that Assumption 2.12
holds. Let B be defined as in Proposition 2.15, and let Wπ be an R

m-valued Brownian motion with covariance

E
[
Wi

π(1)Wj
π (1)

] =B
(
πib∞,πjb∞

) +B
(
πjb∞,πib∞

)
.

Define further

W
i,j
π (t) =

∫ t

0
Wi

π dWj
π +B2

(
πib∞,πj b∞

)
t.

Then, as n → ∞, (
πWn, (π ⊗ π)Wn

) →λn (Wπ,Wπ )

in the sense of finite-dimensional distributions.

Proof. By the preceding remarks, πbn ∈ Cκ
n (�,Rm) for n ∈ N∪{∞} and limn→∞ |πbn −πb∞|Cκ = 0, so the conclusion

follows by Assumption 2.12 and Proposition 2.15. �

The convergence of finite-dimensional distributions, together with tightness, allows us to establish uniqueness of weak
limit points (which we note settles a point of ambiguity in [16, Rem. 5.14]).

Proposition 4.9. Suppose that Assumptions 2.11 and 2.12 hold and that the support of an and bn is uniformly bounded.
Let β > 1 and p > 2. Then there exists a random variable (V ,W) in Dβ-var(A) × Dp-var(B) such that (Vn,Wn) →λn

(V ,W). Furthermore, (V ,W) is a.s. continuous.
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Proof. By Lemma 4.5, ‖Vn − V ‖β-var →λn 0, where V is deterministic and continuous. It remains to show that Wn

converges weakly to a limit point W which is a.s. continuous. By Lemma 4.7, (Wn)n≥1 is tight and thus weakly relatively
compact by Prokhorov’s theorem [2, Thm. 5.1]. Let W and W̃ be weak limit points of two subsequences of Wn. Since the
largest jump of Wn is of the order n−1/2 and the largest jump of t �→ Wn(0, t) is of the order n−1/2 supt∈[0,1] |Wn(t)|B , it

follows that W is a.s continuous (and likewise for W̃).
We now show that W and W̃ have the same law. Consider the collection of R-valued functions on Dp-var(B)

F :=
{

(X,X) �→
k∑

j=1

τj

(
πjX(tj ), (πj ⊗ πj )X(tj )

)}
,

where the parameters range over all k ≥ 1, τj ∈ L(Rmj ⊕ (Rmj )⊗2,R), πj ∈ L̃(B,Rmj ), mj ≥ 1, and tj ∈ [0,1]. For

any f ∈ F , it follows from Lemma 4.8 that f (W) and f (W̃) have the same law. In particular, E[eif (W)] = E[eif (W̃)]
for all f ∈ F . However, the collection of C-valued functions F̃ := {w �→ eif (w) | f ∈ F} is a unital algebra of bounded
functions on Dp-var(B) which separates points and is closed under conjugation. Moreover, every f ∈ F̃ is continuous on
the subspace of continuous paths in Dp-var(B), and in particular on the support of W and W̃. The laws of W and W̃ are
Radon measures since they are obtained as weak limit points of tight sequences, hence, by the Stone–Weierstrass theorem
and a compactification argument (see, e.g., [3, Ex. 7.14.79]), W and W̃ have the same law. �

It remains to characterize the RDE driven by (V ,W) as the solution to an SDE. We flesh out the abstract statement in
the following lemma, which is a slight simplification of [16, Lem. 6.1].

Lemma 4.10. Let X be the solution to the RDE

dX = F(X)ā dt + H(X)dW, X(0) = ξ ∈R
d ,

where ā ∈ A is fixed and W = (W,W) is a random p-rough path over B, p < θ . Suppose that, for all m ≥ 1 and
π ∈ L̃(B,Rm),

(4.5)
(
πW, (π ⊗ π)W

) ∼ (Wπ,Wπ )

in the sense of finite dimensional distributions, where Wπ is an R
m-valued Brownian motion with covariance

ij
π := E

[
Wi

π(1)Wj
π (1)

]
and

W
ij
π (t) =

∫ t

0
Wi

π(s)dWj
π(s) + �ij

π t.

For every x ∈ R
d , let us define (x) := H(x) and, for i = 1, . . . , d ,

�i(x) :=
d∑

k=1

�
k(ki)
H(x)⊕DH(x)

,

where we treat H(x) ⊕ DH(x) ∈ L̃(B,Rd ⊕ (Rd)∗ ⊗R
d). Suppose further that

(4.6) sup
x∈Rd

d∑
i=1

∣∣ii(x)
∣∣ + ∣∣�i(x)

∣∣ < ∞.

Then X solves the martingale problem associated with L = (ā + �)D + 1
2D2.

Proof. Let {Ft }t∈[0,1] denote the filtration generated by the finite-dimensional projections of W. We first show that
M : [0,1] → R

d is a martingale with respect to F , where

M(t) := X(t) −
∫ t

0
ā
(
X(s)

)
ds −

∫ t

0

d∑
k=1

�
(
X(s)

)
ds,
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with quadratic variation

(4.7)
[
Mi,Mj

]
t
=

∫ t

0
ij

(
X(s)

)
ds.

Indeed, the definition of the rough integral readily implies that X and M are adapted to F (cf. [16, Lem. 6.3]). Further-
more, for fixed 0 ≤ s < t ≤ 1, we have

M(t) − M(s) =
∫ t

s

H
(
X(u)

)
dW(u) −

∫ t

s

�
(
X(u)

)
du = lim

|P |→0

∑
[u,v]∈P

MP[u,v],

where the limit is taken over partitions P of [s, t], and

MP[u,v] := H
(
X(u)

)
W(u,v) + (H ⊗ DH)

(
X(u)

)
W(u, v) − �

(
X(u)

)
(v − u).

Note that the same argument as in [16, Lem. 6.2] implies that πW(u,v) and (π ⊗ π)W(u, v) are independent of Fs for
any π ∈ L̃(B,Rm). Taking π(x) = H(x) ⊕ DH(x) in (4.5), it follows that

E
[
MP[u,v] |Fu

] = 0.

Furthermore, for i, j = 1, . . . , d ,

E
[
Hi

(
X(u)

)
W(u,v)Hj

(
X(u)

)
W(u,v) |Fu

] = ij
(
X(u)

)
(v − u)

and, by Itô isometry,

E
[∣∣(H ⊗ DH)

(
X(u)

)
W(u, v) − �

(
X(u)

)
(v − u)

∣∣2 | Fu

]
� |v − u|2,

where the proportionality constant depends only on (X(u)). Using the bound (4.6), it follows that M is a martingale
with quadratic variation (4.7) as claimed.

Let ϕ : Rd → R be a smooth, compactly supported function. Since [X] = [M], by Itô’s formula,

ϕ
(
X(t)

) = ϕ
(
X(s)

) +
∫ t

s

Dϕ
(
X(u)

)
dX(u) + 1

2

∫ t

s

D2ϕ
(
X(u)

)
d[M](u),

from which it follows that

ϕ
(
X(t)

) − ϕ
(
X(s)

) −
∫ t

s

[
Dϕ(ā + �) + 1

2
D2ϕ

](
X(u)

)
du

is a martingale. �

Proof of Theorem 4.3. The fact that (Vn,Wn) →λn (V ,W), where (V ,W) is a.s. continuous, follows from Proposi-

tion 4.9. By Lemma 4.8, W satisfies assumption (4.5) of Lemma 4.10 with 
ij
π =B(πib,πjb)+B(πjb,πib) and �

ij
π =

B2(π
ib,πjb). In particular, � in Lemma 4.10 is given by �i(x) = ∑d

k=1 B2(b
k(x, ·), ∂kb

i(x, ·)). Furthermore, B =
1
2B1 + B2 is bounded by Assumption 2.12(ii), so ii(x) � |b(x, ·)|2Cκ ≤ |b|2

C0,κ and �i(x) � |b(x, ·)|Cκ |∇b(x, ·)|Cκ ≤
|b|C0,κ |b|C1,κ . Hence all the assumptions of Lemma 4.10 are verified, and the conclusion follows from [25, Thm. 4.5.2]
by the equivalence of weak solutions to SDEs and the martingale problem. �

Proof of Theorem 2.17. This follows from Corollary 4.4 and the exact same localization argument as in [16, Sec. 7]. �

5. Continuous-time dynamics revisited

In this section, we show how the results of the Section 2 extend to the case of continuous-time dynamics. In particular, we
extend the results of [16] to include optimal moment assumptions and families of dynamical systems. Since the arguments
are very similar to those of the discrete-time case (and the setting is similar to that of [16]), we omit the proofs and only
state the main results.



1346 I. Chevyrev et al.

Consider a compact Riemannian manifold M with Riemannian distance ρ. Recall the function spaces defined in
Definition 2.1 and fix parameters q > 1, κ, κ̄ ∈ (0,1), and α > 2 + d

q
. Let aε ∈ C1+κ̄,0(Rd × M,Rd) and bε, b0 ∈

Cα,κ(Rd × M,Rd), for ε ∈ (0,1], such that

sup
ε∈(0,1]

|aε |C1+κ̄,0 + |bε |Cα,κ < ∞, lim
ε→0

|bε − b0|Cα,κ = 0.

We consider the fast–slow systems of ODEs posed on R
d × M

d

dt
xε = aε(xε, yε) + ε−1bε(xε, yε),

d

dt
yε = ε−2gε(yε),

where gε : M → T M is a Lipschitz vector field. As before, the initial condition xε(0) = ξε ∈ Rd is deterministic, and
yε(0) is drawn randomly from a Borel probability measure λε on M .

We now give the analogues of Assumptions 2.11 and 2.12 for the current setting.

Assumption 5.1. There exists ā ∈ C1+κ̄ (Rd ,Rd ) such that, for all t ∈ [0,1] and x ∈ R
d ,∣∣Vε(t)(x) − t ā(x)

∣∣ →λε 0 as ε → 0,

where Vε(t) = ∫ t

0 aε(·, yε(s))ds.

Let gε,t denote the flow generated by the vector field gε . Given v,w ∈ Cκ(M,Rm) and 0 ≤ s ≤ t ≤ 1, we define
Wv,ε(t) ∈R

m and Wv,w,ε(s, t) ∈R
m×m by

Wv,ε(t) = ε

∫ tε−2

0
v ◦ gε,s ds, Wv,w,ε(s, t) =

∫ t

s

(
Wv,ε(r) − Wv,ε(s)

) ⊗ dWw,ε(r).

As before, we write simply Wv,ε for Wv,v,ε .
Recall our notational convention about subspaces Cκ

ε (M) of Cκ(M) introduced before Assumption 2.3.

Assumption 5.2. There exists a closed subspace Cκ
ε (M) of Cκ(M) for each ε ∈ [0,1] such that bε ∈ Cα,κ

ε (Rd × M,Rd)

and such that

(i) for all v = (vε), w = (wε) ∈ ∏
ε∈(0,1] Cκ

ε (M) with

sup
ε∈(0,1]

|vε |Cκ + |wε |Cκ < ∞,

there exists K = Kv,w,q > 0 such that for all 0 ≤ s ≤ t ≤ 1 and ε > 0,∣∣Wvε,ε(s, t)
∣∣
L2q (λε)

≤ K|t − s|1/2,
∣∣Wvε,wε,ε(s, t)

∣∣
Lq(λε)

≤ K|t − s|.
(ii) There exists a bounded bilinear operator B : Cκ

0 (M) × Cκ
0 (M) → R such that for every m ≥ 1 and all v = (vε)ε∈[0,1]

with vε ∈ Cκ
ε (M,Rm) and limε→0 |vε − v0|Cκ = 0, it holds that (Wvε,ε,Wvε,ε) →λε (Wv,Wv) as ε → 0 in the sense

of finite-dimensional distributions, where Wv is an R
m-valued Brownian motion and

W
ij
v (t) =

∫ t

0
Wi

v dW
j
v +B

(
vi

0, v
j

0

)
t.

Remark 5.3. As in Remark 2.13, under the assumption that λε is gε,t -stationary, the simpler bounds∣∣Wvε,ε(t)
∣∣
L2q (λε)

≤ Kt1/2 and
∣∣Wvε,wε,ε(0, t)

∣∣
Lq(λε)

≤ Kt for all ε, t ∈ (0,1]
imply Assumption 5.2(i).

Remark 5.4. As in Proposition 2.15, one can show that Assumption 5.2 implies that the covariance of Wv is given by

E
[
Wi

v(1)W
j
v (1)

] =B
(
vi

0, v
j

0

) +B
(
v

j

0 , vi
0

)
.

Furthermore, as in Section 2.1, if aε , bε , Tε , λε do not depend on ε, then one can drop the condition that B is bounded in
Assumption 5.2 since this follows automatically (see [16, Prop. 2.8]).
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Consider the quadratic form

(5.1) ij (x) =B
(
bi

0(x, ·), bj

0(x, ·)) +B
(
b

j

0(x, ·), bi
0(x, ·)), i, j = 1, . . . , d.

By the same argument as Lemma 2.9,  is positive semi-definite and the unique positive semi-definite σ satisfying
σ 2 =  is Lipschitz. In particular, as before, there is a unique (strong) solution to the SDE dX = ã(X)dt + σ(X)dB for
any Lipschitz ã : Rd →R

d .
The following is the main result of this section, the proof of which we omit since it requires only minor changes to that

of Theorem 2.17.

Theorem 5.5. Suppose that Assumptions 5.1 and 5.2 hold, and that ξε → ξ ∈ R
d . Then xε →λε X in the uniform topology

as ε → 0, where X is the unique weak solution of the SDE

(5.2) dX = ã(X)dt + σ(X)dB, X(0) = ξ.

Here, B is a standard Brownian motion in R
d , σ is the unique positive semi-definite square root of  given by (5.1), and

ã is the Lipschitz function given by

ãi (x) = āi (x) +
d∑

k=1

B
(
bk

0(x, ·), ∂kb
i
0(x, ·)), i = 1, . . . , d.

Appendix: Rough path Besov-variation embedding

We adapt Friz–Victoir [10,11] in proving some variants of a Besov-variation embedding, applicable in an infinite-
dimensional rough path setting. Let B be a Banach space and equip B⊗2, . . . ,B⊗N with a system of admissible tensor
norms. For a continuous multiplicative function W = (1,W1, . . . ,WN) : [0, T ]2 → ⊕N

k=0B⊗k define the homogeneous
Besov norm

‖W‖q

Wα,q ;[s,t] :=
N∑

k=1

∫∫
[s,t]2

|Wk
v,u|q/k

B⊗k

|u − v|qα+1
dudv.

Proposition A.1. Suppose q > 1 and α ∈ ( 1
q
,1). There exists a constant C = C(α,q,N) such that

N∑
k=1

∣∣Wk
s,t

∣∣q/k ≤ C|t − s|qα−1‖W‖q

Wα,q ;[s,t].

Proof. We follow a similar strategy to [11, Prop. A.9]. We proceed by induction on N . The case N = 1 follows directly
from the GRR lemma [11, Cor. A.2]. Suppose the result is true for N − 1. Since both sides scale homogeneously with
dilations, we may suppose that ‖W‖q

Wα,q ;[s,t] ≤ 1. Let us write α − 1
q

=: 1/p. All double integrals in the sequel are taken

over [s, t]2, and C denotes an unimportant positive constant which may change from line to line.
Define ϒs,t = supu,v∈[s,t]

|Wu,v |
|v−u|N/p , and observe that it suffices to show ϒs,t ≤ C. We have

WN
s,v − WN

s,u = WN
u,v +

N−1∑
j=1

WN−j
s,u ⊗ Wj

u,v,

and thus (∫∫ |WN
s,u − WN

s,v|q
|v − u|qα+1

dudv

)1/q

≤ �1 + �2,

where

�1 =
N−1∑
j=1

(∫∫ ∣∣WN−j
s,u

∣∣q |Wj
u,v|q

|u − v|qα+1
dudv

)1/q

,
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�2 =
(∫∫ |WN

u,v|q
|u − v|qα+1

dudv

)1/q

.

For �1, by the inductive hypothesis, we have |W(N−j)
s,u |q ≤ |t − s|q(N−j)/p , so that

�1 ≤
N−1∑
j=1

|t − s|(N−j)/p

(∫∫ |Wj
u,v|q

|u − v|qα+1
dudv

)
.

Again by the inductive hypothesis, we have ∣∣Wj
u,v

∣∣q(1−1/j) ≤ |t − s|q(j−1)/p,

so that

�1 ≤
N∑

j=1

|t − s|(N−1)/p

(∫∫ |Wj
u,v|q/j

|u − v|qα+1
dudv

)
≤

N∑
j=1

|t − s|(N−1)/p.

For �2, we have

�2 ≤
(∫∫

ϒ
q(1−1/N)
s,t |t − s|q(N−1)/p

|WN
u,v|q/N

|v − u|qα+1
dudv

)1/q

≤ ϒ
1−1/N
s,t |t − s|(N−1)/p.

Combining the above two estimates, we have(∫∫ |WN
s,u − WN

s,v|q
|v − u|qα+1

dudv

)1/q

≤ C|t − s|(N−1)/p
(
1 + ϒ

1−1/N
s,t

)
.

Applying the GRR lemma to the continuous path WN
s,· : [s, t] → B⊗N we have∣∣WN

s,t

∣∣ ≤ C|t − s|1/p|t − s|(N−1)/p
(
1 + ϒ

1−1/N
s,t

) ≤ C|t − s|N/p
(
1 + ϒ

1−1/N
s,t

)
.

Finally, note that the above argument applies to any interval [s′, t ′] ⊂ [s, t]. It follows that

ϒs,t ≤ C
(
1 + ϒ

1−1/N
s,t

)
,

and thus ϒs,t ≤ C as desired. �

Recall the homogeneous γ -Hölder “norm” for γ ∈ (0,1]

‖W‖γ -Höl;[s,t] :=
N∑

k=1

sup
u,t∈[s,t]

|Wk
v,u|1/k

|u − v|γ .

Corollary A.2. Let q > 1 and α ∈ ( 1
q
,1). There exists a constant C = C(α,q,N) such that

‖W‖(α−1/q)-Höl;[s,t] ≤ C‖W‖Wα,q ;[s,t].

Proof. Immediate from Proposition A.1. �

Recall the homogeneous p-variation “norm” for p ≥ 1

‖W‖p

p-var;[s,t] := sup
P

∑
[u,v]∈P

N∑
k=1

∣∣Wk
u,v

∣∣p/k
,

where the supremum runs over all partitions P of [s, t].



Deterministic homogenization under optimal moment assumptions for fast–slow systems. Part 2 1349

Corollary A.3. Let q > 1 and α ∈ ( 1
q
,1). There exists a constant C = C(α,q,N) such that

‖W‖1/α-var;[s,t] ≤ C|t − s|α−1/q‖W‖Wα,q ;[s,t].

Proof. By Proposition A.1 we have for all u,v ∈ [s, t] and k = 1, . . . ,N∣∣Wk
u,v

∣∣ 1
αk = (∣∣Wk

u,v

∣∣q/k) 1
αq ≤ C

(|u − v|qα−1) 1
qα

(‖W‖q

Wα,q ;[u,v]
) 1

qα .

Note however that ω1(u, v) = |u − v| and ω2(u, v) := ‖W‖q

Wα,q ;[u,v] are controls, and thus so is ω := ω
1− 1

qα

1 ω
1

qα

2 . Hence

‖W‖1/α

1/α-var;[s,t] ≤ ω(s, t),

from which the conclusion follows. �

Remark A.4. Besov (rough path) regularity effectively interpolates between the well-known Hölder- and p-variation
cases, see [8] for a discussion.
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