
Hilbert’s Seventeenth Problem:
sums of squares

Is a rational function with real coefficients that only takes non-negative
values a sum of squares of rational functions with real coefficients?

1 Introduction

We begin with an example. Let f(x) is the polynomial in one variable f(x) =
x2 + bx+ c, with b, c ∈ R and suppose that we want to know if, for every α ∈ R,
the evaluation f(α) is non-negative. Completing the square, we find

f(x) =

(
x+

b

2

)2

+
4c− b2

4
.

Since squares of real numbers are always non-negative, we deduce that f(x) only
has non-negative evaluations if and only if 4c− b2 is non-negative. Moreover, if
the inequality 4c− b2 ≥ 0 holds, then the identity

f(x) =

(
x+

b

2

)2

+

(√
4c− b2

2

)2

shows that f is a sum of squares of polynomials (in this case, one linear and
one constant).

We now generalize the previous example. Let n be a non-negative integer
and let f(x1, . . . , xn) ∈ R[x1, . . . , xn] be a polynomial with real coefficients in n
variables. Suppose that we would like to know if for every choice α1, . . . , αn ∈ Rn

the evaluation of f at the n-tuple (α1, . . . , αn) is non-negative:

for all α1, . . . , αn ∈ Rn =⇒ f(α1, . . . , αn) ≥ 0.

Of course, if the polynomial f is a sum of squares of polynomials, then all the
evaluations of f are non-negative. Yet, not every polynomial that only assumes
non-negative values is a sum of squares of polynomials. Polynomials with this
property were implicitly known to exist for a long time, probably also with
explicit examples. Nevertheless, the first published non-negative polynomial
that is not a sum of squares is due to Motzkin [Mot67] in 1967.

Example 1.1 (Motzkin). Let m(x, y) be the polynomial

m(x, y) = x4y2 + x2y4 + 1− 3x2y2.
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The polynomial m satisfies the identities

m(x, y) =
x2y2(x2 + y2 − 2)2(x2 + y2 + 1) + (x2 − y2)2

(x2 + y2)2

=
x4y2(x2 + y2 − 2)2

(x2 + y2)2
+
x2y4(x2 + y2 − 2)2

(x2 + y2)2
+

+
(x2 + y2 − 2)2

(x2 + y2)2
+

(x2 − y2)2

(x2 + y2)2

=

(
x2y(x2 + y2 − 2)

(x2 + y2)

)2

+

(
xy2(x2 + y2 − 2)

(x2 + y2)

)2

+

+

(
(x2 + y2 − 2)

(x2 + y2)

)2

+

(
(x2 − y2)

(x2 + y2)

)2

,

showing that m is a sum of squares of rational functions with real coefficients.
We deduce that m only takes non-negative values: if (α, β) 6= (0, 0), then the
evaluation m(α, β) is a sum of squares of real numbers; if (α, β) = (0, 0), then
m(0, 0) = 1 > 0. We shall see that m is not a sum of squares of polynomials.

Thus, Hilbert’s Seventeenth Problem asks whether for every polynomial p
with real coefficients and non-negative evaluations, there are rational functions
f1, . . . , fr with real coefficients satisfying the identity p =

∑
f2i .

E. Artin gave a positive answer to this question: a polynomial in n variables
and real coefficients all of whose evaluations are non-negative is a sum of squares
of rational functions in n variables with real coefficients.

We follow closely the treatment of Artin’s Theorem appearing in [Pfi95,
Chapter 6]. First, we concentrate on sums of squares in general fields k. For
our applications, the most important fields will be the field R of real numbers,
the field R(x1, . . . , xn) of rational functions in n variables over R, and the field Q
of rational numbers. We then establish strict relations between sums of squares
in a field and orderings of the same field. Next, we find ways to enlarge an
ordered field by adding elements to the field and extending the order to the new
elements. Finally, we show how Hilbert’s Seventeenth Problem follows from the
Artin-Lang Homomorphism Theorem.

2 Formally real fields and orders

We begin here our study of orders on fields and sums of squares. The main
motivation to keep in mind is that we would like to have a notion of positive
elements of a field and that we also want (sums of) non-zero squares to be
positive.

Definition 2.1. A field k is formally real if −1 ∈ k is not a sum of squares of
elements of k.
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It is easy to check that the following are examples/non-examples:

(1) the field R of real numbers is formally real;

(2) the field Q of rational numbers is formally real;

(3) the field C of complex numbers is not formally real;

(4) the finite field F2 with two elements is not formally real;

(5) more generally, no finite is formally real;

(6) more generally still, no field of positive characteristic is formally real.

A slightly more elaborate example involves rational functions. Recall that a
rational function with coefficients in a field k is the ratio of two polynomials
with coefficients in k, whose denominator is not the zero polynomial. Note that
we only require that the polynomial in the denominator be non-zero: it may

evaluate to zero at some points. For instance, 3x2−2
x(x2+1)(x2−7) is a rational function

over the real numbers and the denominator vanishes for x ∈ {0,±
√

7}. The set
of rational functions over a field k in one variable x forms a field that we denote
by k(x).

Example 2.2. The field R(x) of rational functions in one variable over the
real numbers is formally real. Indeed, suppose that f1(x), . . . , fr(x) ∈ R(x) are
rational functions satisfying the identity

f1(x)2 + · · ·+ fr(x)2 = −1. (1)

Let d(x) be the product of the denominators of f1, . . . , fr. Thus, d(x) is a non-
zero polynomial and hence there is a real number α such that d(α) 6= 0. It
follows that we can evaluate both sides of Equation (1) at α and obtain

f1(α)2 + · · ·+ fr(α)2 = −1.

This equation is impossible, since the left-hand side is a sum of squares of real
numbers and therefore it is non-negative.

Notation 2.3. Let k be a field. We set

Σ k = {a ∈ k : a is a sum of squares in k},

Σ k× = Σ k r {0}.

For any subset A ⊂ k and any a ∈ A, we set

A+A = {a1 + a2 : a1, a2 ∈ A},

A ·A = {a1a2 : a1, a2 ∈ A},

aA = {aa′ : a′ ∈ A}.
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We leave the proof of the following lemma as an exercise.

Lemma 2.4. Let k be a field.

(1) The set Σ k is closed under addition and multiplication.

(2) The set Σ k× is a multiplicative group.

(3) The field k is formally real if and only if −1 is not in Σ k.

We now come to the definition of a (pre)order. We want to construct orders,
and we build them by extending preorders. We use the notation P for preorders,
since they share many properties of positive real numbers.

Definition 2.5. Let k be a field.

(1) A preorder of k is a subset P ⊂ k satisfying

P + P ⊂ P, P · P ⊂ P, Σ k ⊂ P, −1 /∈ P.

(2) An order of k is a preorder P satisfying

P ∪ −P = k, P ∩ −P = {0}.

It follows from this definition that if −1 is a sum of squares in k, then k
admits no preorder. If, instead, −1 is not a sum of squares, then Σ k is a
preorder of k and any preorder of k must contain Σ k.

Lemma 2.6. Let P be a preorder of k and let a, b ∈ k. If ab ∈ P , then P + aP
or P − bP is a preorder of k.

Proof. Let p1, . . . , p4 be elements of P . The identities

(p1 + ap2) + (p3 + ap4) = (p1 + p3) + a(p2 + p4)

(p1 + ap2)(p3 + ap4) = (p1p3 + a2p2p4) + a(p1p4 + p2p3)

show that P + aP is closed under addition and multiplication, since P is closed
under addition and multiplication, and contains all (sums of) squares. Moreover,
P + aP contains P and hence contains Σ k. Similarly, P − bP is closed under
addition and multiplication, and contains Σ k. Thus, to show that P + aP or
P − bP is a preorder, it remains to show that −1 cannot belong to both P +aP
and P − bP .

Proceed by contradiction and suppose that −1 belongs to both P + aP and
P − bP . Thus, there are p1, . . . , p4 ∈ P such that

−1 = p1 + ap2 = p3 − bp4.

We compute

(ap2)(−bp4) = (1 + p1)(1 + p3) = 1 + p1 + p3 + p1p3,
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and we obtain
− 1 = p1 + p3 + p1p3 + abp2p4. (2)

Since the product ab is in P by assumption, the right-hand side of Equation (2)
is in P , contradicting the assumption that −1 /∈ P , as P is a preorder.

Lemma 2.7. A preorder of k that is maximal with respect to inclusion is an
order.

Proof. Let P be a maximal preorder of k. We show that the two equalities
P ∪ −P = k and P ∩ −P = {0} hold.

First, let a ∈ k be any element. We apply Lemma 2.6 with a = b, noting
that a2 ∈ P , since P contains all squares. We deduce that P + aP or P − aP is
a preorder. By maximality of P , at least one of the inclusions P + aP ⊂ P or
P −aP ⊂ P holds. Therefore, either a or −a belongs to P . Since a is arbitrary,
we obtain that k = P ∪ −P .

To show that the intersection P ∩ −P consists only of 0, suppose, by con-
tradiction, that a ∈ k belongs to (P ∩ −P ) r {0}. Thus, a ∈ P is non-zero
and there is an a′ ∈ P satisfying a = −a′ ∈ P . Using the chain of identities
−1 = a′

a = aa′

a2 , we deduce that −1 belongs to P , since P , being a preorder,
contains all squares and is closed under multiplication. Yet, preorders do not
contain −1 and we reach a contradiction, as required.

Let k be a field such that −1 /∈ Σ k, so that there is at least the preorder
P0 = Σ k of k. As an application of Zorn’s Lemma (an equivalent of the Axiom
of Choice), we deduce that there is a maximal preorder containing P0: the field k
admits an order.

Corollary 2.8 (Artin-Schreier). A field k is formally real if and only if k has
an order.

The following proposition implies a strong relation between orders and pre-
orders.

Proposition 2.9. Let T be a preorder of k. Then T = ∩P is the intersection
of all the orders P of k containing T .

Proof. The inclusion T ⊂ ∩P is clear. Suppose that a ∈ k r T is an element
not in T .

We check that −1 does not belong to T−aT . Otherwise, there exist t1, t2 ∈ T
satisfying the identity −1 = t1+at2. The fact that T is a preorder implies that t2
cannot be 0. Thus, we obtain the identity a = 1+t1

t2
∈ T , since sums and ratios

of elements of T are in T , contradicting our hypothesis.
Thus, T − aT is a preorder of k. By Lemma 2.7, a maximal preorder P

containing T − aT is an order of k containing −a. We deduce that P cannot
contain a, since a is non-zero and P ∩ −P = {0}. It follows that a /∈ ∩P and,
since a is an arbitrary element not in T , we conclude that the equality T = ∩P
holds.
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Corollary 2.10. Let k be a formally real field. The intersection of all preorders
on k is the set Σ k.

Proof. As k is formally real, the set Σ k is a preorder. Since any preorder
contains the preorder Σ k, we conclude applying Proposition 2.9.

Let P be an order of k. Recall that our guiding principle is that P is the set
of positive elements of k. Thus, we define an order relation ≤P on k using P .
For a, b ∈ k, we say that a is P -less than or equal to b, and denote it by a ≤P b,
whenever b− a is in P : in formulas,

a ≤P b ⇐⇒ b− a ∈ P.

Usually, when the order P is clear from the context, we remove the subscript P
from ≤P and simply write ≤ and say that a is less than or equal to b. For all
a, b, c ∈ P , the relation ≤ satisfies the following properties:

(1) reflexivity a ≤ a;

(2) anti-symmetry a ≤ b and b ≤ a =⇒ a = b;

(3) transitivity a ≤ b and b ≤ c =⇒ a ≤ c;
(4) total order a ≤ b or b ≤ a;

(5) compatibility with addition a ≤ b =⇒ a+ c ≤ b+ c;

(6)
compatibility with multiplication
by non-negative numbers

a ≤ b and 0 ≤ c =⇒ ac ≤ bc.

A binary relation satisfying properties (1), (2), (3) is called an order relation.
An order relation satisfying property (4) is called at total ordering or a linear
ordering : it means that any two elements of k are comparable. Together, the
six properties (1-6) are the axioms for an order relation on a field k.

We usually write

• a ≥ b for b ≤ a, and

• a < b or b > a for a ≤ b and a 6= b.

Conversely, an order relation ≤ on a field k satisfying properties (1-6) deter-
mines an order of k by setting P = {a ∈ k | a ≥ 0}. We call the elements of P
positive.

Thus, we call an ordered field either a pair (K,P ) or a pair (K,≤) and
interchange the two as we need it.

Definition 2.11. An element a of k is totally positive if a is a sum of squares.

Corollary 2.10 shows that the totally positive elements of k are precisely the
elements of k that are positive with respect to every order relation on k.

Example 2.12. The fields R, of real numbers, and Q, of rational numbers,
admit a unique order. It follows that, for these two fields, the totally positive
elements are precisely the sums of squares.

We now give an extended example: quadratic fields.
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2.1 Quadratic fields

Let d ∈ Q be a rational number. Denote by Q
(√

d
)

denote the subfield of C

generated by
√
d. It is an easy exercise that the set of all complex numbers

of the form a + b
√
d, for a, b ∈ Q is the field Q

(√
d
)

. If d is the square of

a rational number, then Q
(√

d
)

coincides with Q. We exclude this case and

assume that d is not a square.
Case 1: d < 0. If d is negative, then it follows from one of the exercises that
−d is a sum of squares in Q. Combining an expression

−d =

r∑
i=1

a2i , a1, . . . , ar ∈ Q,

of −d > 0 as a sum of squares and the equality
(√
d
)2

= d, we obtain the
identities

−1 =

∑
i a

2
i

d
=
∑
i

(
ai√
d

)2

.

Hence, the field Q
(√

d
)

is not formally real, if d < 0.

Case 2: d is not a square and d > 0. As we saw, the equality

Q
(√

d
)

=
{
a+ b

√
d
∣∣ a, b ∈ Q

}
holds. We now define two distinct orders P+ and P− on Q

(√
d
)

.

The order P+ is obtained by viewing Q
(√

d
)

as a subfield of R, identifying,

as usual,
√
d with the positive square root of d. Thus, in this case, the subset P+

of Q
(√

d
)

of positive elements is

P+ =
{
a+ b

√
d
∣∣ a+ b

√
d ≥ 0

}
.

The order P− is again obtained by viewing Q
(√

d
)

as a subfield of R, but

in a different way: this time, we identify
√
d with the negative square root of d.

Thus, in this case, the subset P− of Q
(√

d
)

of positive elements is

P− =
{
a+ b

√
d
∣∣ a− b

√
d ≥ 0

}
.

Example 2.13. In the case d = 2, we give a drawing of the two orders P+

and P−.
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P+

−P+

•
1−
√

2

x+
y √

2 =
0

P−

−P−
•

1 +
√

2

x−
y
√ 2 =

0

The order P+ The order P−

The two possibilities for the positive elements of Q(
√

2), in orange

• The number 1 +
√

2 is contained in P+ (as 1 +
√

2 ' 2.4142 . . . > 0)
and it is therefore positive with respect to the order determined by P+.
However, 1 +

√
2 is not contained in P− (as 1 −

√
2 ' −0.4142 . . . < 0)

and it is therefore negative with respect to the order determined by P−.
We deduce that 1 +

√
2 is not a sum of squares in Q(

√
2).

• The number 2 +
√

2 lies in the intersection P+∩P− and indeed it is a sum
of squares:

2 +
√

2 =

(
1 +

1√
2

)2

+
1

2
=

(
1 +

1√
2

)2

+

(
1

2

)2

+

(
1

2

)2

.

Going back to the general case, we leave the proof of the following proposition
as an exercise.

Proposition 2.14. The only orders of Q
(√

d
)

are P+ and P−.

Proof. Exercise.

We deduce that the sums of squares in Q
(√

d
)

are the numbers in the

intersection P+ ∩P−, that is the numbers a+ b
√
d, with a, b ∈ Q, satisfying the

inequalities
a+ b

√
d ≥ 0 and a− b

√
d ≥ 0,

or, equivalently, a ≥ |b|
√
d.

2.2 Adding square roots of positive elements

In our argument towards establishing Hilbert’s Seventeenth Problem, it is useful
to be able to extend a field k by adding a square root of an element. We give
this construction here. In the case of a formally real field, we prove that adding
a square root of a positive element yields a formally real field.
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Begin by recalling the familiar extension going from R to C: in this case, we
are adding the square root of −1 to R. We may introduce the complex numbers
as formal, real linear combinations of 1 and a symbol i. Thus, every element
of C is of the form a+ bi, with a, b ∈ R. We define addition componentwise and
multiplication using distributivity and the identity i2 = −1: for a, b, a′, b′ ∈ R,
we set

(a+ bi) + (a′ + b′i) = (a+ a′) + (b+ b′)i

(a+ bi)(a′ + b′i) = (aa′ − bb′) + (ab′ + a′b)i.

The missing ingredient is the computation of multiplicative inverses. Their
existence is a consequence of the identities

1

a+ bi
=

a− bi
(a+ bi)(a− bi)

=
a− bi

(a2 + b2)
=

a

(a2 + b2)
+

−b
(a2 + b2)

i,

allowing us to write the inverse of a + bi, with (a, b) 6= (0, 0), in the required
form as a formal, real linear combination of 1, i. It is a routine check to verify
that these definitions really produce a field.

In the general case, we proceed analogously. Let k be a field and let d ∈ k be

any element. We construct a field k
(√

d
)

, containing k and also an element
√
d

satisfying the identity
(√

d
)2

= d. If d is a square in k, then we set k
(√

d
)

= k

and we denote by
√
d any fixed square root of d. Suppose, therefore, that k is

not a square in k. Set

k
(√

d
)

=
{
a+ b

√
d
∣∣ a, b ∈ k

}
.

For all a, b, a′, b′ ∈ k, we define(
a+ b

√
d
)

+
(
a′ + b′

√
d
)

= (a+ a′) + (b+ b′)
√
d(

a+ b
√
d
)(

a′ + b′
√
d
)

= (aa′ + bb′d) + (ab′ + a′b)
√
d,

and, if (a, b) 6= (0, 0), we also define

1

a+ b
√
d

=
a

(a2 − b2d)
+

−b
(a2 − b2d)

√
d.

We leave it as an exercise to check that k
(√

d
)

is a field containing k and that

the element
√
d ∈ k

(√
d
)

satisfies the identity
(√

d
)2

= d.

Now that we know how to extend a field by adding a square root of an
element, we give a criterion to decide when a formally real field extends to a
formally real field.
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Theorem 2.15. Let k be a formally real field, let P be a preorder of k and let

d ∈ P be a positive element. The field k
(√

d
)

is also formally real and there is

a preorder of k
(√

d
)

containing P .

Proof. If d is a square in k, then k
(√

d
)

= k and there is nothing to prove.

Thus, we assume that d is not a square in k. Set

P ′ =


r∑

i=1

ciγ
2
i

∣∣∣∣∣∣∣
r ∈ N,
c1, . . . , cr ∈ P,

γ1, . . . , γr ∈ k
(√

d
)
 .

It is enough to check that P ′ is a preorder on k
(√

d
)

containing P . It is clear

that P ′ is closed under addition and multiplication, and that P ′ contains P and

Σ k
(√

d
)

. Thus, to check that P ′ is a preorder, and hence conclude, it suffices

to show that P ′ does not contain −1.
Proceed by contradiction. Suppose that there are an integer r ≥ 0 and an

identity

− 1 =

r∑
i=1

ciγ
2
i , (3)

with c1, . . . , cr ∈ P , and γ1, . . . , γr ∈ k
(√

d
)

. For i ∈ {1, . . . , r}, we write

γi = ai + bi
√
d, with ai, bi ∈ k. Equation (3) becomes

−1 =

r∑
i=1

ci

(
ai + bi

√
d
)2

=

r∑
i=1

ci
(
a2i + b2i d

)
+

(
2

r∑
i=1

ciaibi

)
√
d,

implying the identity

−1 =

r∑
i=1

ci(a
2
i + b2i d).

Since the sum
∑
ci(a

2
i + b2i d) belongs to P , the last identity contradicts the

assumption that P is a preorder. We conclude that P ′ does not contain −1 and
hence P ′ is indeed a preorder extending P .

The main tool for the resolution of Hilbert’s 17th problem that we use is
the Artin-Lang Homomorphism. The statement that we give below uses the
concept of finitely generated R-algebra, zero-divisors, field of fractions.

Theorem 2.16 (Artin-Lang Homomorphism). Let R[y1, . . . , yn] be a finitely
generated R-algebra with no non-zero zero-divisors. If the field of fractions
K(R[y1, . . . , yn]) is a formally real field, then there is an R-algebra homomor-
phism

ϕ : R[y1, . . . , yn] −→ R.
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We do not give a proof of the Artin-Lang Homomorphism Theorem. Rather,
we show how we can find a solution to Hilbert’s 17th Problem using it.

Theorem 2.17. Let n be a non-negative integer, let K = R(x1, . . . , xn) be
the rational function field in n variables x1, . . . , xn over R and let f ∈ K be a
rational function. Suppose that, for all a = (a1, . . . , an) ∈ Rn where f is defined,
the evaluation f(a) is non-negative. Then, there are a positive integer r and
rational functions f1, . . . , fr ∈ K satisfying the identity

f =

r∑
i=1

f2i .

Proof. First, we show that −1 is not a sum of squares of K, that is, the field K
is formally real. Indeed, suppose by contradiction that there is an identity

− 1 =

r∑
i=1

g2i , (4)

with g1, . . . , gr rational functions. Let α ∈ Rn be an n-tuple where the product
of the denominators of g1, . . . , gr does not vanish. Evaluating the identity (4)
at α we deduce an expression of −1 as a sum of squares of real numbers. This
contradiction shows that K is formally real.

Since K is formally real, the set ΣK, the sums of squares of K, is a preorder
of K. Our goal is to show that f belongs to ΣK.

Recall that ΣK is the intersection of all the orders of K. Thus, to prove
the theorem, it suffices to show that f belongs to every order of K.

We proceed by contradiction and assume that there is an order P of K such
that f /∈ P . Since P is an order, the equality P ∪ −P = K holds and hence
−f is in P . Let K

(√
−f
)

be the field obtained from K by adding a square
root of −f . Denote

√
−f by w, so that we have the identity w2 = −f . By

Theorem 2.15, the field K
(√
−f
)

is formally real.
Write f = g

h , with g, h ∈ R[x1, . . . , xn] polynomials and h 6= 0. Apply the
Artin-Lang Homomorphism Theorem 2.16 to the R-algebra

A = R
[
x1, . . . , xn,

1

h
,w,

1

w

]
.

We obtain a homomorphism ϕ : A → R. Set a1 = ϕ(x1), . . . , an = ϕ(xn).
Evaluating ϕ at f , we obtain

ϕ(f) =
ϕ(g)

ϕ(h)
=
g(α1, . . . , αn)

h(α1, . . . , αn)
= f(α1, . . . , αn).

By construction, the homomorphism ϕ is defined at 1
h , so that the real number

h(α1, . . . , αn) ∈ R is non-zero. By the same reasoning, the real number ϕ(w) is
non-zero, since ϕ is defined at 1

w and ϕ
(
1
w

)
is an inverse of ϕ(w). The equation

w2 = −f shows that the identity

f(α1, . . . , αn) = ϕ(f) = −ϕ(w)2
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holds. This contradicts the assumption that all the evaluations of f are non-
negative.
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Newton polygons and Motzkin’s example

We give here an alternative proof of the fact that Motzkin’s polynomial of
Example 1.1 is not a sum of square of polynomials. To this end, we recall the
notion of convex hulls of subsets of Rn.

Definition 2.18. Let A ⊂ Rn be a set. The convex hull of A is the set

conv(A) =


∑
a∈A′

taa

∣∣∣∣∣∣∣∣∣
A′ ⊂ A is finite,

for all a ∈ A′, ta ≥ 0,∑
a∈A′

ta = 1.

 .

The set A if convex is the equality A = convA holds.

A polytope in Rn is the convex hull of a finite subset of Rn. In particular,
a polytope is closed, bounded, convex and its boundary is contained in finitely
many affine linear subspaces.

Definition 2.19 (Vertices). Let P ⊂ Rn be a polytope. A point v ∈ Rn is a
vertex of P if the only points p and q of P satisfying the identity v = 1

2 (p+ q)
are the points p = q = v. We denote by Vert(P ) the set of all vertices of P .

We use the following basic fact about polytopes.

Theorem 2.20. Let P ⊂ Rn be a polytope. The set Vert(P ) is finite and if P
is the convex hull of a set A ⊂ Rn, then A contains Vert(P ).

Let n be a non-negative integer. We associate a polytope in Rn to each
polynomial in n variables with coefficients in a field k.

Definition 2.21 (Newton polytope). Let

f(x1, . . . , xn) =
∑

fi1...inx
i1
1 · · ·xinn

be a polynomial in n variables over a field k. The Newton polytope of f is the
polytope

Newt(f) = conv
({

(i1, . . . , in) | fi1...in 6= 0
})
,

obtained as the convex hull in Rn of the set of exponent vectors of the monomials
appearing in f with non-zero coefficient.

The Newton polytope of any polynomial f is a polytope in Rn, regardless
of what the base field k of the polynomial f is. If f is a polynomial in two
variables, we call the Newton polytope of f , the Newton polygon.

For most of our applications, the main consequence of defining the Newton
polytope of a polynomial f is that it highlights a finite set of monomials: the
vertices of Newt(f).
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Example 2.22. Let f(x, y) ∈ R[x, y] be the polynomial

f(x, y) = e · x3 −
√

2 · x2y2 − 7 · x2y + (log 2) · xy + π.

The exponent vectors of the polynomial f are the vectors (3, 0), (2, 2), (2, 1),
(1, 1), (0, 0) in R2.

exponent vector (3, 0) (2, 2) (2, 1) (1, 1) (0, 0)

corresponding to
xy xy xy xy xy

the monomial x3y0 x2y2 x2y1 x1y1 x0y0

The Newton polygon of f is the convex hull of the exponent vectors of f .

Exponent vectors
of f

The Newton
polygon of f

The vertices of
Newt(f)

Thus, the terms of f corresponding to the vertices of Newt(f) are

e · x3, −
√

2 · x2y2, π · 1.

All that matters for the Newton polygon of f is that the coefficients of the mono-
mials x3, x2y2, 1 are non-zero and that the polynomial involves those monomials
and an arbitrary linear combination of xy, x2y, x, x2.

Proposition 2.23. Let k be a field and let f ∈ k[x1, . . . , xn] be a polynomial in n
variables and coefficients in k. The coefficients of the monomials corresponding
to vertices of Newt(f2) are squares.

Proof. Let m be a monomial in k[x1, . . . , xn]. Denote by e(m) ∈ Rn the expo-
nent vector of m and by fm ∈ k the coefficient of m in the polynomial f . Thus,
we have an equality

fm =
∑

m1,m2 monomials
m1m2=m

fm1
fm2

. (5)

The sum need only range over the pairs of monomials m1,m2 such that the
vectors e(m1) and e(m2) belong to P and satisfy e(m1) + e(m2) = e(m), since
the monomials with exponent vectors not in P have zero coefficient in f . In
particular, if m is a monomial such that e(m) is a vertex of Newt(f), then the
sum in (5) reduces to the single contribution f2m, as needed.
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Corollary 2.24. Let f ∈ R[x1, . . . , xn] be a real polynomial in n variables. If
there are r polynomials f1, . . . , fr ∈ R[x1, . . . , xn] satisfying the identity f =
f21 + · · ·+ f2r , then the polytopes

conv

(⋃
i

Newt
(
f2i
))

and Newt
(
f
)

coincide.

Proof. By assumption, the only monomials that can appear in f with non-
zero coefficient are the monomials appearing in at least one of the polynomials
f21 , . . . , f

2
r . This implies that there is an inclusion

Newt
(
f
)
⊂ conv

(⋃
i

Newt
(
f2i
))

.

To prove the reverse inclusion, first, observe that there is an equality

conv

(⋃
i

Newt
(
f2i
))

= conv

(⋃
i

Vert
(
Newt

(
f2i
)))

. (6)

Let v be a vertex of the polytope in (6). By Theorem 2.20, v is therefore a
vertex of the Newton polytope of one of the polynomials f21 , . . . , f

2
r . Suppose

that i ∈ {1, . . . , r} is an index such that Newt(f2i ) contains v. By definition, the
vertex v is also a vertex of Newt(f2i ). Let mv be the monomial whose exponent
vector is v. Using Proposition 2.23, we deduce that the coefficient fmv of mv

is a sum of squares of non-zero real numbers. We deduce that fmv is positive
and, in particular, non-zero. We obtain that v is a point in Newt(f) and we
conclude that the containment

conv

(⋃
i

Newt
(
f2i
))

⊂ Newt
(
f
)

also holds. The result follows.

Our immediate application of Newton polytopes is to verify that an explicit
polynomial in 2 variables with real coefficients is not a sum of squares of poly-
nomials. The example is due to Motzkin and the argument uses the following
easy lemma.

Recall Motzkin’s example: let m(x, y) be the polynomial

m(x, y) = x4y2 + x2y4 + 1− 3x2y2.

Lemma 2.25. The polynomial m(x, y) is not a sum of squares of polynomials
with real coefficients.
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Proof. Proceed by contradiction and suppose that there exist polynomials f1, . . . , fr ∈
R[x, y] such that the identity

m(x, y) = x4y2 + x2y4 + 1− 3x2y2 =

r∑
i=1

fi(x, y)2

holds. By Corollary 2.24, for each i ∈ {1, . . . , r}, the Newton polygon of f2i
is contained in the Newton polygon of m. We deduce that the polynomials
f1, . . . , fr are linear combinations of the monomials x2y, xy2, 1, xy and we can
write

x4y2 + x2y4 + 1− 3x2y2 =

r∑
i=1

(aix
2y + bixy

2 + cixy + di)
2, (7)

for some real numbers ai, bi, ci, di and i ∈ {1, . . . , r}. Comparing the coefficients
of x2y2 in (7), we obtain the equation

−3 =

r∑
i=1

c2i ,

which is impossible, since c1, . . . , cr are real numbers.

Thus, a real polynomial that only takes non-negative values, need not be a
sum of squares of real polynomials.
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