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Abstract. Let X be a noetherian scheme of finite Krull dimension, having 2
invertible in its ring of regular functions, an ample family of line bundles, and

a global bound on the virtual mod-2 cohomological dimensions of its residue
fields. We prove that the comparison map from the hermitian K-theory of

X to the homotopy fixed points of K-theory under the natural Z/2-action

is a 2-adic equivalence in general, and an integral equivalence when X has
no formally real residue field. We also show that the comparison map be-

tween the higher Grothendieck-Witt (hermitian K-) theory of X and its étale

version is an isomorphism on homotopy groups in the same range as for the
Quillen-Lichtenbaum conjecture in K-theory. Applications compute higher

Grothendieck-Witt groups of complex algebraic varieties and rings of 2-integers

in number fields, and hence values of Dedekind zeta-functions.

1. Introduction

In this paper we settle two central conjectures for computing higher Grothendieck-
Witt groups (also known as hermitian K-groups) of commutative rings and more
generally of schemes under some mild finiteness assumptions. 1

The first well-known conjecture is a so-called homotopy limit problem formulated
by Thomason in [40] and conjectured by Williams in [46, p. 667]. It expresses
higher Grothendieck-Witt groups as homotopy groups of the homotopy fixed point
spectrum for the Z/2-action on K-theory given by the duality functor. We prove
this conjecture in Theorems 1.1 and 1.3 for noetherian schemes (under certain
suitable finiteness assumptions). In this way, one can deduce general theorems for
higher Grothendieck-Witt groups from their K-theory counterparts. As an example
of application, we give a conceptual computation of the higher Grothendieck-Witt
groups of rings of 2-integers in certain totally real number fields [6] and relate these
groups to values of Dedekind zeta-functions; see Theorems 4.6 and 4.9.

The second conjecture we prove – inextricably linked with Williams’ conjec-
ture on homotopy fixed points – is the counterpart, for hermitian K-theory, of the
Quillen-Lichtenbaum conjecture in K-theory. The main goal is to compare the
higher Grothendieck-Witt groups to their étale analogues, as has been done suc-
cessfully for K-theory, based on works by Voevodsky, Rost, Suslin and others. In
Theorem 1.6, we show that the étale comparison map for hermitian K-theory is an
isomorphism on homotopy groups in the same range and under the same hypotheses
as it is for K-theory. As applications, we compute the higher Grothendieck-Witt
groups of complex algebraic varieties and totally imaginary number fields in terms
of topological data and étale cohomology, respectively; see Theorems 4.1 and 4.8
for precise statements of these results.

Date: September 5, 2012.
1The results of this paper were found independently by the third author in the general case

[35] and the other authors in the case of schemes of characteristic 0.
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Williams’ conjecture on homotopy fixed points was verified first for finite fields
[10], then for the real and complex numbers [9], and somewhat more recently for
rings of 2-integers (including Z[ 1

2 ]) in certain number fields [5], [6]. It was recently
proved in cases of fields of characteristic 0 by Hu-Kriz-Ormsby in [13]. The second
conjecture was explored in [7], where the étale comparison map was shown to be
split surjective in sufficiently high degrees. Its K-theoretical counterpart is proved
using a motivic cohomology toK-theory spectral sequence and Voevodsky’s solution
of Milnor’s conjecture on Galois cohomology [42]. As yet, no satisfactory hermitian
analogues are known for the motivic spectral sequence. This forced us to employ
a different route in the proof of the hermitian Quillen-Lichtenbaum conjecture. In
fact, we shall see that the two conjectures under consideration here are equivalent.
After extending the result of Hu-Kriz-Ormsby to fields of positive characteristic,
this allows us to bootstrap the result for fields to (possibly singular) schemes.

Here is a more detailed description of the results in this paper. Our arguments
take place in the setting of spectra associated to a noetherian scheme X of finite
Krull dimension. We assume that 1

2 ∈ Γ(X,OX), a condition that is needed for our
main theorems; see Remark 3.8. We also require the following geometric finiteness
assumption on X. Let vcd2(X) be shorthand for sup{vcd2(k(x) | x ∈ X}, where,
for any field k, the virtual mod-2 cohomological dimension vcd2(k) is the mod-2
cohomological dimension of k(

√
−1). With this definition, vcd2(X) <∞ if X is of

finite type over Z[ 1
2 ] or Spec(k), where k is a field for which vcd2(k) <∞. Another

assumption we make is that X has an ample family of line bundles, i.e., X is the
finite union of open affine subsets of the form {fi 6= 0} with fi a section of a line
bundle Li on X. Examples include all affine schemes, separated regular noetherian
schemes, and quasi-projective schemes over a scheme with an ample family of line
bundles.

For a fixed line bundle L on X, let GW [n](X,L) denote the Grothendieck-Witt
spectrum of X with coefficients in the n th shifted chain complex L[n]. This is the
Grothendieck-Witt spectrum of the category of bounded chain complexes of vector
bundles over X equipped with the duality functor E 7→ Hom(E,L[n]) and quasi-
isomorphisms as the weak equivalences [37, § 8]. If X = Spec(R) is affine, n = 0 or
2 and L = OX , its nonnegative homotopy groups coincide with Karoubi’s hermitian
K-groups of R [17], with the sign of symmetry ε = ±1. If n = 1 or 3 we recover the
so-called U -groups [17]. For GW [n](X,L), we employ the delooping constructed in
[34, Theorem 5.5 and Proposition 5.6], whose i th homotopy group GW [n]

i (X,L) is
naturally isomorphic to Balmer’s triangular Witt group Wn−i(X,L) when i < 0;
see [4], [34, Proposition 6.3].

We write K [n](X,L) for the connective K-theory spectrum K(X) of X equipped
with the C2 = Z/2-action induced by the duality functor Hom(−, L[n]). Recall
from [23], [34, § 7.2] the natural map

(1-a) GW [n](X,L) −→ K [n](X,L)hC2

between hermitian K-theory and the homotopy fixed points of K-theory.

Theorem 1.1 (Homotopy Fixed Point Theorem). Let X be a noetherian scheme
of finite Krull dimension with 1

2 ∈ Γ(X,OX). Assume that X has an ample family
of line bundles and vcd2(X) < ∞. Then for all ν ≥ 1, the map (1-a) induces an
equivalence2 of spectra mod 2ν :

GW [n](X,L; Z/2ν) '−→ K [n](X,L; Z/2ν)hC2 .

2Throughout the paper we use the term “equivalence” as shorthand for a “map that induces
isomorphisms on all homotopy groups.”
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Remark 1.2. Williams conjectured this theorem in [46, p. 627] for affine X (and
noncommutative rings), but with no restriction on the cohomological dimension.
In that generality, however, there are counterexamples; see [13] for fields of infinite
virtual mod-2 cohomological dimension and [6, Appendix C] for noncommutative
rings.

Most of the results of this paper deal with 2-primary coefficients. For p-primary
coefficients with p an odd prime see Remark 1.8 below. One exception is the follow-
ing result, which Proposition 3.7 shows is the best that we may expect integrally.

Theorem 1.3 (Integral Homotopy Fixed Point Theorem). Let X be a noetherian
scheme of finite Krull dimension with 1

2 ∈ Γ(X,OX). Assume that X has an ample
family of line bundles and vcd2(X) < ∞. If −1 is a sum of squares in all residue
fields of X, then the map (1-a) is an equivalence of spectra

GW [n](X,L) '−→ K [n](X,L)hC2 .

For example, the map (1-a) is an equivalence when X is of finite type over
the Gaussian 2-integers Z[ 1

2 ,
√
−1] or when X is defined over a field that is not

formally real, e.g., an algebraically closed field of characteristic 6= 2 or a field of
odd characteristic. If L = OX then the converse holds; see Proposition 3.7. For
example, the map (1-a) is not an integral equivalence for X = Spec(R) where
R = Z[ 1

2 ], Q or R.

Recall from [34, Definition 7.1] (for affine X; see also [30]) the L-theory spec-
trum L(X,L) of a Z[ 1

2 ]-scheme X with coefficients in the line-bundle L. By [34,
Proposition 7.2], its homotopy groups πiL(X,L) are naturally isomorphic to the
higher Witt-groups W−i(X,L) of Balmer [4]. Further, denote by Ĥ(C2, F ) the
Tate-spectrum of a spectrum F with C2-action. Then we have the following corol-
lary.

Corollary 1.4. Under the hypotheses of Theorem 1.1, the map

L(X,L) −→ Ĥ(C2, K(X,L))

is a 2-adic equivalence. It is an integral equivalence under the further hypothesis of
Theorem 1.3.

In the formulation of the next theorem we employ the “non-connective” versions
GW of GW [37, p. 430, Definition 8], [34, Definition 8.6 and Remark 8.8] and K of
K [41, p. 360, Definition 6.4], [36, p. 123, Definition 12.1]. We note the following
consequence of our previous results.

Corollary 1.5. Theorems 1.1 and 1.3 remain valid if one replaces GW and K
with GW and K, respectively.

We write GW [n](Xét,L) for the value at X of a globally fibrant replacement of
GW [n]( ,L) on the small étale site Xét of X; see [7], [14], or 2.3 below. Also, recall
that a map is said to be m-connected when its homotopy fibre is; equivalently, on
the i th homotopy groups the map induces an isomorphism whenever i > m and a
monomorphism when i = m.

Theorem 1.6 (Hermitian Quillen-Lichtenbaum). Let X be a noetherian scheme
of finite Krull dimension with 1

2 ∈ Γ(X,OX). Assume that X has an ample family
of line bundles and vcd2(X) <∞. Then for all ν ≥ 1 the natural map

(1-b) GW [n](X,L; Z/2ν) −→ GW [n](Xét,L; Z/2ν)

is (vcd2(X)− 2)-connected.
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Theorem 1.6 is the evident analogue for hermitian K-theory of the K-theoretic
Quillen-Lichtenbaum conjecture solved by Voevodsky, Rost, Suslin and others. In
[32], the K-theory analogue was proved in essentially the same generality as in
Theorem 1.6 above; see also Theorem 2.7 below. The statement of Theorem 1.6
was conjectured in [7], where the map was shown to be split surjective in sufficiently
high degrees.

Remark 1.7. The theorems above remain valid if one drops the “ample family
of line bundles” assumption and replaces GW - and K-theories defined via vector
bundles by their versions based on perfect complexes [34].

Remark 1.8. The odd-primary analogue of the Hermitian Quillen-Lichtenbaum
Theorem 1.6 can be read off from the isomorphisms [34, Remark 7.8]

GW
[n]
i (X,L)⊗ Z[1/2] ∼=

[
K

[n]
i (X,L)C2 ⊗ Z[1/2]

]
⊕
[
Wn−i(X)⊗ Z[1/2]

]
.

Here, the K-summand may be computed by étale techniques thanks to the solution
of the Bloch-Kato conjecture by Voevodsky, Rost, Suslin and others. Also, W r

denotes Balmer’s Witt groups, which coincide up to 2-torsion with the higher Witt
groups defined in [17] (for affine schemes). On the other hand, the odd-primary
analogue of the Homotopy Fixed Point Theorem is false in general, even with our
standard assumptions: see Proposition 3.7.

Acknowledgements. The first author acknowledges NUS research grant R 146-
000-137-112 and Singapore Ministry of Education grant MOE2010-T2-2-125. The
third author acknowledges NSF research grant DMS ID 0906290. He would like
to thank Thomas Unger for useful conversations related to this work. The fourth
author acknowledges RCN research grant 185335/V30.

2. Preliminaries

In this section, we collect a few well-known facts; no originality is claimed.
For a given scheme X, fix a line bundle L on X and set ` = 2ν . For legibility we

often writeGW (X) for the spectrumGW [n](X,L), GW/`(X) forGW [n](X,L; Z/`),
K(X) for K [n](X,L), etc. We also sometimes drop the parameter scheme X.

2.1. The C2-action on K-theory and homotopy fibrations.

Although it will not be needed in this paper, we note that the C2-action on
K [0](X,OX) (resp. K [2](X,OX)) coincides up to homotopy with the C2-action de-
fined in [6] and [7] (in the affine case) with the sign of symmetry ε = 1 (resp. ε =
−1).

Now suppose that the scheme X has an ample family of line bundles, and 1
2 ∈

Γ(X,OX). In [34, Theorem 7.6], the following are shown to hold.

(1) There is a homotopy fibration of spectra

K [n](X,L)hC2 −→ GW [n](X,L) −→ L[n](X,L).

The first term is the homotopy orbit spectrum for the C2-action on the
K-theory spectrum K [n](X,L). The homotopy groups πjL[n](X,L) are
naturally isomorphic to Balmer’s Witt groups Wn−j(X,L) for all n, j ∈ Z.
Recall from [4] that the groups W i are 4-periodic in i and coincide with
the classical Witt groups in degrees ≡ 0 (mod 4). For a local ring R with
1
2 ∈ R we have W i(R) = 0 for i 6≡ 0 (mod 4).
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(2) There is a homotopy cartesian square of spectra

GW [n](X,L) −→ L[n](X,L)
↓ ↓

K [n](X,L)hC2 −→ Ĥ(C2, K
[n](X,L))

where for a spectrum Y with C2-action, the Tate spectrum Ĥ(C2, Y ) is the
cofiber of the hypernorm map YhC2 → Y hC2 ; see [15, Ch. 3].

(3) Let η ∈ GW [−1]
−1 (Z[ 1

2 ]) ∼= W 0(Z[ 1
2 ]) correspond to the unit 1 ∈ W 0(Z[ 1

2 ]).
Then the horizontal maps in (2) induce equivalences of spectra

GW [n][η−1]
∼=−→ L[n] and (K [n])hC2 [η−1]

∼=−→ Ĥ(C2, K
[n]).

Both spectra L[n](X,L) and Ĥ(C2, K
[n](X,L)) are 4-periodic and the map

L[n](X,L) → Ĥ(C2, K
[n](X,L)) commutes with the periodicity maps by

[34, Remark 7.7], [45]. Hence the homotopy fibre F of GW [n](X,L) →
K [n](X,L)hC2 satisfies

πiF ∼= πi+4F for all i ∈ Z.

Remarks 2.2. For the affine non-connective analogues of the previous statements,
see also [23] and [46, Theorem 13]. A possible generalization to schemes goes via
the Mayer-Vietoris principle [37]. An alternate approach is developed in [34].

2.3. Presheaves of spectra
Let X be a scheme. Its small étale site Xét is comprised of finite type étale

X-schemes U → X and maps between X-schemes, along with étale coverings. If
vcd2(X) = n, then vcd2(U) ≤ n for all U ∈ Xét.

We denote by PSp(Xét) the model category of presheaves of spectra on Xét [14].
Its objects are contravariant functors from Xét to spectra and maps are natural
transformations of such functors. We are mainly interested in the presheaves of
spectra GW [n](L) sending p : U → X to GW [n](U, p∗L) and its K-theory analogue.
We shall often suppress L and [n] in the notation.

A map of presheaves of spectra F → G on Xét is:
(1) a pointwise weak equivalence if for all U ∈ Xét, the map F(U) → G(U) is an
equivalence of spectra;
(2) a local weak equivalence if for all points x ∈ X, Fx → Gx is a weak equivalence
of spectra, where Fx is the filtered colimit Fx = colimU→X F(U) over all étale
neighbourhoods U of x;
(3) a cofibration if it is pointwise a cofibration, that is, if for all U ∈ Xét, the map
F(U)→ G(U) is a cofibration of spectra in the sense of [8]; and
(4) a local fibration if it has the right lifting property with respect to all cofibrations
which are also local weak equivalences.

It is proved in [14] that the category PSp(Xét) together with the local weak
equivalences, cofibrations and local fibrations is a proper closed (simplicial) model
category.

Note that by Theorem 2.6 below, (GW [n]/`)x ' GW [n]/`(k), where k is a sepa-
rable closure of the residue field of x. However, there is, a priori, no evident equiv-
alence between (KhC2/`)x and K/`(k)hC2 since the homotopy fixed point functor
( )hC2 does not commute with filtered colimits, in general. Compare Lemma 3.5
below.

From the theory of model categories, there exists a globally fibrant replacement
functor

(2-a) PSp(Xét) −→ PSp(Xét) : F 7−→ F ét.
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By definition, this is a functor equipped with a natural local weak equivalence
F → F ét for which the map from F ét to the final object is a local fibration.
The Hermitian Quillen-Lichtenbaum Theorem 1.6 is a statement about the map
F → F ét when F is the hermitian K-theory presheaf.

Call a square of presheaves of spectra pointwise homotopy cartesian if it becomes
a homotopy cartesian square of spectra when evaluated at all finite type étale X-
schemes. We need the following observations.

Lemma 2.4. (1) The globally fibrant replacement functor (2-a) sends point-
wise homotopy cartesian squares to pointwise homotopy cartesian squares.

(2) Let n be an integer. If a presheaf of spectra F satisfies πi(Fx) = 0 for all
i ≥ n and all points x ∈ X then πi(F ét(U)) = 0 for all i ≥ n and U ∈ Xét.

Proof. Both statements are true for any small Grothendieck site (with enough
points so that we can formulate the second part of the lemma). For the first part,
recall that in the category of spectra, homotopy cartesian is the same as homo-
topy co-cartesian. Since cofibrations are pointwise cofibrations and pointwise weak
equivalences are local weak equivalences, it is clear that the globally fibrant replace-
ment functor preserves pointwise homotopy co-cartesian squares. The second part
is explicitly stated in [15, Proposition 6.12]. �

There are evident analogs for the Nisnevich topology XNis on X. Details are
mutatis mutandis the same.

For later reference we include the following results. Recall that ` = 2ν .

Lemma 2.5. Let F ⊂ L be a purely inseparable algebraic extension of fields of
characteristic 6= 2. Then the inclusion F ⊂ L induces equivalences of spectra

K/`(F ) '−→ K/`(L), GW [n]/`(F ) '−→ GW [n]/`(L)

and an isomorphism of Witt groups

W (F )
∼=−→W (L).

Proof. The K-theory statement is due to Quillen [28, Proposition 4.8]. For Witt-
groups, see [3, p. 456, §2]. The result for GW [n]/` now follows from the homotopy
fibration (2.1 (1)) and the vanishing of W i(k) for k a field and i 6≡ 0 (mod 4). �

Theorem 2.6 (Rigidity). Let R be a henselian local ring with residue field k and
1
2 ∈ R. Then the map R→ k induces equivalences of spectra

K/`(R) '−→ K/`(k), GW [n]/`(R) '−→ GW [n]/`(k)

and an isomorphism of Witt groups

W (R)
∼=−→W (k).

Proof. The K-theory (resp. Witt-theory) result is due to Gabber [11] (resp. Kneb-
usch [21, Satz 3.3]). The claim for Grothendieck-Witt theory then follows from the
homotopy fibration (2.1 (1)). �

The following theorem is implicit in [32] but was formulated only as an equiva-
lence on (vcd2(X)− 2)-connected covers.

Theorem 2.7 (K-theoretic Quillen-Lichtenbaum). Let X be a noetherian scheme
of finite Krull dimension with 1

2 ∈ Γ(X,OX). Assume that X has an ample family
of line bundles and vcd2(X) <∞. Then for all ν ≥ 1 the natural map

K(X; Z/2ν) −→ K ét(X; Z/2ν)

is (vcd2(X)− 2)-connected.
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Proof. The map in the theorem factors as

(2-b) K/`(X)→ (K/`)Nis(X)→ (K/`)ét(X)

where (K/`)Nis denotes a globally fibrant model for the Nisnevich topology. We
first show that the second map is (vcd2(X) − 2)-connected. For fields, this is [32,
(11), §5]. The case of henselian rings reduces to the case of fields, by Rigidity
for K-theory and its étale version (see e.g. the proof of [26, Lemma 4.14] and
[27, Proposition 6.1]). For general X as in the theorem, the result follows from
the henselian case in view of the strongly convergent Nisnevich descent spectral
sequence applied to the homotopy fibre of the second map in (2-b).

To finish the proof, we note that the first map in (2-b) is always 0-connected, so
the theorem follows as soon as vcd2(X) ≥ 2. Since dimX ≤ vcd2X, we are left with
the cases dimX = 0, 1. If dimX = 0 then the first map in (2-b) is an equivalence.
If dimX = 1 then this map is (−1)-connected. This assertion follows from the fact
that K−1 is torsion free for noetherian schemes of Krull dimension ≤ 1; see [44,
Lemma 2.5 (2)]. Therefore, the maps K/` → K/` and hence (K/`)Nis → (K/`)Nis

are (−1)-connected for such schemes. Moreover, K/` → (K/`)Nis is a pointwise
weak equivalence, by [41]. �

Lemma 2.8. Suppose that X is a quasi-compact scheme with an ample family of
line bundles. Then the following are equivalent.

(1) There exists an integer n > 0 such that 2nW (X) = 0.
(2) −1 is a sum of squares in all the residue fields of X.

Proof. In [22, Theorem 3, p. 189] it is shown that (1) is equivalent to the statement
that all the residue fields of X have 2-primary torsion Witt groups. The latter is
equivalent to (2); see for instance [33, Theorem II.7.1]. �

Remark 2.9. If X is affine, the condition that −1 is a sum of squares in all the
residue fields of X is equivalent to −1 being a sum of squares in Γ(X,OX); see
for instance [22, Proposition 4, p. 190]. If X is non-affine, then −1 might be a
sum of squares in all residue fields without being a sum of squares in Γ(X,OX).
Indeed, every smooth projective real curve X with function field of level > 1 has
the property that −1 is a sum of squares in all of its residue fields, but not in
Γ(X,OX) = R. For example, take the closed subscheme of P2

R = Proj(R[X,Y, Z])
cut out by the equation X2 + Y 2 + Z2 = 0.

3. Proofs

Lemma 3.1. Theorem 1.1 holds for fields k with vcd2(k) <∞ and char(k) 6= 2.

Proof. We claim that the homotopy fibre F of GW/`→ K/`hC2 is contractible. If
char(k) = 0, this holds by [13]. If char(k) > 0, we reduce the claim to the case of
characteristic 0 by means of “Teichmüller lifting”. In effect, we may assume that
k is perfect, since K/` and GW/` are invariant under purely inseparable algebraic
field extensions (Lemma 2.5). Then the ring V of Witt-vectors over k is a complete
(hence henselian) dvr with residue field k and fraction field F of characteristic 0.
Furthermore,

vcd2(F ) ≤ cd2(F ) = cd2(k) + 1 = vcd2(k) + 1 <∞,

by [1, Exposé X, Théorème 2.2 (ii)] and [38, II §4.1].
Let π ∈ V be a uniformizer. We claim that α : V [t, t−1]→ F : t 7→ π, induces an

equivalence F(α) : F(V [t, t−1]) '→ F(F ). It is known that K/`(α) is an equivalence
(one may use the same argument as for Witt groups below), and hence K/`hC2(α)
and K/`hC2(α) are equivalences. To show that GW/`(α) is an equivalence, we
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consider the spectrum L defined by the homotopy fibration KhC2 → GW → L (2.1
(1)). The groups πiL are 4-periodic, trivial for local rings in degrees 6≡ 0 (mod 4)
and homotopy invariant for regular rings. Using the localization exact sequence for
V [t] → V [t, t−1], we get W i(V [t, t−1]) = 0 for i 6≡ 0 (mod 4). Thus, it remains
to check that W 0(V [t, t−1]) → W 0(F ) is an isomorphism. This follows by a com-
parison of the localization exact sequences for V [t]→ V [t, t−1] and V → F , which
reduces to a map between short exact sequences:

0 → W 0(V [t]) −→ W 0(V
[
t, t−1

]
) −→ W 0(V ) → 0

↓ ↓ ↓
0 → W 0(V ) −→ W 0(F ) −→ W 0(k) → 0.

Theorem 2.6 shows that the right vertical map, induced by the reduction map
modulo π, is an isomorphism. The left vertical map is an isomorphism by homotopy
invariance of Witt-theory. It follows that W 0(α) is an isomorphism, as claimed.

Because augmentation makes F(V ) a retract of F(V
[
t, t−1

]
), combining with

the equivalence F(α) : F(V [t, t−1]) '→ F(F ) makes F(V ) also a retract of F(F ).
However, since char(F ) = 0 and vcd2(F ) < ∞, we have F(F ) ' ∗, by [13]; this
now implies that F(V ) ' ∗. Finally, by rigidity, F(V ) → F(k) is an equivalence.
Hence, F(k) ' ∗ as sought. �

3.2. Bott elements. Let p = 8m for m ≥ 1 an integer, and let ` be the highest
power of 2 that divides 34m − 1; that is, ` = max{2k | 2k divides 34m − 1}. An
element β ∈ πp(S0; Z/`) in the mod ` stable stems is called a (positive) Bott
element if it maps to the reduction mod ` of a generator of KOp ∼= Z under the
unit map S0 → KO, where KO denotes the Bott-periodic real topological K-theory
spectrum. We require Bott elements in our proof (Lemma 3.5) of the étale version
of the Homotopy Fixed Point Theorem 1.1. Bott elements for higher Grothendieck-
Witt theory and arbitrary coefficients were first constructed in [7]. In what follows
we give a simpler construction that suffices for our purposes.

Lemma 3.3. Let ` be as in Section 3.2. Then there is an element β ∈ πp(S0/`) in
the mod ` stable stem whose image in πp(KO/`) under the unit map S0 → KO is
the reduction mod ` of a generator of KOp = Z.

Proof. The construction of β, essentially due to Quillen, is based on Adams’ work on
the image J(π∗O) ⊆ π∗(S0) of the J-homomorphism [2]. Recall that the 2-primary
part J(πp−1O)(2) of J(πp−1O) is cyclic of order `. For a spectrum F , write Ftor for
the homotopy fibre of the rationalization map F → FQ, and note that the natural
map Ftor/` → F/` is an equivalence. Further, recall that π∗(S0

tor) → π∗(S0) is an
isomorphism for ∗ > 0. So, the J-homomorphism has image in π∗(S0

tor). Consider
the commutative diagram

πp(S0
tor/`) //

δ

��

πp(KOtor/`)

δ

��
J(πp−1O)(2)

∼= Z/` � � //

66mmmmmmmmmmmmm
πp−1(S0

tor) // πp−1(KOtor)

in which the diagonal map exists because of the long exact sequence of homotopy
groups associated with the fibration S0

tor
·`→ S0

tor → S0
tor/`. In [29, p. 183, §2],

Quillen shows that the composition of the lower two maps is injective. It follows
that the composition of the diagonal map with the upper horizontal map in the
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previous and in the following commutative diagram is injective

πp(S0
tor/`) //

∼=
��

πp(KOtor/`)

∼=
��

J(πp−1O)(2)
∼= Z/` //

66mmmmmmmmmmmm
πp(S0/`) // πp(KO/`) ∼= Z/`.

Therefore, the composition of the two lower horizontal maps in the last diagram
is an injection of finite groups of the same order. Hence, this composition is an
isomorphism. In particular, the map πp(S0/`) → πp(KO/`) is surjective, and we
can lift the generator mod ` of KOp to an element β ∈ πp(S0/`). �

Lemma 3.4. Let k be a separably closed field of characteristic char(k) 6= 2, and let
η ∈ GW [−1]

−1 (k) ∼= W 0(k) correspond to the unit of the ring W 0(k). Then βηp = 0
in GW (k; Z/`). In particular, L/`(k)[β−1] ' ∗.

Proof. By [18], [19] the ring spectrum GW/`(k)[β−1] is equivalent to KO/` and
the natural map GW (k)/`→ GW/`(k)[β−1] is an equivalence on connective covers.
Thus, it suffices to check that βηp = 0 in π0(KO/`). In KO/`, the elements β and
η are reductions of integral classes. More precisely, β is the reduction mod ` of bm,
where b ∈ KO8 = Z is a generator, and η4 ∈ GW [−4]

−4 (C). However, the map

Z/2 ∼= GW
[−4]
−4 (C) = GW

[0]
−4(C) −→ KO−4 = Z

is trivial. Consequently, ηp = 0 in KO−p and hence βηp = 0.
For the L-theory statement, recall that L = GW [η−1]; see (2.1 (3)). Therefore,

βηp = 0 implies L/`(k)[β−1] ' ∗. �

Lemma 3.5. Let ν > 0 be an integer and ` = 2ν . Let X be a noetherian scheme
with an ample family of line bundles, 1

2 ∈ Γ(X,OX) and vcd2(X) < ∞. Then the
map

GW ét/`(X) −→ (KhC2)ét/`(X)
is an equivalence.

Proof. For an integer ν > 0, a map of spectra is an equivalence mod 2ν if and only
if it is an equivalence mod 2. Therefore, we can assume ` to be as in Section 3.2,
and we have Bott elements at our disposal. Consider the commutative diagram

(GW/`)ét(X) −→ (GW/`[β−1])ét(X) −→ (L/`[β−1])ét(X)
↓ ↓ ↓

(K/`hC2)ét(X) −→ (K/`hC2 [β−1])ét(X) −→ (Ĥ/`[β−1])ét(X)

in which the right-hand square is obtained from the homotopy cartesian square
(2.1 (2)) by reduction mod `, inverting the positive Bott element constructed in
Lemma 3.3, and taking étale globally fibrant replacements. All these operations
preserve (pointwise) homotopy cartesian squares. Thus, the right-hand square in
the diagram is homotopy cartesian. By Lemma 3.4, the upper right corner of the
diagram is trivial. Since Ĥ/`[β−1] is a module spectrum over L/`[β−1], the lower
right corner of the diagram is trivial as well. Hence, the middle vertical arrow is an
equivalence. In view of Lemma 2.4, the upper left horizontal arrow is an equiva-
lence on connective covers since GW/`(F ) → GW/`(F )[β−1] has this property for
separably closed fields F . By the same lemma, the lower left horizontal map is an
equivalence on some connected cover, because by the solution of the K-theoretic
Quillen-Lichtenbaum conjecture [32] K/`hC2 → K/`hC2 [β−1] is a pointwise (hence
local) weak equivalence on (vcd2(X)− 2)-connected covers. Hence, the fibre of the
left vertical map has trivial homotopy groups in high degrees. By periodicity (2.1
(3)), we are done. �
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Lemma 3.6. If Theorem 1.6 holds for the residue fields of X, then the map (1-b)
is n-connected for some integer n.

Proof. By definition, GW ét/` satisfies Nisnevich descent. In positive degrees the
same holds for GW/` [34]. More precisely, GW satisfies Nisnevich descent [34,
Theorem 9.7] and the map GW → GW is an equivalence on connective covers
[34, Proposition 8.7 or Theorem 8.14]. The map between the E2-pages of the
corresponding Nisnevich descent spectral sequences takes the form

Hp
Nis(X; π̃q(GW/`)) −→ Hp

Nis(X; π̃q(GW ét/`)).

By rigidity, see Theorem 2.6, the assumption shows that the canonically induced
map

π̃q(GW/`) −→ π̃q(GW ét/`)
of Nisnevich sheaves is an isomorphism for q ≥ vcd2(X) − 1. The result follows
from the fact that Hp

Nis(X,A) = 0 for p > dimX and p < 0 and strong convergence
of the descent spectral sequences [15, Theorem 7.58]. �

Proofs of Theorems 1.1 and 1.6. Consider the commutative diagram:

(3-a)
GW/`(X) −→ GW ét/`(X)
↓ ↓[

K/`hC2
]

(X) −→
[
K/`hC2

]ét (X).

By the solution of the K-theoretic Quillen-Lichtenbaum conjecture (Theorem 2.7),
the homotopy fibre of the lower horizontal map is (vcd2(X)−2)-connected. Lemma
3.5 shows the right vertical map is an equivalence, while Lemma 3.1 shows the
left vertical map is an equivalence for fields. This implies the Hermitian Quillen-
Lichtenbaum Theorem 1.6 for fields. Using Lemma 3.6, we have that the upper
horizontal map is an isomorphism in high degrees. It follows that the homotopy
fibre of the left vertical map in (3-a) is trivial in high degrees. By periodicity (2.1
(3)), the homotopy fibre has trivial homotopy in all degrees. Thus the left vertical
map in (3-a) is an equivalence. This proves the Homotopy Fixed Point Theorem
1.1. Since both vertical maps are equivalences, the homotopy fibre of the upper
horizontal map has trivial homotopy groups in the same range as the homotopy
fibre of the lower horizontal map. This proves the Hermitian Quillen-Lichtenbaum
Theorem 1.6 for schemes X. 2

Proof of Theorem 1.3. By Lemma 2.8, we have 2mW 0(X) = 0 for some m > 0.
The homotopy groups of L[n](X) and the Tate spectrum Ĥ(C2, K

[n](X)) acquire
compatible actions by W 0; see [45], [34, Remark 7.7]. It follows that the homotopy
groups of the fibre F(X) of L[n](X)→ Ĥ(C2, K

[n](X)) also admit such an action,
and are therefore annihilated by 2m. However, by the Homotopy Fixed Point
Theorem 1.1, the homotopy cofiber of multiplication by 2m : F(X) → F(X) is
trivial; that is, multiplication by 2m is an isomorphism on the homotopy groups of
F(X). As we have just noticed, this is the zero map. Hence, F(X) ' ∗, and the
map (1-a) is an equivalence. 2

Proof of Corollary 1.4. This follows from Theorems 1.1 and 1.3 in view of the
homotopy cartesian square 2.1 (2). 2

Proof of Corollary 1.5. This follows from the fact that the diagram

GW (X) −→ GW (X)
↓ ↓

K(X)hC2 −→ K(X)hC2

is a homotopy cartesian square; see [34, Theorem 8.14]. 2
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If L = OX then the converse of the Integral Homotopy Fixed Point Theorem 1.3
holds.

Proposition 3.7. Let X be a scheme with an ample family of line bundles and
1
2 ∈ Γ(X,OX). If the map (1-a) is an equivalence for L = OX then no residue field
of X is formally real. More generally, this conclusion holds if we assume that the
map (1-a) is only an equivalence modulo some odd prime.

Proof. For any prime q, the map GW [n]/q(X)→ (K [n]/q(X))hC2 is an equivalence
if the map (1-a) is an integral equivalence. If q is odd, then by (2.1 (2)), the
map L[n]/q(X) → Ĥ(C2, K

[n]/q(X)) is an equivalence. Now multiplication by
2 is an equivalence on K [n]/q, which implies that Ĥ(C2, K

[n]/q(X)) ' ∗, and
hence L[n]/q(X) ' ∗. Therefore, the Witt ring W (X) is a Z[ 1

q ]-algebra since

multiplication by q on W (X) = L
[n]
n (X) is an isomorphism. If X has a formally

real residue field k, then we obtain ring maps Z[ 1
q ]→W (X)→W (k)→W (k̄) = Z,

where k̄ is a real closure of k, which leads to a contradiction. �

Remark 3.8. We should point out the necessity of our standing assumption that
1
2 ∈ Γ(X,OX), although the cited results in [37] are proved in greater generality.
Without this assumption, the Homotopy Fixed Point Theorem 1.1 cannot hold for
the following reason. As proved in [34, § 2], the fundamental theorem in hermitian
K-theory [17] fails for the GW [n]-spectrum whenever X has a residue field of char-
acteristic 2, whereas it does hold for the (K [n])hC2-spectrum; see the proof of [34,
Theorem 6.2]. In particular, if X has a residue field of characteristic 2 then (1-a)
is not an integral equivalence, in general, even if vcd2(X) <∞. Moreover, it is not
a 2-adic equivalence for fields of characteristic 2 (in this case the fibre of (1-a) is
2-adically complete).

If K-theory of symmetric bilinear forms (that is, GW -spectra) is replaced with
K-theory of quadratic forms, then (1-a) is not an equivalence either, because the
latter is not homotopy invariant for regular rings, whereas K-theory and its homo-
topy fixed points are. In particular, the quadratic analogue of the map (1-a) is not
generally a 2-adic equivalence in characteristic 2.

4. Applications

Theorem 4.1. Let X be a complex algebraic variety of (complex) dimension d
which has an ample family of line bundles. Let XC be the associated analytic topo-
logical space of complex points. Then for ` = 2ν > 1 and n ∈ Z, the canonical
map

GW
[n]
i (X; Z/`) −→ KO2n−i(XC; Z/`)

is an isomorphism for i ≥ d− 1 and a monomorphism for i = d− 2.

Proof. The theories GW [n] have Bott-periodic topological counterparts GW [n]
top first

explored in [16] as

GW
[0]
top(XC) = 1L(XC) = KO(XC), GW

[−1]
top (XC) = 1U(XC) = Ω2KO(XC),

GW
[−2]
top (XC) = −1L(XC) = Ω4KO(XC), GW

[−3]
top (XC) = −1U(XC) = Ω6KO(XC),

which induce the maps

GW [−n](X; Z/`) −→ GW
[−n]
top (XC; Z/`) = Ω2nKO(XC; Z/`)
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in the theorem. In the commutative diagram

GW [n](X; Z/`) −→ GW
[n]
top(XC; Z/`)

↓ ↓[
K [n](X; Z/`)

]hC2 −→
[
KU [n](XC; Z/`)

]hC2
,

the lower horizontal map is (d − 2)-connected, by a theorem of Voevodsky [42,
Theorem 7.10]. By Theorem 1.3, the left vertical map is an (integral) equivalence.
Finally, it is a classical theorem that the right vertical map is also an (integral)
equivalence. Indeed, for n = 0, this is the usual homotopy equivalence KO '
KUhC2 (see e.g. [20]); and for other n ∈ Z, it follows from the topological version
of the fundamental theorem in hermitian K-theory [16]. �

Remark 4.2. The proof shows that the theorem also holds for odd prime powers.
We simply need to remark that the map K [n](X; Z/`) → KU [n](XC; Z/`) is also
(d − 2)-connected for odd prime powers ` due to the solution of the Bloch-Kato
conjecture by Voevodsky, Rost, Suslin and others. However, the odd prime analogue
of Theorem 4.1 can be more easily proved using Remark 1.8 in place of the Integral
Homotopy Fixed Point Theorem. See also [7] for another argument in that case.

From now on, let ` again be a power of 2. As a second application, we give new
and more conceptual proofs of the main results of [5] and [6]. Let Z′ be short for
Z[ 1

2 ]. Because K [n] has the same (nonequivariant) homotopy type as K, from [31],
[43, Corollary 8] we have the existence of a homotopy cartesian square

K [n](Z′)/` −→ K
[n]
top(R)/`

↓ ↓
K [n](F3)/` −→ K

[n]
top(C)/`

,

where Ktop stands for connective topological K-theory. Now, since the fixed spec-
trum of K [n] is GW [n], the Homotopy Fixed Point Theorem 1.1 applied to this
square yields the following.

Theorem 4.3. For ` = 2ν > 1 and n ∈ Z, the square

GW [n](Z′)/` −→ GW
[n]
top(R)/`

↓ ↓
GW [n](F3)/` −→ GW

[n]
top(C)/`

is homotopy cartesian on connective covers. 2

Remark 4.4. According to [39], these results do not depend on whether the fields
R and C are taken with the discrete or standard Euclidean topology.

This theorem enables complete computation of the groups GW [n](Z′), up to
finite groups of odd order (see [5]). In particular, if n = 0, the right vertical map in
the above square can be identified with the split surjective map KO ×KO → KO
mod `. Therefore, using 2-adic completions we get the following corollary.

Corollary 4.5. For i ≥ 0 and any one-point space pt, the natural map

GW
[0]
i (Z′) −→ GW

[0]
i (F3)⊕KO−i(pt)

is an isomorphism modulo finite groups of odd order. 2

The groups KO−i(pt) are given by Bott periodicity, and the groups GW [0]
i (F3)

were computed by Friedlander [10].

Similarly, let F be a number field and O′F = OF [ 1
2 ] be its ring of 2-integers.

Assume that F is a 2-regular totally real number field with r real embeddings. Let
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q be a prime number such that the elements corresponding to the Adams operations
ψ−1 and ψq in the ring of operations of the periodic complex topological K-theory
spectrum generate the Galois group F (µ2∞) over F , where F (µ2∞) is obtained from
F by adjoining all 2-primary roots of unity. From [12] and [27] we have a homotopy
cartesian square of connective spectra

K [n](O′F )/` −→ K
[n]
top(R)r/`

↓ ↓
K [n](Fq)/` −→ K

[n]
top(C)r/`.

After application of the functor (−)hC2 to this homotopy cartesian square, the
Homotopy Fixed Point Theorem 1.1 implies the following result, which was first
proved in [6] and which allows us to compute completely the groups GW [n]

i (O′F )
up to finite groups of odd order.

Theorem 4.6. Let ` = 2ν > 1 and n ∈ Z. For a 2-regular totally real number field
F with r real embeddings, the square of spectra

GW [n](O′F )/` −→ GW
[n]
top(R)r/`

↓ ↓
GW [n](Fq)/` −→ GW

[n]
top(C)r/`

is homotopy cartesian on connective covers. In particular, for i ≥ 0, n = 0 and
any one-point space pt, the natural map

GW
[0]
i (O′F ) −→ GW

[0]
i (Fq)⊕KO−i(pt)r.

is an isomorphism modulo finite groups of odd order. 2

Remark 4.7. Let X be as in the Homotopy Fixed Point Theorem 1.1. Our results
also give the isomorphism

(4-a) GW/`(X)[β−1]
∼=−→ GW ét/`(X)[β−1]

which was first proved in [7]. Note that GW ét/`(X) → GW ét/`(X)[β−1] is an
equivalence on connective covers. By the Homotopy Fixed Point Theorem 1.1, cup
product with the Bott element is an isomorphism in high degrees, as the same is
true for K-theory. However, this is also true for étale hermitian K-theory, since
by the Hermitian Quillen-Lichtenbaum Theorem 1.6 it coincides with hermitian
K-theory in high degrees. Hence the equivalence (4-a).

Let A • B denote an abelian group extension of B by A, so that there exists a
short exact sequence

0→ A→ A •B → B → 0.
Another convention we follow is that µ⊗i2ν denotes the i th Tate twist of the sheaf
of 2ν th roots of unity µ2ν (the kernel of multiplication by 2ν on the multiplicative
group scheme Gm over O′F ). At one extreme, when ν = 1 this is independent of the
Tate twist; at the other, we use finiteness of the étale cohomology groups of O′F to
write Z⊗j2 for lim←−µ

⊗j
2ν .

By combining the Hermitian Quillen-Lichtenbaum Theorem 1.6 with [7, Lemmas
6.12, 6.16] we deduce our third computational application for higher Grothendieck-
Witt groups.

Theorem 4.8. Suppose that F is a totally imaginary number field. The 2-adically
completed higher Grothendieck-Witt groups GW [n]

i (O′F )# of the ring of 2-integers
O′F of F are computed in terms of étale cohomology groups as follows.
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i mod 8 GW
[0]
i (O′F )# GW

[1]
i (O′F )#

8k > 0 H2
ét(O′F , µ2) •H1

ét(O′F , µ2) H2
ét(O′F , µ2) •H1

ét(O′F ,Z
⊗4k+1
2 )

8k + 1 H1
ét(O′F , µ2) •H0

ét(O′F , µ2) H2
ét(O′F , µ2) •H1

ét(O′F , µ2)
8k + 2 H2

ét(O′F ,Z
⊗4k+2
2 ) •H0

ét(O′F , µ2) H1
ét(O′F , µ2) •H0

ét(O′F , µ2)
8k + 3 H1

ét(O′F ,Z
⊗4k+2
2 ) H2

ét(O′F ,Z
⊗4k+3
2 ) •H0

ét(O′F , µ2)
8k + 4 0 H1

ét(O′F ,Z
⊗4k+3
2 )

8k + 5 0 0
8k + 6 H2

ét(O′F ,Z
⊗4k+4
2 ) 0

8k + 7 H2
ét(O′F , µ2) •H1

ét(O′F ,Z
⊗4k+4
2 ) H2

ét(O′F ,Z
⊗4k+5
2 )

i mod 8 GW
[2]
i (O′F )# GW

[3]
i (O′F )#

8k > 0 0 H1
ét(O′F ,Z

⊗4k+1
2 )

8k + 1 0 0
8k + 2 H2

ét(O′F ,Z
⊗4k+2
2 ) 0

8k + 3 H2
ét(O′F , µ2) •H1

ét(O′F ,Z
⊗4k+2
2 ) H2

ét(O′F ,Z
⊗4k+3
2 )

8k + 4 H2
ét(O′F , µ2) •H1

ét(O′F , µ2) H2
ét(O′F , µ2) •H1

ét(O′F ,Z
⊗4k+3
2 )

8k + 5 H1
ét(O′F , µ2) •H0

ét(O′F , µ2) H2
ét(O′F , µ2) •H1

ét(O′F , µ2)
8k + 6 H2

ét(O′F ,Z
⊗4k+4
2 ) •H0

ét(O′F , µ2) H1
ét(O′F , µ2) •H0

ét(O′F , µ2)
8k + 7 H1

ét(O′F ,Z
⊗4k+4
2 ) H2

ét(O′F ,Z
⊗4k+5
2 ) •H0

ét(O′F , µ2)

In particular, for 0 ≤ n ≤ 3 and i > 0, the group GW [n]
i (O′F )# is trivial when⌊

i− n
2

⌋
≡
⌊

4 + n

2

⌋
(mod 4). 2

Comparing the above with [31, Theorem 0.4], one sees that the cohomology
terms involving twisted Z2-coefficients are detected by the K-groups of O′F .

The Lichtenbaum conjectures relate the orders of K-groups to values of Dedekind
zeta-functions of totally real number fields [24], [25]. We exhibit precise formulas
relating the orders of higher Grothendieck-Witt groups to values of Dedekind zeta-
functions. If m is even, let wm = 2aF+ν2(m) where aF := (|µ2∞(F (

√
−1))|)2 is

the 2-adic valuation and 2ν2(m) is the 2-primary part of m. If F = Q(ζ2b + ζ̄2b),
then aF = b; and when F = Q(ζr + ζ̄r) (with r odd) or Q(

√
d) with d > 2, then

aF = 2. The following theorem applies to these examples, where we write Gtor

for the torsion subgroup of an abelian group G. Its proof combines our results for
GW [n](O′F ) with [31, Theorem 0.2].

Theorem 4.9. For every 2-regular totally real abelian number field F with r real
embeddings, the Dedekind zeta-function of F takes the values

ζF (−1− 4k) =
#GW [0]

8k+2(O′F )

2#GW [0]
8k+3(O′F )

= 22r
#GW [2]

8k+2(O′F )

#GW [2]
8k+3(O′F )

=
2r

w4k+2

ζF (−3− 4k) = 2r
#GW [0]

8k+6(O′F )

#GW [0]
8k+7(O′F )

= 2r
#GW [2]

8k+6(O′F )tor

#GW [2]
8k+7(O′F )

=
2r

w4k+4

up to odd multiples. 2
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