ON THE PRESENTATION OF THE GROTHENDIECK-WITT GROUP OF SYMMETRIC BILINEAR FORMS OVER LOCAL RINGS

ROBERT ROGERS AND MARCO SCHLICHTING

Abstract

We prove a Chain Lemma for inner product spaces over commutative local rings R with residue field other than \mathbb{F}_{2} and use this to show that the usual presentation of the Grothendieck-Witt group of symmetric bilinear forms over R as the zero-th Milnor-Witt K-group holds provided the residue field of R is not \mathbb{F}_{2}.

Contents

1. Introduction 1
2. The Chain Lemma 3
3. Presentation of $G W(R)$ 8
4. An example of $G W(R) \nsubseteq K_{0}^{M W}(R)$ 12
References 13

1. Introduction

Extending work of Witt [Wit37] to include the case of characteristic 2 fields, Milnor-Husemoller prove in [MH73, Lemma IV.1.1] that the Witt group $W(F)$ of inner product spaces, aka non-degenerate symmetric bilinear forms, of a field F is additively generated by elements $\langle a\rangle$, with $a \in F^{*}$, subject to the following three relations.
(1) For all $a, b \in F^{*}$ we have $\left\langle a^{2} b\right\rangle=\langle b\rangle$.
(2) For all $a \in F^{*}$ we have $\langle a\rangle+\langle-a\rangle=0$.
(3) For all $a, b, a+b \in F^{*}$ we have $\langle a\rangle+\langle b\rangle=\langle a+b\rangle+\langle(a+b) a b\rangle$.

From this, one readily obtains a presentation of the Grothendieck-Witt group $G W(F)$ of F with the same generators and relations (1), (2'), (3) where:
(2') For all $a \in F^{*}$ we have $\langle a\rangle+\langle-a\rangle=\langle 1\rangle+\langle-1\rangle$.
The goal of this paper is to generalise these presentations to commutative local rings (R, \mathfrak{m}, F). In fact, we will show in Theorem 1.3 and Corollary 1.5 below that the same presentation holds for $G W(R)$ and for $W(R)$ as long as the residue field $F=R / \mathfrak{m}$ of the local ring R satisfies $F \neq \mathbb{F}_{2}$. If the residue field is \mathbb{F}_{2}, then there

[^0]are counter-examples; see Proposition 4.1. It seems that our results are new when the residue field F has characteristic 2 or when $R \neq F=\mathbb{F}_{3}$.

Remark 1.1. The abelian group with generators $\langle a\rangle, a \in R^{*}$, and relations (1), $\left(2^{\prime}\right),(3)$ (and R in place of F) is also known as the zero-th Milnor-Witt K-group $K_{0}^{M W}(R)$ of R [Mor12], [GSZ16], [Sch17]. The presentation of $G W(R)$ as the zeroth Milnor-Witt K-group has become important in applications of \mathbb{A}^{1}-homotopy theory [Mor12], [AF22] and the homology of classical groups [Sch17] where the sheaf of Milnor-Witt K-groups plays a paramount role. To date, the lack of understanding of the relation between Milnor-Witt K-theory and Grothendieck-Witt groups when $\operatorname{char}(F)=2$ is the reason that many results are only known away from characteristic 2. This paper therefore is part of the effort to establish these applications also in characteristic 2 and in mixed characteristic.

Statement of results. To state our results, recall that an inner product space over a commutative ring R is a finitely generated projective R-module V equipped with a non-degenerate symmetric R-bilinear form $\mathfrak{b}: V \times V \rightarrow R$; see [MH73]. When R is local, then V is free of some finite rank, say n. In that case, an orthogonal basis of V is a basis v_{1}, \ldots, v_{n} of V such that $\mathfrak{b}\left(v_{i}, v_{j}\right)=0$ for $i \neq j$. Note that if the residue field of R has characteristic 2 , an inner product space over R need not have an orthogonal basis. Nevertheless, we prove in Proposition 3.1 (3) that stably every inner product space over a local commutative ring R has an orthogonal basis. Two orthogonal bases B, C of V are called chain equivalent, written $B \approx C$, or $B \approx_{R} C$ to emphasise the ring R, if there is a sequence $B_{0}, B_{1}, \ldots, B_{r}$ of orthogonal bases of V such that $B_{0}=B$ and $B_{r}=C$, and $B_{i-1} \cap B_{i}$ has cardinality at least $n-2$ for $i=1, \ldots, r$. Our first result is the following.

Theorem 1.2 (Chain Lemma). Let (R, \mathfrak{m}, F) be a commutative local ring with residue field $F \neq \mathbb{F}_{2}$. Let V be an inner product space over R. Then any two orthogonal bases of V are chain equivalent.

Of course, this is vacuous if V has no orthogonal basis. Theorem 1.2 was previously known when R is a field of characteristic not 2 [Wit37, Satz 7], [Lam05, Theorem I.5.2], and the local case easily reduces to the field case; see Lemma 2.4. The Theorem does not hold when $F=\mathbb{F}_{2}$; see Remark 2.11 and Lemma 2.4. The proof of Theorem 1.2 is given in Section 2.

We let $G W(R)$ be the Grothendieck-Witt ring of non-degenerate symmetric bilinear forms over R, that is, the Grothendieck group associated with the abelian monoid of isomorphism classes of inner product spaces over R with orthogonal sum as monoid operation [Kne77], [Sah72], [MH73], [Sch10]. The ring structure is induced by the tensor product of inner product spaces. For $a \in R^{*}$, we denote by $\langle a\rangle_{\mathbb{Z}}$ the \mathbb{Z}-basis element of the group ring $\mathbb{Z}\left[R^{*}\right]$ corresponding to $a \in R^{*}$, and by $\langle a\rangle$ the rank 1 inner product space $\mathfrak{b}(x, y)=a x y, x, y \in V=R$. We have elements $\left\langle\langle a\rangle_{\mathbb{Z}}=1-\langle a\rangle_{\mathbb{Z}}\right.$ and $h_{\mathbb{Z}}=\langle 1\rangle_{\mathbb{Z}}+\langle-1\rangle_{\mathbb{Z}}$ in $\mathbb{Z}\left[R^{*}\right]$ and $\langle\langle a\rangle\rangle=1-\langle a\rangle$ and $h=\langle 1\rangle+\langle-1\rangle$ in $G W(R)$. We may write $\langle a\rangle,\left\langle\langle a\rangle\right.$ and h in place of $\langle a\rangle_{\mathbb{Z}}$, $\left\langle\langle a\rangle_{\mathbb{Z}}\right.$ and $h_{\mathbb{Z}}$ if their containment in $\mathbb{Z}\left[R^{*}\right]$ is understood. Note that we have a ring homomorphism

$$
\begin{equation*}
\pi: \mathbb{Z}\left[R^{*}\right] \longrightarrow G W(R):\langle a\rangle_{\mathbb{Z}} \mapsto\langle a\rangle \tag{1.1}
\end{equation*}
$$

which sends $\left\langle\langle a\rangle_{\mathbb{Z}}\right.$ and $h_{\mathbb{Z}}$ to $\langle\langle a\rangle$ and h. Our main result is the following which asserts that this ring homomorphism is surjective with kernel the ideal generated by three types of relations.
Theorem 1.3 (Presentation of $G W(R))$. Let (R, \mathfrak{m}, F) be a commutative local ring with residue field $F \neq \mathbb{F}_{2}$. Then the Grothendieck-Witt ring $G W(R)$ of inner product spaces over R is the quotient ring of the integral group ring $\mathbb{Z}\left[R^{*}\right]$ of the group R^{*} of units of R modulo the following relations:
(1) For all $a \in R^{*}$ we have $\left\langle\left\langle a^{2}\right\rangle\right\rangle=0$.
(2) For all $a \in R^{*}$ we have $\langle\langle a\rangle\rangle \cdot h=0$.
(3) (Steinberg relation) For all $a, 1-a \in R^{*}$ we have $\langle\langle a\rangle\rangle \cdot\langle\langle 1-a\rangle\rangle=0$.

In the context of Witt and Grothendieck-Witt groups, the Steinberg relation is also called Witt relation.

Remark 1.4. If the residue field F of R satisfies $F \neq \mathbb{F}_{2}, \mathbb{F}_{3}$ and we impose only the Steinberg relation (3) in Theorem 1.3, then imposing relation (1) is equivalent to imposing relation (2); see Lemma 3.6 (2) below. In particular, if the residue field is not $\mathbb{F}_{2}, \mathbb{F}_{3}$, then $G W(R)$ is the ring quotient of the group ring $\mathbb{Z}\left[R^{*} /\left(R^{*}\right)^{2}\right]$ of the group of unit square classes modulo the Steinberg relation (3). When $R=F$ is any field, including $F=\mathbb{F}_{2}, \mathbb{F}_{3}$, we can dispense with the relation (2) as well and obtain the presentation of $G W(F)$ as the quotient of the group ring $\mathbb{Z}\left[R^{*} /\left(R^{*}\right)^{2}\right]$ modulo the Steinberg relations. Indeed, if $R=\mathbb{F}_{3}$, relations (1) and (2) are vacuous and if $R=\mathbb{F}_{2}$, all three relations (1), (2) and (3) are vacuous but the map $\pi: \mathbb{Z}=$ $\mathbb{Z}\left[R^{*}\right] \rightarrow G W(R)$ in (1.1) is already an isomorphism.

Theorem 1.3 was previously known for R a field (including \mathbb{F}_{2}) [MH73], and for commutative local rings with residue field F of characteristic not two as long as $F \neq \mathbb{F}_{3}$ [Gil19, Theorem 2.2]. The theorem does not hold for local rings with residue field \mathbb{F}_{2}, in general; see Proposition 4.1. The proof of Theorem 1.3 is in Section 3, Corollary 3.5.

Since the Witt ring $W(R)$ is the quotient of the Grothendieck-Witt ring $G W(R)$ modulo the ideal generated by $h=1+\langle-1\rangle$, we obtain the following from Theorem 1.3 generalising the presentation [MH73, Lemma IV.1.1] from fields to commutative local rings.
Corollary 1.5. Let (R, \mathfrak{m}, F) be a commutative local ring with residue field $F \neq \mathbb{F}_{2}$. Then the Witt group $W(F)$ of inner product spaces of R is additively generated by elements $\langle a\rangle$, with $a \in R^{*}$, subject the following three relations.
(1) For all $a, b \in R^{*}$ we have $\left\langle a^{2} b\right\rangle=\langle b\rangle$.
(2) For all $a \in R^{*}$ we have $\langle a\rangle+\langle-a\rangle=0$.
(3) For all $a, b, a+b \in R^{*}$ we have $\langle a\rangle+\langle b\rangle=\langle a+b\rangle+\langle(a+b) a b\rangle$.

Acknowledgements. We would like to thank the referee for a careful reading of the manuscript. Robert Rogers would like to thank the Institute of Mathematics at the University of Warwick for providing financial support in the form of a URSS grant while the research was carried out.

2. The Chain Lemma

All rings in this article are assumed commutative. For an inner product space (V, \mathfrak{b}) over a ring R, we write $\mathfrak{q}: V \rightarrow R$ for the associated quadratic form defined
by $\mathfrak{q}(x)=\mathfrak{b}(x, x)$ for $x \in V$. We call an element $v \in V$ anisotropic if $\mathfrak{q}(v) \in R^{*}$. Note that for an orthogonal basis $\left(u_{1}, \ldots, u_{n}\right)$ of V, every u_{i} is anisotropic, $i=1, \ldots, n$. For units $a_{1}, \ldots, a_{n} \in R^{*}$, we denote by $\left\langle a_{1}, \ldots, a_{n}\right\rangle=\left\langle a_{1}\right\rangle+\cdots+\left\langle a_{n}\right\rangle=\left\langle a_{1}\right\rangle \oplus \cdots \oplus\left\langle a_{n}\right\rangle$ the inner product space which has an orthogonal basis u_{1}, \ldots, u_{n} with $\mathfrak{q}\left(u_{i}\right)=a_{i}$ for $i=1, \ldots, n$.

Our first goal is to show in Lemma 2.4 below that the Chain Lemma (Theorem 1.2) for a local ring is equivalent to the Chain Lemma for its residue field.

Lemma 2.1. Let (R, \mathfrak{m}, F) be a local ring, $\varepsilon \in \mathfrak{m}$, and let V be an inner product space over R. If $B_{1}=\left(u_{1}, \ldots, u_{n}\right)$ is an orthogonal basis of V, then so is $B_{2}=$ $\left(u_{1}+\varepsilon u_{2}, u_{2}-\varepsilon \mathfrak{q}\left(u_{2}\right) \mathfrak{q}\left(u_{1}\right)^{-1} u_{1}, u_{3}, \ldots, u_{n}\right)$. Moreover, we have $B_{1}=B_{2} \bmod \mathfrak{m}$ and $B_{1} \approx_{R} B_{2}$.

Proof. Since $\varepsilon \in \mathfrak{m}$, we have $B_{1}=B_{2} \bmod \mathfrak{m}$, and B_{2} is a basis since B_{1} is. Orthogonality is checked directly. Since B_{1} and B_{2} differ in only two terms, they are chain equivalent, by definition.

Lemma 2.2. Let (R, \mathfrak{m}, F) be a local ring, and let V be an inner product space over R. If $B_{1}=\left(u_{1}, \ldots, u_{n}\right)$ and $B_{2}=\left(v_{1}, \ldots, v_{n}\right)$ are orthogonal bases of V such that $B_{1}=B_{2} \bmod \mathfrak{m}$, then $B_{1} \approx_{R} B_{2}$.

Proof. The proof is by induction on $n \geqslant 1$. By the definition, for $n=1$ and $n=2$ any two orthogonal bases are chain equivalent. In particular, the claim is true for $n=1,2$. For $n>2$, we claim that $\left(u_{1}, u_{2}, \ldots, u_{n}\right) \approx_{R}\left(v_{1}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right)$ for some $u_{2}^{\prime}, \ldots, u_{n}^{\prime} \in V$ such that $u_{i}^{\prime}=u_{i} \bmod \mathfrak{m}, i=2, \ldots, n$. Then the induction hypothesis applied to the two orthogonal bases $\left(u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right)$ and $\left(v_{2}, \ldots, v_{n}\right)$ of the non-degenerate subspace v_{1}^{\perp} of V yields $\left(u_{1}, u_{2}, \ldots, u_{n}\right) \approx_{R}\left(v_{1}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right) \approx_{R}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. To prove the claim, note that $v_{1}=u_{1}+\varepsilon_{1} u_{1}+\varepsilon_{2} u_{2}+\cdots+\varepsilon_{n} u_{n}$ for some $\varepsilon_{i} \in \mathfrak{m}$ since $u_{1}=v_{1} \bmod \mathfrak{m}$. For $i=0, \ldots, n$, set $u_{1}^{(i)}=u_{1}+\varepsilon_{1} u_{1}+\varepsilon_{2} u_{2}+\cdots+\varepsilon_{i} u_{i}$. Then $u_{1}^{(0)}=u_{1}$ and $u_{1}^{(n)}=v_{1}$. For $i=2, \ldots, n$, we apply Lemma 2.1 recursively to the pair $\left(u_{1}^{(i-1)}, u_{i}\right)$ to find $u_{i}^{\prime} \in V$ such that $u_{i}^{\prime}=u_{i} \bmod \mathfrak{m}$ and

$$
\left(u_{1}, u_{2}, \ldots, u_{n}\right) \approx_{R}\left(u_{1}^{(1)}, u_{2}, \ldots, u_{n}\right) \approx_{R}\left(u_{1}^{(i)}, u_{2}^{\prime}, \ldots, u_{i}^{\prime}, u_{i+1}, \ldots, u_{n}\right)
$$

where the first \approx_{R} is the case $n=1$.
Lemma 2.3. Let (R, \mathfrak{m}, F) be a local ring, and let V be an inner product space over R. Any orthogonal basis $\bar{u}=\left(\bar{u}_{1}, \ldots, \bar{u}_{n}\right)$ of $V_{F}=V \otimes_{R} F$ is the image mod \mathfrak{m} of an orthogonal basis $u=\left(u_{1}, \ldots, u_{n}\right)$ of V, called lift of \bar{u}. If two orthogonal bases \bar{u}, \bar{v} of V_{F} differ by at most two places, then there are lifts u and v of \bar{u} and \bar{v} which differ in at most two places.
Proof. Choose any lift u_{1} of \bar{u}_{1} inside V, then any lift u_{2} of \bar{u}_{2} inside $u_{1}^{\perp} \subset V$, then any lift u_{3} of \bar{u}_{3} inside $\left\{u_{1}, u_{2}\right\}^{\perp} \subset V \ldots$ This yields a lift u of \bar{u}. Assume $\bar{u}=\left(\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3}, \ldots, \bar{u}_{n}\right)$ and $\bar{v}=\left(\bar{v}_{1}, \bar{v}_{2}, \bar{u}_{3}, \ldots, \bar{u}_{n}\right)$. Let $u=\left(u_{1}, \ldots, u_{n}\right)$ be a lift of \bar{u}. Let $\left(v_{1}, v_{2}\right)$ be a lift of $\left(\bar{v}_{1}, \bar{v}_{2}\right)$ inside $\left\{u_{3}, \ldots, u_{n}\right\}^{\perp}$. Then we can choose $v=\left(v_{1}, v_{2}, u_{3}, \ldots, u_{n}\right)$ as lift of \bar{v}.

For two orthogonal bases B, C of an inner product space V over a local ring (R, \mathfrak{m}, F), we write $B \approx_{F} C$ if the images of B and C in $V_{F}=V \otimes_{R} F$ are chain equivalent over F. The following shows that the Chain Lemma (Theorem 1.2) for a local ring is equivalent to the Chain Lemma for its residue field.

Lemma 2.4. Let (R, \mathfrak{m}, F) be a local ring and V an inner product space over R. For two orthogonal bases B, C of V, if $B \approx_{F} C$, then $B \approx_{R} C$.
Proof. Choose a sequence $\bar{B}_{i}, i=0, \ldots, r$ of orthogonal bases of V_{F} such that \bar{B}_{0} and \bar{B}_{r} are the images of B and C in V_{F} and \bar{B}_{i} differs from \bar{B}_{i+1} in at most two places, $i=0, \ldots, r-1$. By Lemma 2.3 , for $i=0, \ldots, r-1$ we can choose lifts B_{i}, C_{i+1} of \bar{B}_{i} and \bar{B}_{i+1} such that B_{i} and C_{i+1} differ in at most two places. By Lemma 2.2, we have $B \approx_{R} B_{0}, B_{i} \approx_{R} C_{i}$ for $i=1, \ldots, r-1$ and $C_{r} \approx_{R} C$. Hence,

$$
B \approx_{R} B_{0} \approx_{R} C_{1} \approx_{R} B_{1} \approx_{R} C_{2} \approx_{R} B_{2} \approx_{R} C_{3} \approx_{R} \cdots \approx_{R} C_{r} \approx_{R} C
$$

Our next goal is to prove in Theorem 2.6 the Chain Lemma (Theorem 1.2) for infinite fields of characteristic 2 . We will make frequent use of the following.

Lemma 2.5. Let $n \geqslant 2$ be an integer, and let $u=\left(u_{1}, \ldots, u_{n}\right)$ be an orthogonal basis of an inner product space V of rank n over a field F. Let $v_{1}=a_{1} u_{1}+\cdots+a_{n} u_{n}$, where $a_{1}, \ldots, a_{n} \in F$. If for all $2 \leqslant r \leqslant n$, the partial linear combination $v_{1}^{(r)}=$ $a_{1} u_{1}+\cdots+a_{r} u_{r}$ is anisotropic, then $v_{1}=v_{1}^{(n)}$ can be extended to an orthogonal basis $v=\left(v_{1}, \ldots, v_{n}\right)$ of V such that $u \approx_{F} v$.

Proof. Choose v_{2} to be a generator of the orthogonal of $v_{1}^{(2)}$ inside $F u_{1} \perp F u_{2}$. Then $u \approx\left(v_{1}^{(2)}, v_{2}, u_{3}, \ldots, u_{n}\right)$. For an integer r with $2 \leqslant r<n$, assume we have constructed elements $v_{2}, \ldots, v_{r} \in V$ such that $\left(v_{1}^{(r)}, v_{2}, \ldots, v_{r}, u_{r+1}, \ldots, u_{n}\right)$ is an orthogonal basis of V that is chain equivalent to u. Note that $v_{1}^{(r+1)}$ is an anisotropic vector in $F v_{1}^{(r)} \perp F u_{r+1}$. Choose v_{r+1} to be a generator of the orthogonal complement $\left(v_{1}^{(r+1)}\right)^{\perp}$ of $F v_{1}^{(r+1)}$ inside $F v_{1}^{(r)} \perp F u_{r+1}$. Then

$$
u \approx\left(v_{1}^{(r)}, v_{2}, \ldots, v_{r}, u_{r+1}, \ldots, u_{n}\right) \approx\left(v_{1}^{(r+1)}, v_{2}, \ldots, v_{r+1}, u_{r+2}, \ldots, u_{n}\right)
$$

By induction on r, we obtain the case $r=n$ which is the statement of the lemma.

Theorem 2.6. Let F be a field of characteristic 2, and let V be an inner product space over F. If F is finite, assume that $\operatorname{dim}_{F} V=3$. Then any two orthogonal bases of V are chain equivalent.

Proof. Assume first that $F \neq \mathbb{F}_{2}$. We proceed by induction on $n=\operatorname{dim}_{F} V \geqslant 0$. For $n=0,1,2$, there is nothing to prove. If F is finite, assume $n=3$, otherwise let $n \geqslant 3$. For an orthogonal basis $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ of V, let $C(u) \subset V$ be the set of all vectors $\alpha_{1} u_{1}+\alpha_{2} u_{2}+\ldots+\alpha_{n} u_{n} \in V$, with $\alpha_{i} \in F$, such that

$$
\alpha_{1}^{2} \mathfrak{q}\left(u_{1}\right)+\alpha_{2}^{2} \mathfrak{q}\left(u_{2}\right)+\cdots+\alpha_{r}^{2} \mathfrak{q}\left(u_{r}\right) \neq 0 \quad \text { for all } \quad r=2, \ldots, n
$$

Let $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be another orthogonal basis of V and consider the corresponding set $C(v)$. By Lemma 2.7 below, the intersection $C(u) \cap C(v)$ is non-empty. Thus, we can choose a vector $u_{1}^{\prime}=v_{1}^{\prime} \in C(u) \cap C(v)$. By Lemma 2.5 we can extend $u_{1}^{\prime}=v_{1}^{\prime}$ to orthogonal bases $u^{\prime}=\left(u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right)$ and $v^{\prime}=\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right)$ of V such that $u \approx u^{\prime}$ and $v \approx v^{\prime}$. Now $\left(u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right)$ and $\left(v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right)$ are orthogonal bases of $\left(u_{1}^{\prime}\right)^{\perp}=\left(v_{1}^{\prime}\right)^{\perp}$ and thus $\left(u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right) \approx\left(v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right)$ by the induction hypothesis. In particular, $u^{\prime} \approx v^{\prime}$ since $u_{1}^{\prime}=v_{1}^{\prime}$, and we have proved $u \approx u^{\prime} \approx v^{\prime} \approx v$.

For $F=\mathbb{F}_{2}$ there is only one inner product space V of dimension 3 , namely $\langle 1,1,1\rangle$; see for instance Proposition 3.1 below. The only anisotropic vectors of V
are the vectors of the standard orthonormal basis e_{1}, e_{2}, e_{3}, and $e=e_{1}+e_{2}+e_{3}$. The vector e cannot be extended to an orthogonal basis since every vector in its orthogonal complement $e^{\perp} \subset V$ is isotropic. Thus, the only orthogonal basis of V is e_{1}, e_{2}, e_{3} and the theorem trivially holds.

Lemma 2.7. Let $n, r \geqslant 1$ be integers, and let F be a field of characteristic 2 . Let $V=F^{n}$ and let $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{r}$ be diagonalisable non-trivial homogeneous quadratic forms on V. If $|F| \geqslant r$, then there is $v \in V$ such that $\mathfrak{q}_{i}(v) \neq 0$ for $i=1, \ldots, r$.

Proof. We proceed by induction on $r \geqslant 1$. If $r=1$ the quadratic form \mathfrak{q}_{1} can be written as $\alpha_{1} x_{1}^{2}+\ldots+\alpha_{n} x_{n}^{2}$ in a suitable basis of $V, \alpha_{i} \in F$. We can assume $\alpha_{1} \neq 0$ since \mathfrak{q}_{1} is non-trivial. Then $v=(1,0, \ldots, 0)$ satisfies $\mathfrak{q}_{1}(v)=\alpha_{1} \neq 0$. Assume $r \geqslant 2$. By induction hypothesis, we can pick $v_{1} \in V$ such that $\mathfrak{q}_{i}\left(v_{1}\right) \neq 0$ for $i=1,2, \ldots, r-1$. If $\mathfrak{q}_{r}\left(v_{1}\right) \neq 0$ then we are done. Otherwise, pick $v_{2} \in V$ such that $\mathfrak{q}_{r}\left(v_{2}\right) \neq 0$, and choose $\varepsilon \in F$ such that ε^{2} is not in the set

$$
\left\{\left.\frac{\mathfrak{q}_{i}\left(v_{2}\right)}{\mathfrak{q}_{i}\left(v_{1}\right)} \right\rvert\, 1 \leqslant i \leqslant r-1\right\}
$$

of cardinality at most $r-1$. Note that such an ε exists because the Frobenius morphism $F \rightarrow F, u \mapsto u^{2}$ is injective, and hence the set $\left\{\varepsilon^{2} \mid \varepsilon \in F\right\}$ contains $|F| \geqslant r$ many elements. Then the vector $v=\varepsilon v_{1}+v_{2}$ satisfies $\mathfrak{q}_{i}(v) \neq 0$ for $i=1, \ldots, r$ since

$$
\mathfrak{q}_{i}\left(\varepsilon v_{1}+v_{2}\right)=\mathfrak{q}_{i}\left(\varepsilon v_{1}\right)+\mathfrak{q}_{i}\left(v_{2}\right)=\varepsilon^{2} \mathfrak{q}_{i}\left(v_{1}\right)+\mathfrak{q}_{i}\left(v_{2}\right) \neq 0 \quad \text { for } \quad i=1, \ldots, r-1
$$

and $\mathfrak{q}_{r}\left(\varepsilon v_{1}+v_{2}\right)=\varepsilon^{2} \mathfrak{q}_{r}\left(v_{1}\right)+\mathfrak{q}_{r}\left(v_{2}\right)=\mathfrak{q}_{r}\left(v_{2}\right) \neq 0$.
In order to prove Theorem 1.2 for finite fields of characteristic 2 other than \mathbb{F}_{2} we need the following lemma.

Lemma 2.8. Let $F \neq \mathbb{F}_{2}$ be a finite field of characteristic 2, and let $n \geqslant 4$ be an even integer. Assume that any two orthogonal bases of an inner product space over F of dimension smaller than n are chain equivalent. Then the standard orthonormal bases e and the orthogonal basis \hat{e} of $\langle 1,1, \ldots, 1\rangle=\langle 1\rangle^{\oplus n}$ below are chain equivalent:

$$
e=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \approx \hat{e}=\left(\hat{e}_{1}, \hat{e}_{2}, \ldots, \hat{e}_{n}\right)
$$

where $\hat{e}_{r}=\sum_{1 \leqslant i \neq r \leqslant n} e_{i}$.
Proof. The orthogonal basis $e=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is chain equivalent to an orthogonal basis $u=\left(u_{1}, \ldots, u_{n}\right)$ with $u_{1}=a_{1} e_{1}+\cdots+a_{n} e_{n}$ if for $r=1, \ldots, n$ we have $\sum_{1 \leqslant i \leqslant r} a_{i} \neq 0$; see Lemma 2.5. Similarly, $\hat{e}=\left(\hat{e}_{1}, \hat{e}_{2}, \ldots, \hat{e}_{n}\right)$ is chain equivalent to an orthogonal basis $v=\left(v_{1}, \ldots, v_{n}\right)$ with $v_{1}=b_{1} \hat{e}_{1}+\cdots+b_{n} \hat{e}_{n}$ if for $r=1, \ldots, n$ we have $\sum_{1 \leqslant i \leqslant r} b_{i} \neq 0$. Note that

$$
v_{1}=b_{1} \hat{e}_{1}+\cdots+b_{n} \hat{e}_{n}=\hat{b}_{1} e_{1}+\cdots+\hat{b}_{n} e_{n}
$$

where $\hat{b}_{r}=\sum_{1 \leqslant i \neq r \leqslant n} b_{i}$. Choose elements $b_{1}, b_{n} \in F$ such that $b_{1}, b_{n}, b_{1}+b_{n} \neq 0$. This is possible since F has more than 2 elements. Set $b_{i}=0$ for $1<i<n$ and $a_{i}=\hat{b}_{i}$. Then

$$
\hat{b}_{i}=\left\{\begin{array}{cl}
b_{n} & i=1 \\
b_{1}+b_{n} & 1<i<n \\
b_{1} & i=n
\end{array}\right.
$$

and therefore, for $r=1, \ldots, n$, we have

$$
\sum_{1 \leqslant i \leqslant r} a_{i}=\sum_{1 \leqslant i \leqslant r} \hat{b}_{i}=\left\{\begin{array}{cl}
b_{n} & 1 \leqslant r<n, r \text { odd } \\
b_{1} & 1 \leqslant r<n, r \text { even } \\
b_{1}+b_{n} & r=n,
\end{array}\right.
$$

and

$$
\sum_{1 \leqslant i \leqslant r} b_{i}=\left\{\begin{array}{cl}
b_{1} & 1 \leqslant r<n \\
b_{1}+b_{n} & r=n
\end{array}\right.
$$

In particular, the last two sums are non-zero for $r=1, \ldots, n$. Hence, there are orthogonal bases u and v as above with $e \approx u, \hat{e} \approx v$ and $u_{1}=v_{1}$. By assumption applied to the inner product space $u_{1}^{\perp}=v_{1}^{\perp}$ of dimension $n-1$, we have $\left(u_{2}, \ldots, u_{n}\right) \approx$ $\left(v_{2}, \ldots, v_{n}\right)$. Therefore,

$$
e \approx u \approx v \approx \hat{e}
$$

Example 2.9. As an illustration of Lemma 2.8, the following explicitly shows that $\left(e_{1}, e_{2}, e_{3}, e_{4}\right) \approx\left(\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}, \hat{e}_{4}\right) \in\langle 1,1,1,1\rangle$ over $\mathbb{F}_{4}=\mathbb{F}_{2}[\alpha] /\left(\alpha^{2}+\alpha+1\right)$ where we set $\beta=1+\alpha$ and note that $\alpha \beta=1, \alpha+\beta=1, \alpha^{2}=\beta, \beta^{2}=\alpha$:

	$\left(e_{1}\right.$,	e_{2},	e_{3},	$\left.e_{4}\right)$
\approx	$\left(\alpha e_{1}+\beta e_{2}\right.$,	$\beta e_{1}+\alpha e_{2}$,	e_{3},	$\left.e_{4}\right)$
\approx	$\left(e_{1}+\alpha e_{2}+\alpha e_{3}\right.$,	$\beta e_{1}+\alpha e_{2}$,	$\beta e_{1}+e_{2}+\beta e_{3}$,	$\left.e_{4}\right)$
\approx	$\left(\beta e_{1}+e_{2}+e_{3}+\alpha e_{4}\right.$,	$\beta e_{1}+\alpha e_{2}$,	$\beta e_{1}+e_{2}+\beta e_{3}$,	$\left.\alpha e_{1}+\beta e_{2}+\beta e_{3}+\beta e_{4}\right)$
\approx	$\left(\beta e_{1}+e_{2}+e_{3}+\alpha e_{4}\right.$,	$\beta e_{1}+\alpha e_{2}$,	$e_{1}+\alpha e_{2}+\beta e_{3}+e_{4}$,	$\left.\beta e_{3}+\alpha e_{4}\right)$
\approx	$\left(\beta e_{1}+e_{2}+e_{3}+\alpha e_{4}\right.$,	$e_{1}+\beta e_{2}+\alpha e_{3}+e_{4}$,	$e_{1}+\alpha e_{2}+\beta e_{3}+e_{4}$,	$\left.\alpha e_{1}+e_{2}+e_{3}+\beta e_{4}\right)$
\approx	$\left(\beta e_{1}+e_{2}+e_{3}+\alpha e_{4}\right.$,	$e_{1}+e_{3}+e_{4}$,	$e_{1}+e_{2}+e_{4}$,	$\left.\alpha e_{1}+e_{2}+e_{3}+\beta e_{4}\right)$
\approx	$\left(e_{2}+e_{3}+e_{4}\right.$,	$e_{1}+e_{3}+e_{4}$,	$e_{1}+e_{2}+e_{4}$,	$\left.e_{1}+e_{2}+e_{3}\right)$
$=$	$\left(\hat{e}_{1}\right.$,	\hat{e}_{2},	\hat{e}_{3},	$\left.e_{4}\right)$

In contrast, over \mathbb{F}_{2} we have $\left(e_{1}, e_{2}, e_{3}, e_{4}\right) \not \not \nsim\left(\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}, \hat{e}_{4}\right)$; see Remark 2.11.
Theorem 2.10. Let F be a finite field of characteristic 2 such that $F \neq \mathbb{F}_{2}$. Let V be an inner product space over F. Then any two orthogonal bases of V are chain equivalent.

Proof. We proceed by induction on the dimension $n=\operatorname{dim}_{F} V$ of V. For $n=0,1,2$, there is nothing to prove, and the case $n=3$ was treated in Theorem 2.6. Thus, we can assume $n \geqslant 4$. Let $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $w=\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)$ be two orthogonal bases of V. Among all orthogonal bases of V that are chain equivalent to v choose one, say $u=\left(u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right)$, such that for the linear combination $w_{1}=a_{1} u_{1}+\cdots+a_{n} u_{n}$ the number r of non-zero coefficients $a_{i} \neq 0$ is minimal. Reordering, we can assume $a_{1}, \ldots, a_{r} \neq 0$ and $a_{r+1}=\cdots=a_{n}=0$. Clearly $1 \leqslant r \leqslant n$. If $r=1$ then $v \approx u \approx\left(w_{1}, u_{2}, u_{3}, \ldots, u_{n}\right) \approx\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ since $\left(u_{2}, u_{3}, \ldots u_{n}\right) \approx\left(w_{2}, \ldots, w_{n}\right)$, by induction hypothesis applied to the orthogonal complement w_{1}^{\perp} of w_{1} inside V. If $r=2$ then $v \approx u \approx\left(w_{1}, u_{2}^{\prime}, u_{3}, \ldots, u_{n}\right)$ where u_{2}^{\prime} is a non-zero vector of the orthogonal complement of w_{1} inside of $F u_{1} \perp F u_{2}$. Then $v \approx\left(w_{1}, u_{2}^{\prime}, u_{3}, \ldots, u_{n}\right) \approx\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ since $\left(u_{2}^{\prime}, u_{3}, \ldots u_{n}\right) \approx\left(w_{2}, \ldots, w_{n}\right)$, by induction hypothesis applied to the orthogonal complement w_{1}^{\perp} of w_{1} inside V. Assume $r \geqslant 3$. Since every element in F is a square, we can rescale and assume $\mathfrak{q}\left(u_{i}\right)=\mathfrak{q}\left(w_{i}\right)=1, i=1, \ldots, n$ as rescaling yields chain equivalent bases. Assume that there is a pair $1 \leqslant i \neq j \leqslant r$ such that $a_{i} u_{i}+a_{j} u_{j}$ is anisotropic. After reordering, we can assume $i=1, j=2$. Set $u_{1}^{\prime}=a_{1} u_{1}+a_{2} u_{2}$, and let u_{2}^{\prime} be a non-zero vector in the orthogonal complement of u_{1}^{\prime} inside $F u_{1} \perp F u_{2}$. Then $u \approx\left(u_{1}^{\prime}, u_{2}^{\prime}, u_{3}, \ldots u_{n}\right)$ and $w_{1}=u_{1}^{\prime}+a_{3} u_{3}+\cdots+a_{r} u_{r}$ contradicting minimality
of r. Thus, for all pairs $1 \leqslant i, j \leqslant r$, the vector $a_{i} u_{i}+a_{j} u_{j}$ is isotropic, that is, $0=\mathfrak{q}\left(a_{i} u_{i}+a_{j} u_{j}\right)=a_{i}^{2} \mathfrak{q}\left(u_{i}\right)+a_{j}^{2} \mathfrak{q}\left(u_{j}\right)=a_{i}^{2}+a_{j}^{2}=\left(a_{i}+a_{j}\right)^{2}$, so $a_{i}+a_{j}=0$, for $1 \leqslant i \leqslant r$, that is, $a=a_{1}=a_{2}=a_{3}=\cdots=a_{r} \neq 0$. Then $w_{1}=a\left(u_{1}+\cdots+u_{r}\right)$. Since $1=\mathfrak{q}\left(w_{1}\right)=a^{2}\left(\mathfrak{q}\left(u_{1}\right)+\cdots+\mathfrak{q}\left(u_{r}\right)\right)=r a^{2}$, the positive integer r is odd. Therefore, $1=r a^{2}=a^{2}$ implies $a=1$, and we have $w_{1}=u_{1}+\cdots+u_{r}$. If $r<n$, we can use Lemma 2.8 to find an orthogonal basis $u_{2}^{\prime}, \ldots, u_{r+1}^{\prime}$ of $F u_{2} \perp \ldots \perp F u_{r+1}$ such that $\left(u_{1}, \ldots, u_{r+1}\right) \approx\left(w_{1}, u_{2}^{\prime}, \ldots, u_{r+1}^{\prime}\right)$. Then

$$
v \approx\left(u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right) \approx\left(w_{1}, u_{2}^{\prime}, u_{3}, \ldots, u_{r+1}^{\prime}, u_{r+2}, \ldots, u_{n}\right) \approx w
$$

since $\left(u_{2}^{\prime}, u_{3}, \ldots, u_{r+1}^{\prime}, u_{r+2}, \ldots, u_{n}\right) \approx\left(w_{2}, w_{3}, \ldots, w_{n}\right)$, by the induction hypothesis applied to w_{1}^{\perp} inside V. Finally, the case $r=n$ is impossible. Indeed, if $r=n$, then every vector in $w_{1}^{\perp} \subset V$ is isotropic contradicting the the assumption that $\left(w_{2}, \ldots, w_{n}\right)$ is an orthogonal basis of w_{1}^{\perp}.
Proof of Theorem 1.2. The analog of Theorem 2.6 for fields F of characteristic not 2 is classical [Wit37, Satz 7] and holds without restriction on the size of F; see for instance [Lam05, Theorem I.5.2]. Together with Theorems 2.6 and 2.10, this implies Theorem 1.2 in view of Lemma 2.4.

Remark 2.11. The Chain Lemma does not hold for $R=F=\mathbb{F}_{2}$ and $V=\mathbb{F}_{2}^{4}$ equipped with the form $\langle 1,1,1,1\rangle$. The orthogonal basis $e=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is only chain equivalent to itself since $\langle 1\rangle \perp\langle 1\rangle$ has unique orthogonal basis $\left\{e_{1}, e_{2}\right\}$. But V has also orthogonal basis $\hat{e}=\left\{\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}, \hat{e}_{4}\right\}$ where $\hat{e}_{i}=e_{1}+e_{2}+e_{3}+e_{4}-e_{i}$ for $i=1, \ldots, 4$. In particular, the two orthogonal basis e and \hat{e} of V are not chain equivalent.

3. Presentation of $G W(R)$

For an invertible symmetric matrix $A \in M_{n}(R)$, we denote by $\langle A\rangle$ the inner product space R^{n} equipped with the form $\mathfrak{b}(x, y)={ }^{t} x A y, x, y \in R^{n}$ where ${ }^{t} x$ denotes the transpose of the column vector x. The following shows that every inner product space stably admits an orthogonal basis. In particular, the ring homomorphism (1.1) is surjective.

Proposition 3.1. Let (R, \mathfrak{m}, F) be a commutative local ring.
(1) For any inner product space V over R there is an isometry

$$
V \cong\left\langle u_{1}\right\rangle \perp \cdots \perp\left\langle u_{l}\right\rangle \perp N_{1} \perp \cdots \perp N_{r}
$$

for some $u_{i} \in R^{*}$ and $N_{i}=\left\langle\left(\begin{array}{cc}a_{i} & 1 \\ 1 & b_{i}\end{array}\right)\right\rangle$ with $a_{i}, b_{i} \in \mathfrak{m}$.
(2) For any $a, b \in \mathfrak{m}$ there is an isometry of inner product spaces

$$
\left\langle\left(\begin{array}{ll}
a & 1 \\
1 & b
\end{array}\right)\right\rangle+\langle-1\rangle \cong\left\langle\frac{1-a b}{(-1+a)(-1+b)}\right\rangle+\langle-1+a\rangle+\langle-1+b\rangle .
$$

(3) For any inner product space V over R, there is an inner product space W with orthogonal basis such that $V \perp W$ has an orthogonal basis. In particular, the Grothendieck-Witt group $G W(R)$ of inner product spaces is additively generated by one-dimensional spaces $\langle u\rangle, u \in R^{*}$.
Proof. For part (1), if $\mathfrak{q}(x)=\mathfrak{b}(x, x)=u \in R^{*}$ is a unit for some $x \in V$ then $V=R x \perp(R x)^{\perp}$ is a decomposition into non-degenerate subspaces, and $R x=\langle u\rangle$. Hence, repeatedly splitting off one-dimensional inner product spaces, we can write $V=\left\langle u_{1}\right\rangle \perp \cdots \perp\left\langle u_{l}\right\rangle \perp N$ where $u_{i} \in R^{*}$ and $\mathfrak{q}(x) \in \mathfrak{m}$ for all $x \in N$. If $N \neq 0$
then the rank of N is at least 2 , and we can find $x, y \in N$ such that $\mathfrak{b}(x, y)=1$. The subspace N_{1} spanned by x and y is non-degenerate with Gram matrix $\left(\begin{array}{ll}a & 1 \\ 1 & b\end{array}\right)$ where $a=\mathfrak{q}(x)$ and $b=\mathfrak{q}(y)$. In particular, $N=N_{1} \perp N_{1}^{\perp}$ is a decomposition into non-degenerate subspaces, and $N_{1}=\left\langle\left(\begin{array}{ll}a & 1 \\ 1 & b\end{array}\right)\right\rangle$. Now we keep splitting off rank 2 spaces N_{i} to obtain the desired form.

Part (2) follows from the equation in $M_{3}(R)$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
-\frac{1}{-1+a} & -\frac{1}{-1+b} & \frac{-1+a b}{(-1+a)(-1+b)} \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{ccc}
a & 1 & 0 \\
1 & b & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
-\frac{1}{-1+a} & -1 & 0 \\
\frac{-1}{-1+b} & 0 & -1 \\
\frac{-1+a b}{(-1+a)(-1+b)} & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\frac{1-a b}{(-1+a)(-1+b)} & 0 & 0 \\
0 & -1+a & 0 \\
0 & 0 & -1+b
\end{array}\right) .
\end{aligned}
$$

Finally, (3) follows from (1) and (2).
Lemma 3.2. Let (R, \mathfrak{m}, F) be a commutative local ring with residue field $F \neq \mathbb{F}_{2}$. Then the kernel $\operatorname{ker}(\pi)$ of the ring homomorphism (1.1) is generated as abelian subgroup of $\mathbb{Z}\left[R^{*}\right]$ by the following elements:

$$
\langle\alpha\rangle-\langle\beta\rangle \text { with } \alpha, \beta \in R^{*} \text { and }\langle\alpha\rangle \cong\langle\beta\rangle
$$

$$
\langle\alpha\rangle+\langle\beta\rangle-\langle\gamma\rangle-\langle\delta\rangle \text { with } \alpha, \beta, \gamma, \delta \in R^{*} \text { and }\langle\alpha, \beta\rangle \cong\langle\gamma, \delta\rangle \text {. }
$$

Proof. By definition, an element $\sum_{i=1}^{n}\left\langle a_{i}\right\rangle-\sum_{j=1}^{m}\left\langle b_{j}\right\rangle$ of $\mathbb{Z}\left[R^{*}\right]$ with $a_{i}, b_{j} \in R^{*}$ is in $\operatorname{ker}(\pi) \subset \mathbb{Z}\left[R^{*}\right]$ if and only if there is an inner product space K and an isometry of inner product spaces

$$
\begin{equation*}
\left\langle a_{1}, \ldots, a_{n}\right\rangle \oplus K \cong\left\langle b_{1}, \ldots, b_{m}\right\rangle \oplus K \tag{3.1}
\end{equation*}
$$

In particular, $n=m$. By Proposition 3.1 (2), there exists an inner product space W over R such that $K \oplus W$ admits an orthogonal basis. Replacing K with $K \oplus W$, we can assume that K in (3.1) has an orthogonal basis, say $\left\{z_{1}, \ldots, z_{l}\right\}$. The inner product space $(V, \mathfrak{b}):=\left\langle a_{1}, \ldots, a_{n}\right\rangle \oplus K \cong\left\langle b_{1}, \ldots, b_{n}\right\rangle \oplus K$ has the following two orthogonal bases:

$$
\begin{gathered}
A=\left\{x_{1}, \ldots, x_{n}, z_{1}, . ., z_{l}\right\}, \text { with } \mathfrak{b}\left(x_{i}, x_{i}\right)=a_{i}, \text { and } \mathfrak{b}\left(z_{i}, z_{i}\right)=c_{i}, \text { and } \\
B=\left\{y_{1}, \ldots, y_{n}, z^{\prime}{ }_{1}, . ., z^{\prime}{ }_{l}\right\}, \text { with } \mathfrak{b}\left(y_{i}, y_{i}\right)=b_{i}, \text { and } \mathfrak{b}\left(z^{\prime}{ }_{i}, z^{\prime}{ }_{i}\right)=c_{i} .
\end{gathered}
$$

By Theorem 1.2, we can choose a chain of orthogonal bases, $C_{0}, C_{1}, \ldots, C_{N-1}, C_{N}$ such that C_{i} and C_{i+1} differ in at most 2 elements, $i=0, \ldots, N-1$, and $C_{0}=A$, $C_{N}=B$. Let $\left\langle c_{1}^{(i)}, \ldots, c_{n+l}^{(i)}\right\rangle$ be the diagonal form corresponding to C_{i}. As C_{i} and C_{i+1} differ in at most two vectors,

$$
\left(\left\langle c_{1}^{(i)}\right\rangle+\ldots+\left\langle c_{n+l}^{(i)}\right\rangle\right)-\left(\left\langle c_{1}^{(i+1)}\right\rangle+\ldots+\left\langle c_{n+l}^{(i+1)}\right)\right\rangle \in \mathbb{Z}\left[R^{*}\right]
$$

is of the form

$$
\begin{gathered}
\langle a\rangle-\langle b\rangle \in \mathbb{Z}\left[R^{*}\right] \text { with }\langle a\rangle \cong\langle b\rangle \\
\text { or } \\
\langle a\rangle+\langle b\rangle-\left\langle a^{\prime}\right\rangle-\left\langle b^{\prime}\right\rangle \in \mathbb{Z}\left[R^{*}\right] \text { with }\langle a, b\rangle \cong\left\langle a^{\prime}, b^{\prime}\right\rangle .
\end{gathered}
$$

In $\mathbb{Z}\left[R^{*}\right]$, we have

$$
\begin{aligned}
\sum_{i=1}^{n}\left\langle a_{i}\right\rangle-\sum_{j=1}^{n}\left\langle b_{j}\right\rangle & =\left(\sum_{i=1}^{n}\left\langle a_{i}\right\rangle+\sum_{i=1}^{l}\left\langle c_{i}\right\rangle\right)-\left(\sum_{j=1}^{n}\left\langle b_{j}\right\rangle+\sum_{i=1}^{l}\left\langle c_{i}\right\rangle\right) \\
& =\sum_{i=1}^{n+l}\left\langle c_{i}^{(0)}\right\rangle-\sum_{j=1}^{n+l}\left\langle c_{j}^{(N)}\right\rangle \\
& =\sum_{k=0}^{N-1}\left(\sum_{i=0}^{n+l}\left\langle c_{i}^{(k)}\right\rangle-\sum_{i=0}^{n+l}\left\langle c_{i}^{(k+1)}\right\rangle\right),
\end{aligned}
$$

which is of the desired form.
Lemma 3.3. Let R be a commutative ring. Assume we have an isometry of inner product spaces $\langle a, b\rangle \cong\langle c, d\rangle$ over R where $a, b, c, d \in R^{*}$ with $d=a b c$ and $c=$ $a x^{2}+b y^{2}, x, y \in R$. If in R, we have $f=a s^{2}+b t^{2}$, then the following equation holds in R

$$
f=c\left(\frac{a s x+b t y}{c}\right)^{2}+d\left(\frac{t x-s y}{c}\right)^{2}
$$

Proof. Direct verification.
For a commutative local ring R, let $K_{0}^{M W}(R)$ be the quotient ring of $\mathbb{Z}\left[R^{*}\right]$ modulo the ideal generated by the relations (1), (2) and (3) of Theorem 1.3 where $\langle\langle a\rangle\rangle=1-\langle a\rangle$, and $\langle a\rangle \in \mathbb{Z}\left[R^{*}\right]$ is the element corresponding to $a \in R^{*}$.

Lemma 3.4. Let (R, \mathfrak{m}, F) be a commutative local ring with residue field $F \neq \mathbb{F}_{2}$, and let $a, b, c, d \in R^{*}$ with $\langle a, b\rangle \cong\langle c, d\rangle$ as inner product spaces over R. Then the following equality holds in $K_{0}^{M W}(R)$:

$$
\langle a\rangle+\langle b\rangle=\langle c\rangle+\langle d\rangle .
$$

Proof. The isometry $\langle a, b\rangle \cong\langle c, d\rangle$ implies $c=a x^{2}+b y^{2} \in R$ for some $x, y \in R$ and $d=a b c \in R^{*} /\left(R^{*}\right)^{2}$. Since $\left\langle r^{2} d\right\rangle=\langle d\rangle \in K_{0}^{M W}(R)$, we can assume $d=a b c \in R^{*}$. If $x, y \in R^{*}$, we say that c is regularly represented by $\langle a, b\rangle$. In this case

$$
\begin{aligned}
\langle a\rangle+\langle b\rangle & =\left\langle a x^{2}\right\rangle+\left\langle b y^{2}\right\rangle \\
& =\langle c\rangle\left(\left\langle a c^{-1} x^{2}\right\rangle+\left\langle b c^{-1} y^{2}\right\rangle\right) \\
& =\langle c\rangle\left(\langle 1\rangle+\left\langle a b c^{-2} x^{2} y^{2}\right\rangle\right) \\
& =\langle c\rangle+\langle d\rangle
\end{aligned}
$$

in $K_{0}^{M W}(R)$ where we used the Steinberg relation for the third equality.
Assume now that one of x or y is in the maximal ideal \mathfrak{m} of R, then the other is a unit since c is a unit. Without loss of generality, we can assume $x \in R^{*}$ and $y \in \mathfrak{m}$. We claim that if there is $z \in R^{*}$ such that $a x^{2}+b z^{2} \in R^{*}$, then $\langle a\rangle+\langle b\rangle=\langle c\rangle+\langle d\rangle \in K_{0}^{M W}(R)$. Indeed, given $z \in R^{*}$ such that $\gamma=a x^{2}+b z^{2} \in R^{*}$ we set $\delta=a b \gamma$. Then $\langle a, b\rangle \cong\langle\gamma, \delta\rangle$, and γ is regularly represented by $\langle a, b\rangle$. In particular, $\langle\gamma\rangle+\langle\delta\rangle=\langle a\rangle+\langle b\rangle \in K_{0}^{M W}(R)$. Since $c=a x^{2}+b y^{2}$, Lemma 3.3 yields

$$
c=\gamma\left(\frac{a x^{2}+b y z}{\gamma}\right)^{2}+\delta\left(\frac{x y-x z}{\gamma}\right)^{2}
$$

Note that $\left(a x^{2}+b y z\right) \gamma^{-1}$ and $(x y-x z) \gamma^{-1}$ are units in R since $x, z, a, b, \gamma \in R^{*}$ and $y \in \mathfrak{m}$. In particular, c is regularly represented by $\langle\gamma, \delta\rangle$ and thus $\langle c\rangle+\langle d\rangle=$
$\langle\gamma\rangle+\langle\delta\rangle \in K_{0}^{M W}(R)$. Hence,

$$
\langle c\rangle+\langle d\rangle=\langle\gamma\rangle+\langle\delta\rangle=\langle a\rangle+\langle b\rangle \quad \in \quad K_{0}^{M W}(R) .
$$

If $F \neq \mathbb{F}_{3}$ (and $F \neq \mathbb{F}_{2}$, by assumption) then we can find an element $z \in R^{*}$ with $a x^{2}+b z^{2} \in R^{*}$ as in this case F has at least 2 square units, and we only need to make sure that its class \bar{z} in $F=R / \mathfrak{m}$ satisfies $\bar{z}^{2} \neq-\bar{a} \bar{b}^{-1} \bar{x}^{2} \in F$. If there is no $z \in R^{*}$ such that $a x^{2}+b z^{2} \in R^{*}$, then $F=\mathbb{F}_{3}$ and $a+b, a-c \in \mathfrak{m}$ as in this case square units in R are 1 modulo \mathfrak{m}. Then $\langle c,-b\rangle \cong\langle a,-d\rangle$ since $a=c(1 / x)^{2}-b(y / x)^{2}$ and $d=a b c$. Note that there is $z \in R^{*}$ such that $\gamma=c(1 / x)^{2}-b z^{2} \in R^{*}$. For instance, $z=1 / x \in R^{*}$ will do since $c-b=2 c-(a+b)+(a-c) \in R^{*}$. As proved above, this implies $\langle c\rangle+\langle-b\rangle=\langle a\rangle+\langle-d\rangle$ in $K_{0}^{M W}(R)$. Using relation (2) of Theorem (1.3) which holds in $K_{0}^{M W}(R)$, we have

$$
\langle a\rangle+\langle b\rangle=\langle a\rangle-\langle-b\rangle+h=\langle c\rangle-\langle-d\rangle+h=\langle c\rangle+\langle d\rangle \quad \in \quad K_{0}^{M W}(R) .
$$

Corollary 3.5. Let (R, \mathfrak{m}, F) be a commutative local ring with residue field $F \neq \mathbb{F}_{2}$. Then the surjection (1.1) induces an isomorphism

$$
K_{0}^{M W}(R) \xrightarrow{\cong} G W(R) .
$$

Proof. Let $J \subset \mathbb{Z}\left[R^{*}\right]$ be the ideal generated by the relations (1), (2) and (3) of Theorem 1.3, that is, J is the kernel of the ring homomorphism $\mathbb{Z}\left[R^{*}\right] \rightarrow K_{0}^{M W}(R)$. As before, let $\pi: \mathbb{Z}\left[R^{*}\right] \rightarrow G W(R),\langle a\rangle \mapsto\langle a\rangle$ be the canonical ring homomorphism (1.1). It is well known that $J \subset \operatorname{ker} \pi$. Indeed, the first relation is the isometry $\langle u\rangle \cong\left\langle a^{2} u\right\rangle$ given by the multiplication with $a \in R^{*}$, the second relation follows from the equation in $M_{2}(R)$

$$
\left(\begin{array}{ll}
0 & 1 \\
u & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & u \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & u \\
u & 0
\end{array}\right),
$$

that is, $\left\langle\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\rangle \cong\langle u\rangle \cdot\left\langle\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\rangle$, and the equality $\left\langle\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\rangle=h \in G W(R)$ in view of Proposition 3.1 (2) with $a=b=0$. The last relation is a consequence of the equality in $M_{2}(R)$

$$
\left(\begin{array}{cc}
1 & -1 \\
1-a & a
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & 1-a
\end{array}\right)\left(\begin{array}{cc}
1 & 1-a \\
-1 & a
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & a(1-a)
\end{array}\right) .
$$

Lemma 3.2 gives us additive generators of $\operatorname{ker}(\pi)$. By definition of $K_{0}^{M W}(R)$ and Lemma 3.4, these generators are in J, and so, $J=\operatorname{ker}(\pi)$.

We finish the section with a proof of Remark 1.4. Let $\tilde{K}_{0}^{M W}(R)$ be the ring quotient of $\mathbb{Z}\left[R^{*}\right]$ modulo the Steinberg relation (3) of Theorem 1.3.

Lemma 3.6. Let (R, \mathfrak{m}, F) be a commutative local ring with residue field $F \neq$ $\mathbb{F}_{2}, \mathbb{F}_{3}$. Then for all $a \in R^{*}$, the following holds in $\tilde{K}_{0}^{M W}(R)$:
(1) $\langle\langle a\rangle\rangle\langle\langle-a\rangle\rangle=0$,
$(2)\left\langle\left\langle a^{2}\right\rangle\right\rangle=\langle\langle a\rangle\rangle \cdot h$.
Proof. Part (1) was implicitly proved in [Sch17, Lemma 4.4]. The analogous arguments for Milnor K-theory are due to [Mil70]. We give the relevant details here.

First assume $\bar{a} \neq 1$ where \bar{a} means reduction modulo the maximal ideal $\mathfrak{m} \subset R$. Then $1-a, 1-a^{-1} \in R^{*}$. Therefore, in $\tilde{K}_{0}^{M W}(R)$, we have

$$
\begin{aligned}
\langle\langle a\rangle\rangle\langle\langle-a\rangle\rangle & =\langle\langle a\rangle\rangle\left(\langle\langle 1-a\rangle\rangle-\langle-a\rangle\left\langle\left\langle 1-a^{-1}\right\rangle\right\rangle\right) \\
& =-\langle-a\rangle\langle\langle a\rangle\rangle\left\langle\left\langle 1-a^{-1}\right\rangle\right\rangle=\langle-a\rangle\langle a\rangle\left\langle\left\langle a^{-1}\right\rangle\right\rangle\left\langle\left\langle 1-a^{-1}\right\rangle\right\rangle \\
& =0 .
\end{aligned}
$$

If $\bar{a}=1$, choose $b \in R^{*}$ with $\bar{b} \neq 1$. This is possible since $F \neq \mathbb{F}_{2}$. Then $\bar{a} \bar{b} \neq 1$. Therefore, in $\tilde{K}_{0}^{M W}(R)$, we have

$$
\begin{aligned}
0 & =\langle\langle a b\rangle\rangle\langle\langle-a b\rangle\rangle=\langle\langle a\rangle\rangle(\langle\langle-a\rangle\rangle+\langle-a\rangle\langle\langle b\rangle\rangle)+\langle a\rangle\langle\langle b\rangle\rangle(\langle\langle a\rangle\rangle+\langle a\rangle\langle\langle-b\rangle\rangle) \\
& =\langle\langle a\rangle\rangle\langle\langle-a\rangle\rangle+h\langle a\rangle\langle\langle a\rangle\rangle\langle\langle b\rangle\rangle .
\end{aligned}
$$

Hence, for all $\bar{b} \neq 1$ we have $\langle\langle a\rangle\rangle\langle\langle-a\rangle\rangle=-h\langle a\rangle\langle\langle a\rangle\rangle\langle\langle b\rangle\rangle \in \tilde{K}_{0}^{M W}(R)$. Now, choose $b_{1}, b_{2} \in A^{*}$ such that $\bar{b}_{1}, \bar{b}_{2}, \bar{b}_{1} \bar{b}_{2} \neq 1$. This is possible since $|F| \geqslant 4$. Then in $\tilde{K}_{0}^{M W}(R)$ we have

$$
\begin{aligned}
\langle\langle a\rangle\rangle\langle\langle-a\rangle\rangle & =-h\langle a\rangle\langle\langle a\rangle\rangle\left\langle\left\langle b_{1} b_{2}\right\rangle\right\rangle \\
& =-h\langle a\rangle\langle\langle a\rangle\rangle\left(\left\langle\left\langle b_{1}\right\rangle\right\rangle+\left\langle b_{1}\right\rangle\left\langle\left\langle b_{2}\right\rangle\right\rangle\right) \\
& =\langle\langle a\rangle\rangle\langle\langle-a\rangle\rangle+\left\langle b_{1}\right\rangle\langle\langle a\rangle\rangle\langle\langle-a\rangle\rangle .
\end{aligned}
$$

Hence, $\left\langle b_{1}\right\rangle\langle\langle a\rangle\rangle\langle\langle-a\rangle\rangle=0 \in \tilde{K}_{0}^{M W}(R)$. Multiplying with $\left\langle b_{1}^{-1}\right\rangle$ yields the result.
In $\mathbb{Z}\left[R^{*}\right]$ we have $\langle\langle a\rangle\rangle\langle\langle-a\rangle\rangle \cdot\langle-1\rangle+\left\langle\left\langle a^{2}\right\rangle\right\rangle=\langle\langle a\rangle\rangle \cdot h$ which implies part (2).

4. An EXAMPLE OF $G W(R) \nsubseteq K_{0}^{M W}(R)$

For any commutative local ring R, the three defining relations for $K_{0}^{M W}(R)$ hold in $G W(R)$; see the proof of Corollary 3.5. In particular, the map (1.1) factors through the quotient $K_{0}^{M W}(R)$ of $\mathbb{Z}\left[R^{*}\right]$ and induces the ring homomorphism $K_{0}^{M W}(R) \rightarrow G W(R)$ sending the generator $\langle a\rangle$ of $K_{0}^{M W}(R)$ to the GrothendieckWitt class of the inner product space $\langle a\rangle$ for $a \in R^{*}$. This ring homomorphism is surjective for any local ring R, by Proposition 3.1. Thus, we obtain natural surjective ring homomorphisms

$$
\begin{equation*}
\mathbb{Z}\left[R^{*}\right] \rightarrow \mathbb{Z}\left[R^{*} /\left(R^{*}\right)^{2}\right] \rightarrow K_{0}^{M W}(R) \rightarrow G W(R) \stackrel{\mathrm{rk}}{\rightarrow} \mathbb{Z} \tag{4.1}
\end{equation*}
$$

where the last map sends an inner product space (V, \mathfrak{b}) to the rank $n=\operatorname{rk}(V)$ of the free R-module $V \cong R^{n}$.

Proposition 4.1. For $R=\mathbb{F}_{2}[x] /\left(x^{4}\right)$, the natural surjection $K_{0}^{M W}(R) \rightarrow G W(R)$ in (4.1) has kernel $\mathbb{Z} / 2$. In fact, we have isomorphisms of abelian groups

$$
G W(R) \cong \mathbb{Z} \oplus(\mathbb{Z} / 2)^{2} \quad \text { and } \quad K_{0}^{M W}(R) \cong \mathbb{Z} \oplus(\mathbb{Z} / 2)^{3}
$$

Proof. Let $I_{\mathbb{Z}} \subset \mathbb{Z}\left[R^{*} /\left(R^{*}\right)^{2}\right], I_{M W} \subset K_{0}^{M W}(R)$ and $I \subset G W(R)$ be the respective augmentation ideals, that is, the kernel of the surjective ring homomorphisms (4.1) from $\mathbb{Z}\left[R^{*} /\left(R^{*}\right)^{2}\right], K_{0}^{M W}(R), G W(R)$ to \mathbb{Z}. The maps (4.1) induce surjections on augmentation ideals $I_{\mathbb{Z}} \rightarrow I_{M W} \rightarrow I$. The first part of the proposition is the statement that the surjection $I_{M W} \rightarrow I$ has kernel $\mathbb{Z} / 2$.

For the local ring $R=\mathbb{F}_{2}[x] /\left(x^{4}\right)$, the group of units R^{*} has order 8 and elements $1+a x+b x^{2}+c x^{3}$, where $a, b, c \in \mathbb{F}_{2}$. The group homomorphism $R^{*} \rightarrow R^{*}: a \mapsto a^{2}$
has image $\left\{\left(1+a x+b x^{2}+c x^{3}\right)^{2} \mid a, b, c \in \mathbb{F}_{2}\right\}=\left\{1,1+x^{2}\right\}$. In particular, the cokernel $R^{*} /\left(R^{*}\right)^{2}$ is a 2 -torsion abelian group of order 4. Hence, the group $R^{*} /\left(R^{*}\right)^{2}$ is the Klein 4-group $K_{4} \cong(\mathbb{Z} / 2)^{2}$. A set of coset representatives for $R^{*} /\left(R^{*}\right)^{2}$ is given by the elements $1,1+x, 1+x+x^{2}, 1+x^{2}+x^{3} \in R^{*}$ since $(1+x)\left(1+x^{2}+x^{3}\right)=$ $1+x+x^{2}+2 x^{3}+x^{4}=1+x+x^{2}$ is not a square. From the matrix equation in $M_{2}(R)$

$$
\left(\begin{array}{cc}
x & 1 \\
1 & x+x^{2}+x^{3}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1+x
\end{array}\right)\left(\begin{array}{cc}
x & 1 \\
1 & x+x^{2}+x^{3}
\end{array}\right)=\left(\begin{array}{cc}
1+x+x^{2} & 0 \\
0 & 1+x^{2}+x^{3}
\end{array}\right)
$$

we see that

$$
\begin{equation*}
\langle 1\rangle+\langle 1+x\rangle=\left\langle 1+x+x^{2}\right\rangle+\left\langle 1+x^{2}+x^{3}\right\rangle \in G W(R) . \tag{4.2}
\end{equation*}
$$

We have $2 I=0$ as $h=\langle 1\rangle+\langle-1\rangle=\langle 1\rangle+\langle 1\rangle=2$, thus $0=\langle\langle u\rangle h=2\langle\langle u\rangle \in I$ for all $u \in R^{*}$, and I is additively generated by $\left\langle\langle u\rangle, u \in R^{*}\right.$. In view of (4.2) and $2 I=0$, we obtain the equality in $G W(R)$

$$
\begin{equation*}
0=\langle\langle 1+x\rangle\rangle+\left\langle\left\langle 1+x+x^{2}\right\rangle\right\rangle+\left\langle\left\langle 1+x^{2}+x^{3}\right\rangle\right\rangle=\sum_{w \in R^{*} /\left(R^{*}\right)^{2}}\langle\langle w\rangle \tag{4.3}
\end{equation*}
$$

from which we see that $I^{2}=0$. Indeed, for $u \in R^{*} /\left(R^{*}\right)^{2}$ we have $\langle\langle u\rangle\rangle^{2}=2\langle\langle u\rangle\rangle=$ $0 \in G W(R)$, and for $v \neq u \in R^{*} /\left(R^{*}\right)^{2}, u, v \neq 1 \in R^{*} /\left(R^{*}\right)^{2}$, we have from (4.3)

$$
\left\langle\langle u\rangle\langle\langle v\rangle\rangle=\langle\langle u\rangle\rangle+\langle\langle v\rangle\rangle+\langle\langle u v\rangle\rangle=\sum_{w \in R^{*} /\left(R^{*}\right)^{2}}\langle\langle w\rangle=0 \in G W(R) .\right.
$$

Recall the isomorphism $R^{*} /\left(R^{*}\right)^{2} \cong I / I^{2}: a \mapsto\langle\langle \rangle\rangle$ with inverse the map that sends an inner product space (V, \mathfrak{b}) to the determinant of the Gram matrix of \mathfrak{b}. In our case, this yields $I=I / I^{2} \cong R^{*} /\left(R^{*}\right)^{2} \cong(\mathbb{Z} / 2)^{2}$.

To compute $I_{M W}$ for $R=\mathbb{F}_{2}[x] /\left(x^{4}\right)$, we note that if $a \in R$ is a unit then $1-a$ is not a unit and the Steinberg relation is vacuous. Moreover, $\langle\langle u\rangle\rangle h=2\left\langle\langle u\rangle \in \mathbb{Z}\left[R^{*}\right]\right.$ as $h=\langle 1\rangle+\langle-1\rangle=\langle 1\rangle+\langle 1\rangle=2 \in \mathbb{Z}\left[R^{*}\right]$, and thus, $K_{0}^{M W}(R)$ is the quotient of $\mathbb{Z}\left[R^{*} /\left(R^{*}\right)^{2}\right]$ by the relation $\left.2\langle u\rangle\right\rangle=0$ for $u \in R^{*} /\left(R^{*}\right)^{2}$. Since $I_{\mathbb{Z}}$ is additively generated by the elements $\left\langle\langle u\rangle\right.$ for $u \in R^{*} /\left(R^{*}\right)^{2}$, we therefore have $K_{0}^{M W}(R)=$ $\mathbb{Z}\left[R^{*} /\left(R^{*}\right)^{2}\right] / 2 I_{\mathbb{Z}}$ and $I_{M W}=I_{\mathbb{Z}} / 2 I_{\mathbb{Z}}$. Now $I_{\mathbb{Z}} / 2 I_{\mathbb{Z}}=(\mathbb{Z} / 2)^{3}$ since $I_{\mathbb{Z}}$ has \mathbb{Z} basis the elements $\left\langle\langle u\rangle, 1 \neq u \in R^{*} /\left(R^{*}\right)^{2} \cong K_{4}\right.$. Hence, the surjection $I_{M W} \rightarrow I$, which is $(\mathbb{Z} / 2)^{3} \rightarrow(\mathbb{Z} / 2)^{2}$, has kernel $\mathbb{Z} / 2$.

As abelian groups, we have $G W(R) \cong \mathbb{Z} \oplus I$ and $K_{0}^{M W}(R) \cong \mathbb{Z} \oplus I_{M W}$. In particular, the computations above show that $G W(R) \cong \mathbb{Z} \oplus(\mathbb{Z} / 2)^{2}$ and $K_{0}^{M W}(R) \cong$ $\mathbb{Z} \oplus(\mathbb{Z} / 2)^{3}$ 。

References

[AF22] Aravind Asok and Jean Fasel. Vector bundles on algebraic varieties. ICM 2022 Proceedings, arXiv:2111.03107, 2022.
[Gil19] Stefan Gille. On quadratic forms over semilocal rings. Trans. Amer. Math. Soc., 371(2):1063-1082, 2019.
[GSZ16] Stefan Gille, Stephen Scully, and Changlong Zhong. Milnor-Witt K-groups of local rings. Adv. Math., 286:729-753, 2016.
[Kne77] Manfred Knebusch. Symmetric bilinear forms over algebraic varieties. In Conference on Quadratic Forms-1976 (Proc. Conf., Queen's Univ., Kingston, Ont., 1976), Queen's Papers in Pure and Appl. Math., No. 46, pages 103-283. Queen's Univ., Kingston, ON, 1977.
[Lam05] T. Y. Lam. Introduction to quadratic forms over fields, volume 67 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2005.
[MH73] John Milnor and Dale Husemoller. Symmetric bilinear forms. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 73. SpringerVerlag, New York-Heidelberg, 1973.
[Mil70] John Milnor. Algebraic K-theory and quadratic forms. Invent. Math., 9:318-344, 1969/70.
[Mor12] Fabien Morel. \mathbb{A}^{1}-algebraic topology over a field, volume 2052 of Lecture Notes in Mathematics. Springer, Heidelberg, 2012.
[Sah72] Chih Han Sah. Symmetric bilinear forms and quadratic forms. J. Algebra, 20:144-160, 1972.
[Sch10] Marco Schlichting. Hermitian K-theory of exact categories. J. K-Theory, 5(1):105-165, 2010.
[Sch17] Marco Schlichting. Euler class groups and the homology of elementary and special linear groups. Adv. Math., 320:1-81, 2017.
[Wit37] Ernst Witt. Theorie der quadratischen Formen in beliebigen Körpern. J. Reine Angew. Math., 176:31-44, 1937.

Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK

Email address: m.schlichting@warwick.ac.uk, Robert.Rogers@warwick.ac.uk

[^0]: Date: April 29, 2024.
 1991 Mathematics Subject Classification. 11E81, 11E08, 19D45.
 Key words and phrases. Symmetric bilinear form, Grothendieck-Witt group, Chain Lemma, Milnor-Witt K-theory.

