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Chapter 1

Introduction

1.1 The Hurwitz problem

In 1898, Hurwitz asked the following question:

When does a sums-of-squares formula of type [r, s, n] exist?

Recall that a sums-of-squares formula of type [r, s, n] over a field F of characteristic

≠ 2 is the formula

(
r

∑
i=1

x2
i ) ⋅ (

s

∑
i=1

y2
i ) = (

n

∑
i=1

z2
i ) ∈ F [x1, ..., xr, y1, ..., ys] (1.1)

where X = (x1, ..., xr) and Y = (y1, ..., ys) are systems of coordinates and zi =
zi(X,Y ) for each 1 ≤ i ≤ n is a bilinear form in X and Y (with coefficients in F ) i.e.

zi ∈ F [x1, ..., xr, y1, ..., ys] is homogeneous of degree 2 and F -linear in X and Y . To

be specific, zi is of the form ∑k,j c
(i)
kj xkyj for c

(i)
kj ∈ F .

The problem itself is easy to understand. However, it turns out that the proofs of

some theorems towards the problem require advanced modern cohomology methods.

Thus, the subject is valuable as a demonstration of the power of cohomology.

The problem has significant influence on other branches of mathematics, e.g. vec-

tor fields on spheres, composition algebras and embeddings of open manifolds, cf.

[76]. During the past one hundred years, many prestigious mathematicians have

been working on the problem for various purposes. Until now, it remains unsolved.

Thus, the Hurwitz problem seems to be extremely hard.

It is also probably very difficult to determine if a sums-of-squares formula depends

on the choice of base fields of characteristic different from 2. The “independent field”
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property of the Hurwitz problem is known as the Shapiro’s conjecture. Recently,

some classical theorems (towards sums-of-squares formulas) over real numbers R
have been generalized to an arbitrary field of characteristic different from 2. Chapter

5 of this thesis is invested to recall the following result:

Theorem 1.1.1 (Xie [86]). If [r, s, n] exists over F , then 2δ(s)−i+1∣(ni) for n − r <
i ≤ δ(s). Here, the number δ(s) denotes the cardinality of the set

{l ∈ Z ∶ 0 < l < s, l ≡ 0,1,2 or 4 mod 8}.

The proof of Theorem 1.1.1 over R was provided by [5] and [90]. It involves com-

putations of topological KO-theory of real projective spaces and γi-operations. The

statement of Theorem 1.1.1 over R can be extended to any field of characteristic

0 by an algebraic remark of T.Y. Lam and K.Y. Lam, cf. [76, Theorem 3.3]. By

using algebraic K-theory, D. Dugger and D. Isaksen proved a similar result over an

arbitrary field of characteristic ≠ 2, where δ(s) in the above theorem is replaced by

⌊ s−1
2 ⌋, cf. [22, Theorem 1.1]. They actually conjectured the above statement. Since

δ(s) ≥ ⌊ s−1
2 ⌋, our theorem generalizes theirs. One may wish to look at the following

table.
s 2 3 4 5 6 7 8 9 10 ⋯

δ(s) 1 2 2 3 3 3 3 4 5 ⋯
⌊ s−1

2 ⌋ 0 1 1 2 2 3 3 4 4 ⋯

It is not hard to see

δ(s) =
⎧⎪⎪⎨⎪⎪⎩

⌊ s−1
2 ⌋ if s ≡ 7,8,9 mod 8;

⌊ s−1
2 ⌋ + 1 otherwise.

1.2 Grothendieck-Witt groups of quadrics

In [66], Quillen computed algebraic K groups of projective spaces. In [80], Swan

studied algebraic K groups of quadric hypersurfaces. The aim of Chapter 4 is to

study Grothendieck-Witt and Witt groups of quadric hypersurfaces.

In [83], Walter defined Grothendieck-Witt groups of triangulated categories and

in [82] he announced Grothendieck-Witt groups of projective bundles (see also

[73, Section 9]). In a conference talk [84], Walter announced the computation of

Grothendieck-Witt groups and Witt groups of quadrics. However, his work has not

been published. Calmès [18] kindly informed me about Walter’s results. Walter prob-

ably used the Gersten-Witt spectral sequence (introduced in [13]) to compute Witt

groups of quadrics. At the end of the lecture [84], he mentioned the computation of
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Grothendieck-Witt groups of quadrics.

Let k be a commutative ring with 1
2 ∈ k throughout Chapter 4, unless otherwise

specified. Let Qd ⊂ Pnk be the quadric hypersurface defined by a non-degenerate

quadratic form (P, q) over k of rank n = d + 2.

Theorem 1.2.1. Let d = 2m + 1 be an odd integer. There is a stable equivalence of

Grothendieck-Witt spectra

GW [i](Qd) ≈
m

⊕
i=1

K(k)⊕GW [i](A )

where A is the dg category defined in Section 4.3. Moreover, the spectrum GW [i](A )
fits into a homotopy fibration sequence

GW [i](k)→ GW [i](A )→ GW [i+1](C0(q), σ)

where C0(q) is the even part of the Clifford algebra of q and where σ is the canonical

involution of C0(q).

Theorem 1.2.2. Let d = 2m be an even integer. If P is free, then there exists a

homotopy fibration sequence of Grothendieck-Witt spectra

⊕m−1
j=1 K(k)⊕GW [i](A )→ GW [i](Qd)→ GW [i−d](k)

where GW [i](A ) fits into a homotopy fibration sequence

GW [i](k)→ GW [i](A )→ GW [i+1](C0(q), σ)

Remark 1.2.1. The above theorems apply also to the case of GW -spectra (see [73,

Section 9]).

Hermitian K-theory (aka. Grothendieck-Witt theory) as a generalization of alge-

braic K-theory was first studied by Bass, Karoubi and others in terms of algebras

with involution, cf. [14]. Schlichting generalized their work to exact categories and dg

categories, the results of which make Hermitian K-theory bear a heavier burden, cf.

[70], [71] and [73]. Schlichting used GW to mean Grothendieck-Witt theory, while

some authors may have written Kh. As proved by Schlichting, the 0-th homotopy

groups of Grothendieck-Witt spectra of schemes are Grothendieck-Witt groups of

schemes. Moreover, the negative homotopy group of Grothendieck-Witt spectra are

just Balmer’s Witt groups. Our computations are based on Schlichting’s framework.

As an application of Theorem 1.2.1, we prove the following theorem in Section 4.4.

3



Theorem 1.2.3. Let k be a regular local ring with 1
2 ∈ k. If d is odd, then

W 0(Qd) ≈ coker(F, tr)
W 1(Qd) ≈ W 2(C0(q), σ)
W 2(Qd) ≈ 0

W 3(Qd) ≈ ker(F, tr)

where the map (F, tr) ∶W 0(C0(q), σ)Ð→W 0(k) is defined in Section 4.4.

As an application of Theorem 1.2.2, we deduce the following results in Section 4.7.

Theorem 1.2.4. Let k be a regular local ring with 1
2 ∈ k. If d is even, then there is

a 12-term long exact sequence

coker(F, tr) //W 0(Q) //W −d(k)

''

W 3−d(k)

77

W 2(C0(q), σ)

��

W 3(Q)

OO

W 1(Q)

��

ker(F, tr)

OO

W 1−d(k)

ww
W 2−d(k)

gg

W 2(Q)oo 0oo

Recall the notation of the Pfister form

⟪a1, . . . , an⟫ ∶= ⟨1, a1⟩⊗ ⟨1, a2⟩⊗⋯⊗ ⟨1, an⟩.

As an application of Theorem 1.2.3 and 1.2.4, we prove the following result in

Theorem 4.4.2 and Theorem 4.7.2.

Theorem 1.2.5. Let k be a field with 1
2 ∈ k. Let Qd be the smooth quadric associated

to the quadratic form ⟨a1, . . . , an⟩ with ai ∈ k×. Then, we have

⟪a1a2, . . . , a1an⟫W 0(k) ⊂ ker(p∗ ∶W 0(k)→W 0(Qd)).

Moreover, assume C0(q) is a division algebra. If d /≡ 0 mod 4, then W 0(Qd) ≈
W 0(k)/⟪a1a2, . . . , a1an⟫W 0(k). If d ≡ 0 mod 4, then there exists an exact sequence

0 //W 0(k)/⟪a1a2, . . . , a1an⟫W 0(k) //W 0(Qd) //W 0(k).

4



As another application of Theorem 1.2.3 and 1.2.4, we also prove the following result

in Theorem 4.4.3 and Theorem 4.7.3.

Theorem 1.2.6. Let k be a field in which −1 is not a sum of two squares. Let Qd be

the smooth quadric associated to the quadratic form n⟨1⟩ of dimension d = n − 2. If

d /≡ 0 mod 4, then W 0(Qd) ≈W 0(k)/2δ(n)W 0(k). If d ≡ 0 mod 4, then there exists

an exact sequence

0 //W 0(k)/2δ(n)W 0(k) //W 0(Qd) //W 0(k).

Moreover, if k is euclidean, then W 0(Qd) ≈ Z/2δ(n)Z. Recall that δ(n) ∶= #{l ∈ Z ∶
0 < l < n, l ≡ 0,1,2 or 4 mod 8}.

In [60], Witt groups of split quadrics were studied. In [93], Grothendieck-Witt (and

Witt) groups of quadrics over C were computed. Chapter 4 focuses on the case of

a general projective quadric over an arbitrary commutative ring k with 1
2 ∈ k. Be-

sides, the paper [21] studied Witt groups of certain kind of quadrics by forgetting

the 2 primary torsions. Chapter 4 determines the 2 primary torsion for the case of

‘projective cones’ PCn (terminology in [21]) over an arbitrary Euclidean field.

5



Chapter 2

On the history of the Hurwitz

problem

The 2-square identity

(x2
1 + x2

2)(y2
1 + y2

2) = (x1y1 + x2y2)2 + (x1y2 − x2y1)2

had been discovered in an ancient time. A similar 4-square identity was found by

Euler (1748).

(x2
1 + x2

2 + x2
3 + x2

4)(y2
1 + y2

2 + y2
3 + y2

4) = z2
1 + z2

2 + z2
3 + z2

4

where
z1 = x1y1 − x2y2 − x3y3 − x4y4

z2 = x1y2 + x2y1 + x3y4 − x4y3

z3 = x1y3 − x2y4 + x3y1 + x4y2

z4 = x1y4 + x2y3 − x3y2 + x4y1

Euler’s motivation was to prove Fermat’s conjecture that every positive integer is

a sum of four integer squares. After Euler’s discovery of 4-square identity, mathe-

maticians soon realized a 3-square identity is impossible.

In 1843, Hamilton wrote a letter to John Graves about his discovery of the quater-

nion algebra, which allows a non-commutative multiplication. In fact, the 4-square

identity can be interpreted by the law of moduli of the quaternion. John Graves

found an algebra of 8 basis elements within two months after he received Hamil-

ton’s letter about the quaternion algebra. Nowadays, this algebra is widely known as

the octonion, which is neither commutative nor associative. Independently, Cayley

6



found the octonion in 1845. The multiplication of the octonion provides an 8-square

identity, which is displayed as follows:

(x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 + x2
7 + x2

8)(y2
1 + y2

2 + y2
3 + y2

4 + y2
5 + y2

6 + y2
7 + y2

8) =
z2

1 + z2
2 + z2

3 + z2
4 + z2

5 + z2
6 + z2

7 + z2
8

where
z1 = x1y1 − x2y2 − x3y3 − x4y4 − x5y5 − x6y6 − x7y7 − x8y8

z2 = x1y2 + x2y1 + x3y4 − x4y3 + x5y6 − x6y5 − x7y8 + x8y7

z3 = x1y3 − x2y4 + x3y1 + x4y2 + x5y7 + x6y8 − x7y6 − x8y6

z4 = x1y4 + x2y3 − x3y2 + x4y1 + x5y8 − x6y7 + x7y5 − x8y5

z5 = x1y5 − x2y6 − x3y7 − x4y8 + x5y1 + x6y1 + x7y3 + x8y4

z6 = x1y6 + x2y5 − x3y8 + x4y7 − x5y2 + x6y2 − x7y4 + x8y3

z7 = x1y7 + x2y8 + x3y5 − x4y6 − x5y3 + x6y4 + x7y1 − x8y2

z8 = x1y8 − x2y7 + x3y6 + x4y5 − x5y4 − x6y3 + x7y2 + x8y1

Actually, such a formula had already been found in 1818 by Degen in Russia, but

his work was not widely known.

Afterward, mathematicians attempted to achieve a 16-square identity, and they

came to realize that a 16-square identity is impossible. In 1898, A. Hurwitz published

a celebrated paper which provided a definitive answer on this topic, cf. [38]. Hurwitz

proved that there exists an n-square identity over the complex numbers if and only

if n is 1, 2, 4 or 8. At the end of this paper, Hurwitz asked a general question: For

which positive integers r, s, n does there exist a formula

(x2
1 +⋯ + x2

r) ⋅ (y2
1 +⋯ + y2

s) = z2
1 +⋯ + z2

n

where zi = zi(X,Y ) is bilinear in X’s and Y ’s where X = (x1, ..., xr) and Y =
(y1, ..., ys) are systems of coordinates with coefficients in the base field of character-

istic ≠ 2? Nowadays, mathematicians denote such a formula by [r, s, n].

It is easy to see a formula [r, s, n] implies a formula [r, s, n + 1] by just adding the

‘0-term’, which is bilinear. Thus, the Hurwitz problem is equivalent to the problem:

Given positive integers r and s, what is the smallest n such that [r, s, n] exists?

The problem is attractive, because results towards this problem influence several

branches of mathematics.

In 1922, Radon [67] was able to show that [r, n, n] exists over R if and only if r ≤ ρ(n)
where ρ(n) ∶= 8a + 2b if we write n = odd ⋅ 24a+b with 0 ≤ b ≤ 3. In 1923, Hurwitz [39]

7



independently found that the same result holds over the field of complex numbers

C. Thus, this result is widely known as the Hurwitz-Radon theorem, and the number

ρ(n) is usually called the Hurwitz-Radon number. Some authors also provided their

own proofs towards the Hurwitz-Radon theorem, cf. [4], [20] [26], [58], [85] and [76].

Mathematicians also found that the Hurwitz problem highly relates to some topics

in Topology. For example, a formula [ρ(n), n, n] gives ρ(n)− 1 linearly independent

vector fields on the sphere Sn−1. Finally, Adams [1] showed that this number is

optimal in 1960s by introducing Adams operations and by calculating KO-theory

of real projective spaces. Besides, a formula [r, s, n] gives a non-singular bilinear

map Rr×Rs → Rn. However, a non-singular bilinear map does not necessarily give a

sums-of-squares. Thus, finding the lower bounds of non-singular bilinear maps only

helps to find the lower bounds of sums-of-squares formulas. Around 1940, Stiefel

and Hopf observed that some non-singular bilinear maps could be eliminated by

cohomology methods, which provides certain lower bounds, cf. [37] and [79]. Stiefel

used his theory of characteristic classes of vector bundles, and Hopf applied coho-

mology theory of real projective spaces. They proved that: If a non-singular bilinear

map Rr ×Rs → Rn exists, then (n
i
) is even whenever s > i > n− r. In 1980s, an argu-

ment of Atiyah [5] was applied by Yuzvinsky ([90]) to prove that: If a non-singular

bilinear map Rr ×Rs → Rn exists, then 2δ(s)+i−1∣(ni) whenever δ(s) ≥ i > n − r where

δ(s) ∶= #{l ∈ Z ∶ 0 < l < s, l ≡ 0,1,2 or 4 mod 8}. Indeed, non-singular bilinear maps

are very important in the study of Topology and non-associative algebras. Using

topological methods, K. Y. Lam constructed some interesting non-singular bilinear

maps, cf. [52], [53], [54] and [55].

It is also valuable to consider formulas over Z because coefficients can only be taken

over the set {−1,0,1}. Then the problem becomes combinatorial in nature. Around

1980s, Yuzvinsky, Yiu and others studied the framework of “intercalate” matrices.

By this method, Yiu announced formulas [r, s, n] over Z for r, s ≤ 16 and other

interesting formulas, and lower bounds, cf. [87], [88] and [89].

What about [r, s, n] over an arbitrary field of characteristic ≠ 2? Does it depend

on the choice of base fields of characteristic ≠ 2? Yuzvinsky developed the theory of

monomial pairings which is useful for finding upper bounds, cf. [90], [91] and [92].

In [2] and [3], Adem reduced the existence of a formula of type [r, n − 1, n] to the

Hurwitz-Radon theorem by matrices reduction. Adem also found a formula of type

[r, n − 2, n] could be manipulated in a similar way. In a conference around 1980,
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T. Y. Lam and K. Y. Lam discovered that a formula of type [r, s, n] over a field of

characteristic 0 implies a non-singular bilinear map [r, s, n] over R. This observation

extends some classical results over R (e.g. the Hopf-Stiefel’s condition) to any ar-

bitrary field of characteristic 0. In the meantime, some mathematicians attempted

to extend the Hopf-Stiefel’s condition to an arbitrary field of characteristic different

from 2, and they got some partial results, cf. [77] and [91]. In 2007, Dugger and

Isaksen finally proved the Hopf-Stiefel’s condition over any field of char. ≠ 2 by using

motivic cohomology, cf. [23]. Indeed, if r ≤ 9, the Hopf-Stiefel condition implies a

formula [r, s, n] over any field of characteristic ≠ 2, cf. [78]. Thus, the existence of

[r, s, n] for r ≤ 9 is exactly given by the Hopf-Stiefel’s condition. Dugger and Isaksen

wrote another two papers that generalize some classical theorems towards sums-of-

squares formulas over R to an arbitrary field of characteristic ≠ 2, cf. [22] and [24].

For further information about histories and applications of sums-of-squares formulas,

one may refer to [76] and [78].
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Chapter 3

Review: Hermitian K-theory

In this chapter, we review some definitions and results in [73] which will be used later.

This chapter does not contain anything essentially new. I do not claim originality.

3.1 Categories with duality

3.1.1 Definitions and examples

Let C be a category. Recall from [7], [47], [73] that

Definition 3.1.1. A category with duality is a triplet (C ,∗, η) where (∗, η) is a

duality on C , that is a functor ∗ ∶ C op → C together with a natural transformation

η ∶ 1→ ∗ ○ ∗op such that 1A∗ = (ηop
A )∗ ○ ηA∗ , i.e. the following diagram

A∗ idA∗ //

ηA∗

��

A∗

A∗∗∗
(ηopA )∗

<< (3.1)

commutes where we write A∗ ∶= ∗(A) and f∗ ∶= ∗(f) for convenience. If η is an

isomorphism (resp. the identity), we call the duality (∗, η) strong (resp. strict).

Remark 3.1.1. Let A and B be two categories. Recall that the quintuple

(A,B, F ⊣ G,η, ε)

consists of a functor F ∶ A → B (the left adjoint), a functor G ∶ B → A (the right

adjoint) and two natural transformations η ∶ 1A → GF (the unit) and ε ∶ FG → 1B

(the counit), which satisfy the triangular equation

1F = εF ○ Fη 1G = Gε ○ ηG

10



with the symbol ○ representing the horizontal composition of natural transforma-

tions. If (A,B, F ⊣ G,η, ε) satisfies further condition that η and ε are natural

isomorphisms, we say A and B are adjoint equivalent. As observed in [19, Defini-

tion 2.1.1], deducing a category with duality is equivalent to specifying the data

(C ,C op,∗op ⊣ ∗, η, ηop). Then, to define a category with strong duality is to give

the information (C ,C op,∗op ⊣ ∗, η, ηop) with η and ηop natural isomorphisms.

To understand categories with duality better, we give the following examples which

may be used later.

Example 3.1.1 (Example 2.2.1, Chapter II [47]). Let R be a ring with an involution

σ. Consider the categoryM(R) of left R-modules. Then, for any object M inM(R),
the set HomR(M,R) of left R-module morphisms may be considered as a left R-

module via the involution σ. To illustrate, the action is given by

R ×HomR(M,R)→ HomR(M,R), (r, f)↦ r ⋅ f

where r ⋅f(x) ∶= f(x)σ(r). Clearly, r ⋅f is a left R-module homomorphism. Then, we

check (r1r2) ⋅ f = r1 ⋅ (r2 ⋅ f) for all r1, r2 ∈ R. For any x ∈M , we have (r1r2) ⋅ f(x) =
f(x)σ(r1r2) = f(x)(σ(r2)σ(r1)) which equals r1 ⋅ (r2 ⋅ f)(x) = (r2 ⋅ f(x))σ(r1) =
(f(x)σ(r2))σ(r1) by associativity. We write σ(HomR(M,R)) for this left R-module.

There is a functor # ∶M(R)op →M(R) given by

M ↦ σ(HomR(M,R)), (f ∶M → N)↦ (f# ∶ N# →M#)

where f#(g) ∶= g ○ f . Construct a natural transformation can ∶ 1M(R) →# ○# by

canM ∶M →M##, x↦ x̂,

where x̂(g) ∶= σ(g(x)) for all g ∈M#. One checks that

M
f

//

canM
��

N

canN
��

M##

f##
// N##

is commutative. Since the functor # depends on the involution σ, we may write #σ

for # to emphasize the role of the involution σ. Then, in order to say the triplet

(M(R),#σ, can)

is a category with duality, one has to do an easy exercise to check the diagram (3.1)

is commutative. Note that this is not a strong duality in general (even when R is a
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commutative field), cf. [17, Proof of Theorem 6 in p. 300, Chapter II 7.5]. However,

let P(R) be the category of finitely generated projective left R-modules. We equip

P(R) with the duality (#σ, can) defined above. Then, the triplet

(P(R),#σ, can)

is a category with strong duality (but not strict duality), since canM is an isomor-

phism (rather than the identity) for all M ∈ P(R), cf. [17, Corollary 4, Chapter II

2.7].

Example 3.1.2. Let R be a ring with an involution σ. Consider the category e with

one object e and with morphisms Home(e, e) ∶= EndR(R) = Rop. Define a functor

∗ ∶ eop → e by ∗(e) ∶= e,∗(f) ∶= σ(f) for any f ∈ Rop. The natural transformation

can ∶ 1e → ∗ ○ ∗ is given by cane ∶ e → e∗∗ = e corresponding to the identity. Since

σσ(f) = f , we have a category with strict duality

(e,∗σ, can)

where we write ∗σ to emphasize the role of the involution σ.

3.1.2 Symmetric forms and form functors

Definition 3.1.2. Let (C ,∗, η) be a category with duality. A symmetric form in

(C ,∗, η) is a pair (X,ϕ) where X is an object in C and where ϕ ∶ X → X∗ is a

morphism such that ϕ∗○ηX = ϕ. A morphism of symmetric forms f ∶ (X,ϕ)→ (Y,ψ)
is a map f ∶X → Y in C such that ϕ = f∗ ○ ψ ○ f .

In light of Definition 3.1.2, we can talk about the category of symmetric forms in

(C ,∗, η) which is denoted by (C ,∗, η)h.

Definition 3.1.3. Let (B,∨, ω) and (C,∗, η) be categories with duality. A form

functor from (B,∨, ω) to (C,∗, η) is a pair (F, ε) where F ∶ B → C is a functor and

where ε ∶ F ○ ∨→ ∗ ○ F is a natural transformation such that ε ∨ ○F (ω) = ∗ε ○ ηF .

3.2 Dg categories with duality

3.2.1 The category of complexes

Let k be a commutative ring in this section and let C(k) be the category of dg

k-modules (aka. complexes). Its objects are the pairs (E,d) where E are all direct

sum decompositions ⊕i∈ZE
i, and where d = {di}i∈Z are sequences of k-linear maps

(called differential) di ∶ Ei → Ei+1 such that di+1○di = 0. A morphism f ∶X → Y of dg
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k-modules consists of maps {f i ∶ Xi → Y i}i∈Z satisfying f i((dX)i(x)) = (dY )if i(x)
for each x ∈ Xi. There are functors Z0,H0 ∶ C(k) → Modk to the category of

k-modules defined by

Z0(M) = Ker(d0 ∶M0 →M1), H0(M) = Z0(M)/Im(d−1 ∶M−1 →M0).

For X,Y ∈ C(k), the tensor product dg k-module X ⊗ Y in degree n is given by

(X ⊗ Y )n = ⊕
i+j=n

Xi ⊗ Y j

with differential d(x⊗y) = (dXx)⊗y+(−1)∣x∣x⊗(dY y). It gives a symmetric monoidal

category (C(k),⊗,1, a, l, r, c) in the sense of [43] where the unit 1 is the dg k-module

consisting of k concentrated in degree 0 and where natural isomorphisms a, l, r and

c are

aXY Z ∶ (X ⊗ Y )⊗Z =→X ⊗ (Y ⊗Z) ∶ (x⊗ y)⊗ z ↦ x⊗ (y ⊗ z),
lX ∶ 1⊗X →X ∶ a⊗ x↦ ax,

rX ∶X ⊗ 1→X ∶ x⊗ a↦ xa,

cXY ∶X ⊗ Y → Y ⊗X ∶ x⊗ y ↦ (−1)∣x∣∣y∣y ⊗ x.

The function dg k-module [X,Y ] in degree n is given by

[X,Y ]n =∏
i∈Z

Homk(Xi, Y i+n) (3.2)

with differential d(f) = dY ○ f − (−1)nf ○ dX . Note that an element in Z0[A,B]
is exactly a morphism of complexes. This makes the symmetric monoidal category

(C(k),⊗,1, a, l, r, c) closed, i.e. for each object Y ∈ C(k), the functor − ⊗ Y has a

right adjoint [Y,−] with unit and counit

dX ∶X → [Y,X ⊗ Y ] ∶ x↦ (fx ∶ y ↦ x⊗ y), eZ ∶ [Y,Z]⊗ Y → Z ∶ f ⊗ x↦ f(x).

Remark 3.2.1. One should be cautious that the function object [X,Y ] may be

endowed with another choice of differential by other authors, which is given by

d(f) = f○dX−(−1)ndY ○f . We may denote this by [X,Y ]† to distinguish from [X,Y ]
defined above. Note that [−,−]† also gives a closed structure on (C(k),⊗,1, a, l, r, c)
with unit and counit

d†
X ∶X → [Y,X ⊗ Y ] ∶ x↦ (fx ∶ y ↦ (−1)

∣x∣(∣x∣+1)
2 x⊗ y),

e†Z ∶ [Y,Z]⊗ Y → Z ∶ f ⊗ x↦ (−1)
∣f ∣(∣f ∣+1)

2 f(x).
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3.2.2 Dg categories and co-dg categories

Definition 3.2.1 ([43]). A dg category A over k is a category enriched in the

mononidal category (C(k),⊗,1, a, l, r) in the sense of [43, Section 1.2]. That is

given by the following data:

• a set of objects ob(A),

• for any two objects A and B, a dg k-module A(A,B) ∈ C(k),

• for any object A, a unit morphism eA ∶ 1→ A(A,A),

• for any three objects A,B and C, a composition morphism

µABC ∶ A(B,C)⊗A(A,B)→ A(A,C)

satisfying the following conditions:

1. (Associativity) for any four objects A,B,C and D the following diagram

A(C,D)⊗A(B,C)⊗A(A,B)

id⊗µABC
��

µBCD⊗id // A(B,D)⊗A(A,B)
µABD
��

A(C,D)⊗A(A,C) µACD
// A(A,D)

commutes.

2. (Unit) for any two objects A and B, the two morphisms

A(A,B) l−1Ð→ 1⊗A(A,B) eB⊗idÐ→ A(B,B)⊗A(A,B)
µABBÐ→ A(A,B)

A(A,B) r−1Ð→ A(A,B)⊗ 1 id⊗eAÐ→ A(A,B)⊗A(A,A)
µAABÐ→ A(A,B)

are equal to the identities.

Definition 3.2.2 ([43]). Let A,B be two dg categories. A dg functor F ∶ A → B
consists of the following data:

• a map of sets F ∶ ob(A)→ ob(B),

• for any two objects A and B, a morphism of dg k-module

FAB ∶ A(A,B)→ B(FA,FB)

These data should satisfy the following:
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1. for any three objects A,B and C, the following diagram

A(B,C)⊗A(A,B)

FBC⊗FAB
��

µAABC // A(A,C)

FAC
��

B(FB,FC)⊗ B(FA,FB)
µBFA,FB,FB

// B(FA,FC)

commutes.

2. for any object A, the following diagram

1
eAA //

eBFA $$

A(A,A)

FAA
��

B(FA,FA)

commutes.

Let F ∶ A→ B and G ∶ B → C be two dg functors. One may define their composition

G ○ F ∶ A→ C as the following:

• composition of maps of sets G ○ F ∶ ob(A)→ ob(B)→ ob(C)

• for any two objects A and B, a morphism of dg k-module

GFA,FB ○ FAB ∶ A(A,B)→ B(FA,FB)→ B(GFA,GFB)

Lemma 3.2.1. The datum G ○ F ∶ A → C defined above is a dg functor. Moreover,

we have constructed a category of dg categories with morphisms dg functors. We

record this category by DgCat.

Proof. Easy verification and exercise.

Compare the definition of dg categories and dg functors to the following definitions

of co-dg categories and co-dg functors.

Definition 3.2.3 ([81]). A co-dg category A over k is given by the following data:

• a set of objects ob(A),

• for any two objects A and B, a dg k-module A(A,B) ∈ C(k),

• for any object A, a unit morphism eA ∶ 1→ A(A,A),
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• for any three objects A,B and C, a co-composition morphism

µABC ∶ A(A,B)⊗A(B,C)→ A(A,C)

satisfying the following conditions:

1. (Associativity) for any four objects A,B,C and D, the following diagram

A(A,B)⊗A(B,C)⊗A(C,D)

µABC⊗id
��

id⊗µBCD // A(A,B)⊗A(B,D)
µABD
��

A(A,C)⊗A(C,D) µACD
// A(A,D)

commutes,

2. (Unit) for any two objects A and B, the two morphisms

A(A,B) l−1Ð→ 1⊗A(A,B) eA⊗idÐ→ A(A,A)⊗A(A,B)
µAABÐ→ A(A,B)

A(A,B) r−1Ð→ A(A,B)⊗ 1 id⊗eBÐ→ A(A,B)⊗A(B,B)
µABBÐ→ A(A,B)

are equal to the identities.

Definition 3.2.4 ([43]). LetA,B be two co-dg categories. A co-dg functor F ∶ A→ B
consists of the following data:

• a map of sets F ∶ ob(A)→ ob(B),

• for any two objects A and B, a morphism of dg k-module

FAB ∶ A(A,B)→ B(FA,FB)

These data should satisfy the following:

1. for any three objects A,B and C, the following diagram

A(A,B)⊗A(B,C)

FAB⊗FBC
��

µAABC // A(A,C)

FAC
��

B(FA,FB)⊗ B(FB,FC)
µBFA,FB,FC

// B(FA,FC)

commutes.
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2. for any object A, the following diagram

1
eAA //

eBFA $$

A(A,A)

FAA
��

B(FA,FA)

commutes.

Remark 3.2.2 (Caution). In literature, some authors define our ‘co-dg categories’

and ‘co-dg functors’ by the term ‘dg categories’ and ‘dg functors’. This shouldn’t be

confused with our definition of dg categories and dg functors. One can see directly the

difference between dg categories and co-dg categories is on the data of composition

and co-composition and on the two conditions. Co-dg functors (resp. dg functor)

only make sense when we talk about co-dg categories (resp. dg categories).

Lemma 3.2.2. Let G ∶ A → B, F ∶ B → C be two co-dg functors, and let G ○ F
be the data given by Lemma 3.2.1. Then, G ○ F ∶ A → C defined above is a co-dg

functor. Moreover, we construct a category of co-dg categories with morphisms co-dg

functors. We denote this category by coDgCat.

Proposition 3.2.1. There is an equivalence of categories

Ψ ∶ coDgCat→DgCat Φ ∶DgCat→ coDgCat

Proof. Let A be a co-dg category. We define a dg category Ψ(A) by the following

data. Objects of Ψ(A) are the same with A, i.e. ob(A). Morphisms of Ψ(A) are

also the same as A, i.e. Ψ(A)(A,B) = A(A,B) for any pair A,B ∈ ob(A). Unit of

Ψ(A) is just the unit of A. Finally, composition in Ψ(A) is given by

A(B,C)⊗A(A,B) c // A(A,B)⊗A(B,C) µABC // A(A,C)

where c is the symmetry. One checks that Ψ(A) is a dg category. Let F ∶ A→ B be

a co-dg functor, i.e. a morphism in coDgCat. Then, define Ψ(F ) ∶ Ψ(A) → Ψ(B)
by the same data of F . One carefully checks that Ψ(F ) becomes a dg functor.

Composition formula Ψ(G ○ F ) = Ψ(G) ○Ψ(F ) for dg functors is trivial.

Let B be a dg category and F a dg functor. One may define Φ(B) and Φ(F ) analo-

gously to the above. One checks that Φ(B) is a co-dg category and Φ(F ) is a co-dg

functor. Note that Ψ ○Φ(A) = A and Φ ○Ψ(B) = B, because c ○ c is the identity. So,

Ψ and Φ are even inverse to each other.
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For later reference, it is necessary to discuss the following examples.

Example 3.2.1. Let A be a dg category. Its opposite category is a dg category

given by the following data. Objects and unit are the same as A. For any A,B ∈ A
morphisms Aop(A,B) ∶= A(B,A). Compositions are given by

µop ∶ Aop(B,C)n ⊗Aop(A,B)m Ð→ Aop(A,C)m+n ∶ fop ⊗ gop ↦ (−1)∣f ∣∣g∣(g ○ f)op

Therefore, we conclude that the opposite category of a dg category is again a dg

category rather than a co-dg category. One could also define the opposite category

of a co-dg category, which can be shown as a co-dg category. Note that (Aop)op = A.

Example 3.2.2. Let F ∶ A → B be a dg functor. Its opposite functor F op ∶ Aop →
Bop is defined by the map F ∶ ob(A) → ob(B) on objects, and a morphism F op

AB ∶
Aop(A,B) → Bop(FA,FB), fop ↦ F (f)op. Check that F op is a dg functor and

F op ○Gop = (F ○G)op.

Example 3.2.3. There is a dg category C(k) whose objects are the same as C(k)
and for any two objects A,B the morphism is defined by the function object [A,B]
in C(k). The composition in degree m + n

µABC ∶ [B,C]n ⊗ [A,B]m Ð→ [A,C]m+n

is defined by component-wise compositions g ⊗ f ↦ g ○ f , i.e.

{(gn)i ∶ Bi → Bi+n}i∈Z ⊗ {(fm)i ∶ Ai−m → Bi}i∈Z ↦ {(gn)i ○ (fm)i ∶ Ai−m → Bi+n}i∈Z.

Note that C(k) is not a co-dg category.

Example 3.2.4. There is a co-dg category C(k)
†

with objects are the same as C(k).
For any two objects A,B morphism is defined by [A,B]† ∈ C(k)†. The composition

in degree m + n
µABC ∶ [A,B]m† ⊗ [B,C]n† Ð→ [A,C]m+n†

is defined by f ⊗ g ↦ g ○ f , i.e.

{(fm)i ∶ Ai−m → Bi}i∈Z ⊗ {(gn)i ∶ Bi → Bi+n}i∈Z ↦ {(gn)i ○ (fm)i ∶ Ai−m → Bi+n}i∈Z.

(Check µABC is a morphism of dg k-modules). Note that C(k)
†

itself is not a dg

category. However, we can take its associated dg category Ψ(C(k)
†
). One may check

the composition in Ψ(C(k)
†
) actually coincides (1.28) in [43, Section 1.6] from the

closed symmetric monoidal structure of C(k) with the internal hom [−,−]†. It is the

unique shape in the sense of [44].
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Remark 3.2.3 (Caution). For simplicity, we may abuse the notation C(k)
†

to mean

the dg category Ψ(C(k)
†
) if there is no confusion on the compositions.

Lemma 3.2.3. The data F ∶ C(k)
†
→ C(k) given by the identity map on sets

id ∶ ob(C(k)
†
)→ ob(C(k))

and by a morphism of dg k-modules

FAB ∶ [A,B]† → [A,B] ∶ f ↦ (−1)
∣f ∣(∣f ∣+1)

2 f

specify a dg functor.

Proof. Check that FAB is a morphism of dg k-modules. This is to check

FAB(d[A,B]†f) = d[A,B](FAB(f))

Left hand side equals

(−1)
(∣f ∣+1)(∣f ∣+2)

2 (f ○ dA + (−1)∣f ∣+1dB ○ f). (3.3)

Right hand side equals

(−1)
(∣f ∣)(∣f ∣+1)

2 (dB ○ f + (−1)∣f ∣+1f ○ dA). (3.4)

To see (3.3) = (3.4), one checks the signs match. We verify the diagram

[B,C]† ⊗ [A,B]†
FBC⊗FAB

��

µABC○c // [A,C]†
FAC
��

[B,C]⊗ [A,B] µABC
// [A,C]

commutes. This is to check the identity

FAC(µABC ○ c(f ⊗ g)) = µABC(FBC(f)⊗ FAB(g)).

Left hand side of this identity equals

(−1)∣f ∣∣g∣(−1)
(∣f ∣+∣g∣)(∣f ∣+∣g∣+1)

2 f ○ g.

Right hand side of this identity equals

(−1)
∣f ∣(∣f ∣+1)

2 (−1)
∣g∣(∣g∣+1)

2 f ○ g

One checks that the signs match. The unit condition simply holds because 1 con-

centrates in degree 0.
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Proposition 3.2.2. Let A be any object in C(k). The following data

[−,A] ∶ C(k)op → C(k) (resp. [−,A]† ∶ C(k)op

†
→ C(k)

†
)

given by the map

C(k)→ C(k) ∶X ↦ [X,A]

of sets and by the morphism

ε ∶ [X,Y ]C(k)op → [[X,A], [Y,A]] ∶ fop ↦ (ε(fop) ∶ g ↦ (−1)∣f ∣∣g∣g ○ f)

of dg k-modules (resp. by the morphism

ε† ∶ [X,Y ]C(k)op
†
→ [[X,A]†, [Y,A]†]† ∶ fop ↦ (ε†(fop) ∶ g ↦ (−1)

∣f ∣(∣f ∣+1)
2 g ○ f)

of dg k-modules) specify a dg functor.

Proof. The functors [−,A] and [−,A]† are contravariant representable dg functors

in the sense of [43, Section 1.6], so we can deduce all the maps under the procedure

introduced in loc. cit..

Definition 3.2.5. Let A be a dg category. The underlying category Z0A (resp.

the homotopy category H0A) of the dg category A is a k-linear category which has

objects same as A and for any two objects A,B morphism (Z0A)(A,B) (resp. mor-

phism (H0A)(A,B)) is defined by the k-module Z0(A(A,B)) (resp. H0(A(A,B))).

Example 3.2.5. The category Ck of bounded chain complexes of finitely generated

free modules over k may be considered as a full dg subcategory of C (k) which is

denoted by Ck (also denoted by C for short).

Example 3.2.6. LetR be an associative and unital k-algebra. Consider the category

C(R) of complexes of left (or right) R-modules. There is a dg category C(R) which

generalizes C(k). For any two complexes A,B ∈ C(R) the function object [A,B]
is regarded as a dg k-module. Then, Z0C(R) is just the category C(R) itself and

H0C(R) is the homotopy category of C(R).

Example 3.2.7. The category Chb(R) of bounded chain complexes of finitely gen-

erated projective left R-modules may be reinterpreted as a full dg subcategory of

C(R). Denote it by sPerf(R).

Example 3.2.8. Let X be a scheme. Consider the category C(X) of complexes

of coherent sheaves over X. There is a dg category C(X) with the same objects

as in C(X). For any F ,G ∈ C(X), morphisms are given by the function object

[F ,G ] ∈ C(X) which is similar to Equation 3.2. Compositions are defined in a

similar way as in Example 3.2.3.
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Example 3.2.9. The category Chb(X) of bounded chain complexes of finitely gen-

erated vector bundles over X may be regarded as a full dg subcategory of C(X).
Denote it by sPerf(X).

Example 3.2.10. Let R be a k-algebra. The category ∗ with one object e and with

morphisms Hom∗(e, e) = EndR(R) ≅ Rop (of left R-module homomorphisms from

R to itself) can be viewed as a dg category ∗R as follows. The unique object is e.

Morphisms [e, e]∗ ∈ C(k) are simply the complex consisting of Rop concentrated in

degree 0. Compositions are just multiplications in degree 0. When R = k, we call

∗k the unit dg category.

Example 3.2.11. Let C be any small category. One can spell out a dg cate-

gory k[C ] with objects of C and internal hom k[C ](A,B) is the free k-module

k[C (A,B)] concentrated in degree 0.

Remark 3.2.4. The above examples of dg categories A with morphisms involving

the function complexes [A,B] can be adapted to define other dg categories A† which

are the same as A on objects and units, but morphisms are the complexes [A,B]†
and compositions are component-wise composed with the symmetry map c. Note

that Z0A (resp. H0A) is the same as Z0A† (resp. H0A†).

3.2.3 Tensor categories and functor categories

Let A,B be dg categories.

Definition 3.2.6. The tensor product dg category A⊗ B is given by the following

• objects are the pair (A,B) ∈ ob(A) × ob(B),

• for any two pairs (A,B) and (A′
,B

′) the morphism is defined by

A⊗ B((A,B), (A
′
,B

′
)) ∶= A(A,A

′
)⊗ B(B,B

′
),

• for any three pairs Ei = (Ai,Bi) ∶ 1 ≤ i ≤ 3 the composition

(A⊗ B(E2,E3))⊗ (A⊗ B(E1,E2))→ A⊗ B(E1,E3)

is given by (f1 ⊗ g2) ○ (f2 ⊗ g2)↦ (−1)∣g1∣∣f2∣(f1 ○ f2)⊗ (g1 ○ g2).

• unit is the pair (eA, eB).

Definition 3.2.7. The functor dg category [A,B] is given by

• objects are dg form functors F ∶ A→ B,
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• for any two dg form functors F and G the morphism [F,G] in degree n is

defined by the set [F,G]n of collections α = (αA)A∈A with αA ∈ B(FA,GA)n

such that G(f) ○ αA = (−1)∣α∣∣f ∣αB ○ F (f).

• composition is deduced by composing termwise.

• unit is the collection (eFA)A∈A with the units eFA in [FA,FA]0.

3.2.4 Natural transformations of dg functors

Definition 3.2.8 ([43]). Let F,G ∶ A → B be two dg functors. A natural transfor-

mation of dg functors α ∶ F → G consists of the data

αA ∶ 1→ B(FA,GA)

i.e. αA(1) ∈ Z0B(FA,GA) for each A ∈ ob(A) such that for any two objects A,B ∈
ob(A) the following diagram

1⊗A(A,B) αB⊗F // B(FB,GB)⊗ B(FA,FB)
µ

**

A(A,B)

l−1
77

r−1 ''

B(FA,GB)

A(A,B)⊗ 1 G⊗αA // B(GA,GB)⊗ B(FA,GA)
µ

44

(3.5)

commutes.

Example 3.2.12. Let α ∶ F → G ∶ A→ B be a natural transformation of dg functors.

We define its opposite natural transformation αop ∶ Gop → F op by the data

(αop)A ∶= αA ∶ 1→ Bop(GA,FA) = B(FA,GA)

Check that αop is a natural transformation of dg functors.

Example 3.2.13 ([73]). Let A ∈ C(k). Let ∨A denote the dg functor [−,A]. Recall

[−,A] ∶ C(k)op → C(k)

is defined in Proposition 3.2.2. Bear in mind we often use X∨A to mean [X,A].
There is a natural transformation

can ∶ 1→ ∨A ○ (∨A)op
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given by the morphism of complexes

canX ∶X →X∨∨ ∶ x↦ (canX(x) ∶ f ↦ (−1)∣x∣∣f ∣f(x))

Here, the symbol 1 represents the identity dg functor of C(k) to itself. The map

can ∶X →X∨∨ corresponds to the composition

X
dX∨
// [X∨,X ⊗X∨]

[1,c]
// [X∨,X∨ ⊗X]

[1,e]
// [X∨,A] =X∨∨ (3.6)

Example 3.2.14. Let A ∈ C(k). Denote ∗A the dg functor [−,A]†. Recall the dg

functor

∗A ∶ C(k)op

†
→ C(k)

†
.

in Proposition 3.2.2. There is a natural transformation

can† ∶ 1→ ∗A ○ (∗A)op

given by the morphism of complexes (Note that ∣f(x)∣ = ∣f ∣ + ∣x∣)

(can†)X ∶X →X∨∨ ∶ x↦ ((can†)X(x) ∶ f ↦ (−1)
(∣f(x)∣)(∣f(x)∣+1)

2 f(x))

One may use the composition (3.6) to work out the sign. Note that the data of

(can†)X has already been captured by Gille in [30].

3.2.5 Dg categories with duality

Definition 3.2.9 ([73]). A dg category with duality is a triplet (A,∗, η) where A
is a dg category, ∗ ∶ Aop → A is a dg functor and η ∶ 1A → ∗ ○ ∗op is a natural

transformation of dg functors such that (ηop
A )∗ ○ ηA∗ = 1A∗ for all A ∈ ob(A).

Remark 3.2.5. Let A and B be two dg categories. Recall from [43, Section 1.11]

that the data

(A,B, F ⊣ G,η, ε)

consists of a dg functor F ∶ A → B (the left adjoint), a dg functor G ∶ B → A (the

right adjoint) and two natural transformations of dg functors η ∶ 1A → GF (the

unit) and ε ∶ FG→ 1B (the counit) satisfying the triangular equation

1F = εF ○ Fη 1G = Gε ○ ηG

where the symbol ○ represents the horizontal composition of natural transformations

of dg functors. Therefore, we conclude that deducing a dg category with duality is

equivalent to specifying the data (A,Aop,∗op ⊣ ∗, η, ηop).
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Example 3.2.15 (Section 1 [73]). The triplet

(C(k),∨A, can)

gives a dg category with duality. Recall ∨A and can in Example 3.2.13.

Similarly, one shows that (C ,∨k[n], can) is a dg category with duality, which is

denoted by C [n].

Example 3.2.16. The triplet

(C(k)
†
,∗A, can†)

provides a dg category with duality. Recall ∗A and can† in Example 3.2.14.

Definition 3.2.10 (Definition 1.16 [73]). Let A = (A,∨, can) be a dg category with

duality. The n-th shifted dg category with duality is

A [n] = C [n] ⊗A .

3.2.6 Dg form functors

Definition 3.2.11 ([73]). A dg form functor (A,∗, η)→ (B,#, β) contains

• a dg functor F ∶ A→ B,

• a natural transformation of dg functors ϕ ∶ F ○ ∗→# ○ F op ∶ Aop → B,

subject to the condition

ϕA∗ ○ F (ηA) = (ϕop
A )# ○ βFA (3.7)

for every A ∈ ob(A).

The following example will provide a way to see Balmer’s Witt groups (resp. Gille’s

coherent Witt groups) of a scheme X (resp. a scheme X with a dualizing complex

I●) are isomorphic to Schlichting’s Witt groups (resp. coherent Witt groups) of the

scheme X (resp. the scheme X with the dualizing complex I●).

Example 3.2.17. There is a dg form functor

(F,ϕ) ∶ (C(k)
†
,∗A, can†)→ (C(k),∨A, can)

where F ∶ C(k)
†
→ C(k) is the dg functor given in Example 3.2.3. We define the

natural transformation of dg functors

ϕ ∶ F ○ ∗A → ∨A ○ F op ∶ (C(k)
†
)op → C(k)
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by

ϕX ∶ [X,A]† → [X,A] ∶ f ↦ (−1)
∣f ∣(∣f ∣+1)

2 f

for each X ∈ C(k). Note that ϕX is exactly FXA discussed in Lemma 3.2.3. We have

already examined it is a morphism of complexes, and it is a natural transformation

by [43, Section 1.8]. Check Equation 3.7 holds. This is to verify

ϕX∗ ○ F((can†)X) = (ϕop
X )∨ ○ canFX

which holds if and only if for any x ∈X

ϕX∗((can†)X(x)) = ε(ϕop
X )(canX(x)) = canX(x) ○ ϕX ∈ [[X,A]†,A]

(Note that (can†)X and ϕop are morphisms of complexes, so of degree 0. Hence,

there are no signs in the equation). Let g ∈ [X,A]†. Put g into the left hand side.

ϕX∗((can†)X(x))(g) = (−1)
∣x∣(∣x∣+1)

2 ((can†)X(x))(g)

= (−1)
∣x∣(∣x∣+1)

2 (−1)
∣g(x)∣(∣g(x)∣+1)

2 g(x)
= (−1)

∣g∣(∣g∣+1)
2

+∣g∣∣x∣g(x)
(Use ∣g(x)∣ = ∣g∣ + ∣x∣)

Put g into the right hand side.

canX(x)(ϕX(g)) = (−1)
∣g∣(∣g∣+1)

2 canX(x)(g)
= (−1)

∣g∣(∣g∣+1)
2 (−1)∣g∣∣x∣g(x)

This finishes the verification.

Lemma 3.2.4. Assume that (A,∗A, canA) ⊗ (B,∗B, canB) → (C,∗C , canC) is a dg

form functor. Then, any symmetric form (A,ϕ) on (A,∗A, canA) induces a dg form

functor (A,ϕ)⊗? ∶ (B,∗B, canB)Ð→ (C,∗C , canC).

Proof. A dg form functor (A,∗A, canA) ⊗ (B,∗B, canB) → (C,∗C , canC) consists of

the data, a dg functor

F ∶ A⊗ B → C ∶ (A,B)↦ A⊗B

and a duality compatibility natural transformation εA,B ∶ A∗ ⊗B∗ → (A⊗B)∗ such

that the diagram

A⊗B //

��

A∗∗ ⊗B∗∗

��

(A⊗B)∗∗ // (A∗ ⊗B∗)∗

(3.8)
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commutes. Given a symmetric form (A,ϕ) on (A,∗A, canA), we can define a dg

form functor

(A,ϕ)⊗? ∶ (B,∗B, canB)Ð→ (C,∗C , canC)

by the data, a dg functor A⊗? ∶ B → C ∶ B ↦ A⊗B and a duality compatibility map

ϕ ∶ A⊗B∗ ϕ⊗1
// A∗ ⊗B∗ εA,B

// (A⊗B)∗

Consider the diagram

A⊗B 1⊗canB //

ww

can⊗can

��

◻1

A⊗B∗∗

ϕ⊗1

��

(A⊗B)∗∗

��

◻2

A∗∗ ⊗B∗∗ ϕ∗⊗canB //

ww

◻3

A∗ ⊗B∗∗

ww

(A∗ ⊗B∗)∗ // (A⊗B∗)∗

We conclude the commutativity of ◻1 by the symmetry of the form ϕ, the commu-

tativity of ◻2 by the commutative diagram (3.8) and the commutativity of ◻3 by

the naturality of ε.

Remark 3.2.6. The multiplication m ∶ k[2]⊗ k[2] → k[4] gives a symmetric form

(k[2],m) in C [4]. The dg form functor C [4] ⊗A [n] → A [n+4] induces an isomor-

phism of categories with duality (k[2],m)⊗? ∶ A [n] ∼→ A [n+4], which induces the

‘4-periodicity’ on Grothendieck-Witt groups. For more details, one may refer to [73,

Remark 1.18].

3.2.7 Pretriangulated hull and weak equivalences

Every dg category A has a pretriangulated-hull Aptr (which is pretriangulated) such

that A is a full dg subcategory of Aptr, Z0Aptr is Frobenius exact and H0Aptr is

triangulated, cf. [73, Section 1]. Moreover, (−)ptr is functorial.

Definition 3.2.12. A dg category with weak equivalences is a pair (A,w) consisting

of the data: a full dg subcategory Aw ⊂ A and a set of morphisms w in Aptr such

that f ∈ w if and only if f is an isomorphism in the quotient triangulated category

T (A,w) ∶=H0Aptr/H0(Aw)ptr.
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Definition 3.2.13. An exact dg functor F ∶ (A,w) → (C, v) of dg categories with

weak equivalences consists of a dg functor F ∶ A → C preserving weak equivalences,

i.e. F (Aw) ⊂ Cv.

Definition 3.2.14. A quadruple A = (A,w,∗, can) is called a dg category with

weak equivalences and duality if (A,w) is a dg category with weak equivalences, if

(A,∗, can) is a dg category with duality, if Aw is invariant under the duality and if

canA ∈ w for all objects A in A.

Definition 3.2.15. An exact dg form functor (F,ϕ) ∶ (A,w,∗, can)→ (C, v,#, can)
consists of a dg form functor (F,ϕ) ∶ (A,∗, can) → (C,#, can) and an exact dg

functor F ∶ (A,w)→ (C, v).

Remark 3.2.7. Any dg category A with weak equivalences and duality gives a

pretriangulated dg category A ptr with weak equivalences and duality.

Remark 3.2.8. For any dg category A with weak equivalences and duality, one

could also define the n-th shifted version A [n] by putting appropriate weak equiv-

alences, cf. [73, Section 1.10].

3.3 Triangulated categories with duality

Our reference for this part is [73, Section 3]. Note that the translation functor

T ∶ T → T in the triangulated category T is only assumed to be an auto-equivalence

(rather than an auto-morphism).

Definition 3.3.1 (Definition 3.1 [73]). A triangulated category with duality is a

quadruple (T ,#, η, λ) with a triangulated category T , with an additive functor

# ∶ T op → T , and with natural isomorphisms η ∶ 1 → ## and λ ∶ # → T#T such

that (T ,#, η) is a category with duality, that λ and η are compatible and that #

is compatible with exact triangles.

Remark 3.3.1. This definition is slightly different from the one given in [9]. The

framework in [9] only assumes that T ∶ T → T is an automorphism, that T−1# =
#T and that the duality is compatible with δ-exact triangles where δ = ±1. In

general, note that the translation functors in triangulated categories need not to

be an automorphism, and that some triangulated categories with duality do not

satisfy the condition T−1# = #T . Thus, it is helpful to keep the data with a natural

transformation λ ∶ #→ T#T .
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Definition 3.3.2 (Definition 3.4 [73]). A morphism of triangulated categories with

duality is a triple

(F, ρ,ϕ) ∶ (T1,#1, η1, λ1)→ (T2,#2, η2, λ2)

where (F, ρ) ∶ T1 → T2 is a triangle functor (with ρ ∶ FT → TF a natural isomor-

phism) and where ϕ ∶ F# → #F is also a natural isomorphism such that ϕ and ρ

are compatible with the duality.

Remark 3.3.2. For every dg category A ∶= (A,w,∗, can) with weak equivalences

and duality, there is an associated triangulated category T A = (T (A,w),∗, can, λ)
with duality, cf. [73, Section 3]. Any exact dg form functor A1 → A2 gives a duality

preserving functor T A1 → T A2 of triangulated categories with duality.

Remark 3.3.3. Consider the dg categories (C(k),∨) and (C(k)
†
,∗) with duality

discussed above. One can regard quasi-isomorphisms as weak equivalences, and

make them into dg categories with weak equivalences and duality. The triangulated

category with duality coming from (C(k),quis,∨) (resp. (C(k)
†
,quis,∗)) fits into

Schlichting’s framework [73] (resp. Balmer, Walter and Gille’s framework). Example

3.2.17 gives a way to connect them.

Remark 3.3.4. For any triangulated category with duality T = (T ,#, η, λ), one

could define the n-th shifted triangulated category with duality T [n], cf. [73, Defi-

nition 3.10].

The following is proved in [73, Lemma 3.12]:

Lemma 3.3.1. Let A be a pretriangulated dg category with weak equivalences and

duality. There are equivalences of triangulated categories with duality

(T A )[n] → T (A [n])

3.4 Grothendieck-Witt groups and Witt groups

3.4.1 Grothendieck-Witt groups of dg categories

Let A ∶= (A,w,∗, can) be a dg category with weak equivalences and duality.

Definition 3.4.1 (Definition 1.18 [73]). The Grothendieck-Witt group GW0(A )
is defined to be the free abelian group generated by symmetric spaces (X,ϕ) in

(Z0A ptr,w,∗, can) such that

1. (X,ϕ) + (Y,ψ) = (X ⊕ Y,ϕ⊕ ψ);
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2. if g ∶X → Y is in w, then (Y,ψ) = (X,g∗ψg);

3. if the diagram of exact sequences

E−1
// i //

ϕ−1
��

E0
p
// //

ϕ0

��

E1

ϕ1

��

E∗
1
//
p∗
// E∗

0
i∗ // // E∗

−1

is commutative with ϕi ∈ w and ϕi = ϕ∗−i ○ can, then

(E0, ϕ0) = (E−1 ⊕E1,
⎛
⎝

0 ϕ1

ϕ−1 0

⎞
⎠
).

The Witt group W0(A ) is defined to be GW0(A ) modulo the following relation

3′. if the diagram of exact sequences

E−1
// i //

ϕ−1
��

E0
p
// //

ϕ0

��

E1

ϕ1

��

E∗
1
//
p∗
// E∗

0
i∗ // // E∗

−1

is commutative with ϕi ∈ w and ϕi = ϕ∗−i ○ can, then

(E0, ϕ0) = 0.

The n-th shifted Witt groups and n-th shifted Grothendieck-Witt groups of the dg

category A with weak equivalences and duality are defined as

W [n](A ) ∶=W0(A [n]) GW
[n]
0 (A ) ∶= GW0(A [n])

3.4.2 Grothendieck-Witt groups of triangulated categories

Let T ∶= (T ,∗, η, λ) be a triangulated category with duality.

Definition 3.4.2 (Definition 3.5 [73]). The Grothendieck-Witt group GW 0(T ) is

defined to be the free abelian group generated by the isometry classes of symmetric

spaces (X,ϕ) in T such that

1. (X,ϕ) + (Y,ψ) = (X ⊕ Y,ϕ⊕ ψ);

2. if the diagram of exact triangles

X
i //

ϕ−1
��

Y
p
//

ϕ0

��

Z

ϕ1

��

q
// TX

Tϕ−1
��

Z∗ p∗
// Y ∗ i∗ // X∗ T (q∗)○λX

// T (Z∗)
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is commutative with ϕi being isomorphisms and ϕi = ϕ∗−i ○ η, then

(Y,ϕ0) = (X ⊕Z,
⎛
⎝

0 ϕ1

ϕ−1 0

⎞
⎠
).

The Witt group W 0(T ) is defined to be GW 0(T ) modulo the relation

2′. if the diagram of exact triangles

X
i //

ϕ−1
��

Y
p
//

ϕ0

��

Z

ϕ1

��

q
// TX

Tϕ−1
��

Z∗ p∗
// Y ∗ i∗ // X∗ T (q∗)○λX

// T (Z∗)

is commutative with ϕi are isomorphisms and ϕi = ϕ∗−i ○ η, then

(Y,ϕ0) = 0.

The n-th shifted Witt groups and n-th shifted Grothendieck-Witt groups of the tri-

angulated category T with duality are defined as

Wn(T ) ∶=W0(T [n]) GWn(T ) ∶= GW0(T [n])

Recall that for any dg category A with weak equivalences and duality, there is an

associated triangulated category T A with duality. The following is proved in [73,

Proposition 3.8] and [73, Corollary 3.13]:

Proposition 3.4.1. If A is a pretriangulated dg category with weak equivalences

and duality, then there are isomorphism of groups

W [n](A )→Wn(T A ) GW
[n]
0 (A )→ GWn(T A ).

3.5 Grothendieck-Witt spectra of dg categories

Recall from [73, Section 4 and 5] the R●-construction. Let A ∶= (A,w,∗, η) be a

pointed dg category with weak equivalences and duality. Let n be the totally ordered

set

{n′ < (n − 1)′ < ⋯ < 0′ < 0 < 1 < ⋯ < n − 1 < n}.

This may be considered as a category with a unique strict duality n ↔ n′. Let

Ar(n) = Fun([1], n) be the category of arrows. Recall RnA ⊂ [Ar(n),A] is the full

dg subcategory consisting of objects A ∶ Ar(n)→ A for which Ai,i = 0, and whenever

i ≤ j ≤ k ∈ n the sequence 0 → Ai,j → Ai,k → Aj,k → 0 is an exact sequence in the dg
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category A.

The full dg subcategory R(n)
i1,⋯,inA ⊂ [Ar(k1)×⋯×Ar(kn),A] consists of dg functors

A ∶ Ar(k1) × ⋯ × Ar(kn) → A such that the restriction Ar(ks) → A is an object of

RksA whenever s ∈ {1,⋯, n} (pointed by Ar(k1)×⋯×Ar(kn)→ 0). Recall R(n)
● A is

the diagonal of the multi-simplicial dg category R(n)
●,⋯,●A. There is an evident way to

define weak equivalences and duality on R(n)
● A. Denote this dg category with weak

equivalences and duality byR(n)
● A . DefineGW (A )n to be the geometric realization

∣i ↦ (R(n)
i A (n))∣ where A (n) = Zn((C [1])⊗n ⊗A ) (recall the Z(A) construction in

[73, Section 1]).

Definition 3.5.1 (Definition 5.2 [73]). For any pointed dg category A with weak

equivalences and duality. The Grothendieck-Witt spectrum GW (A ) is the symmet-

ric sequence

{GW (A )0,GW (A )1,GW (A )2,⋯}

where each space GW (A )n has a basepoint preserving continuous left Σn (symmet-

ric group)-action with bonding maps

εn ∶ (S1)∧n ∧GW (A )m → GW (A )n+m

defined in [73, Section 5.2]. The n-th shifted Grothendieck-Witt spectrum GW [n](A )
is defined to be GW (A [n]), and GW

[n]
i (A ) ∶= πiGW

[n](A ) which are the i-th

stable homotopy groups. There is also a non-connective version of Grothendieck-

Witt spectrum GW [n] called Karoubi-Grothendieck-Witt spectrum analogue to the

case of K, cf. [73, Section 8]. Define GW [n]
i (A ) ∶= πiGW [n](A ).

Theorem 3.5.1 (Agreement [73]). Assume that 1
2 ∈ A . There are group isomor-

phisms π0GW
[n](A ) ≈ GW [n]

0 (A ) and πiGW
[n](A ) ≈W [n−i]

0 (A ) for i < 0.

Any exact dg form functor A → C gives maps of spectra GW [n](A )→ GW [n](C ),
GW [n](A )→ GW [n](C ) and maps of groupsGW

[n]
0 (A )→ GW

[n]
0 (C ), W [n]

0 (A )→
W

[n]
0 (C ). The following theorem is proved in [73, Theorem 6.5].

Theorem 3.5.2 (Invariance of GW ). Assume 1
2 ∈ A ,C . If F ∶ A → C induces

an equivalence T A → T C of triangulated categories, then F gives an equivalence of

spectra GW [n](A )→ GW [n](C ).

Recall that a triangle functor F ∶ T1 → T2 is cofinal if it is fully faithful and every

object in T2 is a direct summand of an object in T1. The following is proved in [73,

Theorem 8.9].
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Theorem 3.5.3 (Invariance of GW ). Assume 1
2 ∈ A ,C . If F ∶ A → C induces a

cofinal triangle functor T A → T C of triangulated categories, then F gives a stable

equivalence of spectra GW [n](A )→ GW [n](C ).

A sequence T1 → T2 → T3 of triangulated categories is called exact if T1 → T2 makes T1

into a full subcategory which is closed under direct factor, and the induced functor

T2/T1 → T3 is an equivalence where T2/T1 is the Verdier quotient. A sequence

A1 → A2 → A3 of dg categories with weak equivalences and duality is quasi-exact

if the induced sequence T A1 → T A2 → T A3 is an exact sequence of triangulated

categories. The following is proved in [73, Lemma 6.6].

Theorem 3.5.4 (Localization for GW ). Assume that A1 → A2 → A3 is quasi-exact.

Then, there is a homotopy fibration of spectra

GW [n](A1)→ GW [n](A2)→ GW [n](A3).

Consequently, there is a long exact sequence of groups

⋯→ GW
[n]
i+1 (A3)→ GW

[n]
i (A1)→ GW

[n]
i (A2)→ GW

[n]
i (A3)→ GW

[n]
i−1 (A1)→ ⋯

A sequence T1 → T2 → T3 of triangulated categories is called exact up to factors if

T1 → T2 is fully faithful, and the induced functor T2/T1 → T3 is cofinal. A sequence

A1 → A2 → A3 of dg categories with weak equivalences and duality is Morita exact

if the induced sequence T A1 → T A2 → T A3 is exact up to factors. The following is

proved in [73, Theorem 8.10].

Theorem 3.5.5 (Localization for GW ). Assume that A1 → A2 → A3 is Morita

exact. Then, there is a homotopy fibration of spectra

GW [n](A1)→ GW [n](A2)→ GW [n](A3).

Consequently, there is a long exact sequence of groups

⋯→ GW [n]
i+1 (A3)→ GW [n]

i (A1)→ GW [n]
i (A2)→ GW [n]

i (A3)→ GW [n]
i−1 (A1)→ ⋯

Recall that a semi-orthogonal decomposition of a triangulated category T is denoted

by ⟨T1,T2,⋯,Tn⟩ consisting of the data

1. Ti are full triangulated subcategories of T ;

2. T1,T2,⋯,Tn generate T ;

3. Hom(Ti,Tj) = 0 for all j < i.
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Theorem 3.5.6 (Additivity [73]). Let A = (A,w,∗, can) be a pretriangulated dg

category with weak equivalences and duality, and let A1,A2,A3 be full dg subcate-

gories of A. Assume

1. A2 is fixed by the duality (that is ∗(A2) ⊂ A2),

2. A1 and A3 are exchanged by the duality, i.e. ∗(A1) ⊂ A3 and ∗(A3) ⊂ A1,

3. ⟨T A1,T A2,T A3⟩ is a semi-orthogonal decomposition of T A.

Then, there are stable equivalences of spectra

K(A1)⊕GW [n](A2)
∼Ð→ GW [n](A ) , K(A1)⊕GW [n](A2)

∼Ð→ GW [n](A )

Proof. We prove this for GW , and GW is an analog. Let v be the set of mor-

phisms that become isomorphisms in the Verdier quotient T A /T A2. Then, we have

a quasi-exact sequence (A2,w) → (A ,w) → (A , v). By localization, we see that

this sequence induces a homotopy fibration of spectra

GW [n](A2)→ GW [n](A )→ GW [n](A , v)

Recall the hyperbolic dg category HA1, cf. [73, Section 4.7]. Define a map HA1 →
A , (A,B)↦ A⊕B∗. Claim that the composition

HA1 → (A ,w)→ (A , v)

induces an equivalence GW [n](HA1) → GW [n](A , v). The argument is similar to

the one given in [73, Proof of Proposition 6.8]. Thus, we have

GW [n](HA1)⊕GW [n](A2)
∼Ð→ GW [n](A )

where GW [n](HA1) is equivalent to GW (HA1). That is exactly our model for the

K-theory K(A1), cf. [73, Section 6].
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Chapter 4

Grothendieck-Witt groups of

quadric hypersurfaces

4.1 Review: Semi-orthogonal decomposition on D bQ

Let k be a commutative ring (possibly 1
2 /∈ k in this section). Let (P, q) be a

non-degenerate quadratic form of rank n over k. One has a homogeneous ring

A = S(P ∗)/(q) by regarding q as an element in S2(P ∗), cf. [80, Section 2]. Define Q

(or Qd) to be the projective variety Proj A which is smooth of relative dimensional

d = n − 2 over k, cf. [80, Proposition 2.2].

If (P, q) is a quadratic form over k, the Clifford algebra C(q) is defined as T (P )/I(q)
where T (P ) is the tensor algebra of P and where I(q) is the two-sided ideal gener-

ated by v⊗v−q(v) for all v ∈ P . Moreover, the Clifford algebra C(q) = C0(q)⊕C1(q)
is Z/2Z-graded from the grading on T (P ). Let ι ∶ P → C(q) be the inclusion. The

Clifford algebra C(q) has the universal property in the following sense: for any k-

algebra B, if ϕ ∶ P → B satisfies ϕ(v)2 = q(v), then there exists a unique k-algebra

homomorphism ϕ̃ ∶ C(q)→ B such that ϕ̃ ○ ι = ϕ.

Let DbQ be the derived category of bounded chain complexes of finite rank lo-

cally free sheaves over Q. It is well-known that Swan’s computation of K-theory of

quadric hypersurfaces ([80]) can be adapted to deduce a semi-orthogonal decompo-

sition of DbQ. Meanwhile, DbQ has been extensively studied, cf. [41], [50]. Since

Swan’s version is most related to what we are doing, I will explain how to adapt

Swan’s computation of K-theory of quadrics to a semi-orthogonal decomposition

of DbQ. I thank Marco Schlichting for sharing me with his personal notes on this.

34



Certainly, I take the responsibility of any mistake written here.

Let Λi ∶= Λi(P ∗) be the i-th exterior power. Recall the Tate resolution

. . .→ O(−1)⊗ (Λ1 +Λ3 +Λ5)→ O(−1)⊗ (Λ0 +Λ2)→ O ⊗Λ1 → O(1), (4.1)

for O(1), cf. [80, Section 7] or [80, Proof of Lemma 8.4]. Precisely, the resolution

(4.1) is given by

Ti ∶= O(−i)⊗ (⊕
d≥0

Λi+1−2d)

where Λi ∶= 0 whenever i ≥ n and i < 0. The differential

∂i ∶ O(−i)⊗ (⊕
d≥0

Λi+1−2d)→ O(−i + 1)⊗ (⊕
d≥0

Λi−2d)

is defined by ∂
′

i + ∂
′′

i where

∂
′

i ∶ f ⊗ (p1 ∧⋯ ∧ pk)↦∑
s

(−1)s+1fps ⊗ (p1 ∧⋯ ∧ p̂s ∧⋯ ∧ pk)

and

∂
′′

i ∶ f ⊗w ↦ γ ∧ (f ⊗w) =∑
i

fξi ⊗ (βi ∧w)

where the element γ = ∑ ξi ⊗ βi ∈ P ∗ ⊗P ∗ lifts q ∈ S2(P ∗) via the natural surjective

map P ∗ ⊗ P ∗ → S2(P ∗).

Recall from [80, Section 8] that there is a pairing O(i)⊗ P ∗ → O(i + 1) induced by

the multiplication in the symmetric algebra. It follows that one has a map O(i) →
O(i + 1)⊗ P by the following composition

O(i)→ Homk(P ∗,O(i + 1)) ≈→ O(i + 1)⊗Homk(P ∗, k)→ O(i + 1)⊗ P

where the first map is induced by the pairing, where the middle map is the canoni-

cal isomorphism and where the last map is induced by the double dual identification.

If M = M0 ⊕M1 is a Z/2Z-graded left C(q)-module, then there are natural maps

P ⊗Mj →Mj+1. Define

` = `i,j ∶ O(i)⊗Mj → O(i + 1)⊗Mj+1

by the composition

O(i)⊗Mj → O(i + 1)⊗ P ⊗Mj → O(i + 1)⊗Mj+1.
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It follows that there is a sequence (si = i + d + 1 ∈ Z/2Z)

⋯Ð→ O(−i − 1)⊗Msi+1 Ð→ O(−i)⊗Msi Ð→ O(−i + 1)⊗Msi−1 Ð→ ⋯ (4.2)

which is called Clifford sequence in [80, Section 8]. Swan defines

Ui(M) ∶= coker[O(−i − 2)⊗Msi+2 → O(−i − 1)⊗Msi+1]

and Ui ∶= Ui(C(q)). Swan proves End(Ui) ≅ C0(q), cf. [80, Corollary 8.8].

Let Λ ∶= ⊕nΛn, Λ(i) ∶= ⊕nΛ2n+i for i ∈ Z/2Z. Then, Λ = Λ(0) ⊕ Λ(1) can be viewed

as a Z/2Z-graded left C(q)-module, cf. [80, Corollary 8.8]. Taking Λ = Λ(0) ⊕ Λ(1)

to the sequence (4.2), we get

⋯→ O(−i − 1)⊗Λ(si+1) → O(−i)⊗Λ(si) → O(−i + 1)⊗Λ(si−1) → ⋯ (4.3)

This sequence is exact, since Swan shows that, when i ≥ d, the sequence (4.3) and

the Tate resolution (4.1) coincide, cf. [80, Lemma 8.4].

Proposition 4.1.1. The functors

O(i)⊗? ∶ Dbk → DbQ and Ui⊗C0(q)? ∶ D
bC0(q)→ DbQ

are fully faithful, where DbC0(q) is the derived category of bounded complexes of

finitely generated projective left C0(q)-modules.

Proof. Note that

Hom(O(i),O(i)[p]) =Hp(Q,O) =
⎧⎪⎪⎨⎪⎪⎩

0 if p > 0

k if p = 0

by [80, Lemma 5.2] and that

Hom(Ui,Ui[p]) = Extp(Ud−1,Ud−1) =
⎧⎪⎪⎨⎪⎪⎩

0 if p > 0

C0(q) if p = 0

by [80, Corollary 8.8] and [80, Lemma 6.1]. The result follows.

The inclusion det(P ∗) ⊂ Λ induces a Z/2Z-graded C(q)-module isomorphism C(q)⊗
det P ∗ → Λ, cf. [80, Lemma 8.3]. Then, one sees that Un(Λ) = Un ⊗ det P ∗ and

that End(Un(Λ)) = C0(q), cf. [80, Corollary 8.8].

Let Ui (resp. Ai) be the smallest full idempotent complete triangulated subcategory

of DbQ containing the bundle Ui (resp. line bundle O(i)), that is Ui ⊗C0 DbC0(q)
(resp. O(i)⊗Dbk).

36



Theorem 4.1.1. There is a semi-orthogonal decomposition

DbQ = ⟨Ud−1,A1−d,⋯,A−1,A0⟩.

Proof. Firstly, we show that the set

Σ = {Ud−1,O(1 − d), . . . ,O}

generates DbQ as an idempotent complete triangulated category. Thus, DbQ is gen-

erated by the idempotent complete full triangulated subcategories Ud−1,A1−d, . . . ,A0.

Let ⟨Σ⟩ ⊂ DbQ denote the full triangulated subcategory generated by Σ. Note that

the quadric Q is a scheme with an ample line bundle O(1). So, the triangulated

subcategory of compact objects DbQ is generated (as an idempotent complete tri-

angulated category) by line bundles O(i) for i ≤ 0, cf. [72, Lemma 3.5.2]. Taking

duals, we see DbQ is generated (as an idempotent complete triangulated category)

by O(i) for i ≥ 0. The resolution in Section 3.4 implies that O(1) is in ⟨Σ⟩. The

canonical resolution (cf. [80, p. 126 Section 6]) gives O(i) for i ≥ 2 is in ⟨Σ⟩.

It is clear that

Hom(O(i),O(j)[p]) =Hp(Q,O(j − i)) = 0

for 1 − d ≤ j < i ≤ 0, cf. [80, Lemma 5.2]. Moreover, we have

Hom(O(i),Ud−1[p]) =Hp(Q,Ud−1(−i)) = 0

for 1− d ≤ i ≤ 0, cf. [80, Proof of Lemma 9.3] for p > 0 and [80, Lemma 9.5] for p = 0.

Thus, we conclude Hom(Ai,Aj) = 0 for j < i and Hom(Ai,Ud−1) = 0.

Corollary 4.1.1. There is a semi-orthogonal decomposition

DbQd =
⎧⎪⎪⎨⎪⎪⎩

⟨A−m, . . . ,A−1,U0,A0,A1, . . . ,Am⟩ if d = 2m + 1;

⟨A1−m, . . . ,A−1,U0,A0,A1, . . . ,Am−1,Am⟩ if d = 2m.

Proof. Let d = 2m + 1. By taking the tensor product O(m) ⊗ E for every element

E ∈ Σ, we get another set

{Um,O(−m), . . . ,O, . . . ,O(m)}.

Clearly, this set generates DbQ as an idempotent complete triangulated category.

Note that

Σ′ = {O(−m), . . . ,O(−1),U0,O,O(1), . . . ,O(m)}
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also generates DbQ as an idempotent complete triangulated category. It is enough

to show Um is in Σ′. Applying the exact sequence

0Ð→ Um Ð→ O(−m)⊗Csm Ð→ ⋯⋯Ð→ O(−1)⊗Cs−1 Ð→ U0 Ð→ 0,

we see the claim. Besides, we have Hp(Q,F ⊗U ∨
0 ) = Extp(U0,F ). Thus,

Hom(U0,O(i)[p]) =Hp(Q,U ∨
0 (i)) =Hp(Q,U−1(i)) =Hp(Q,Ud−1(d + i)) = 0

for −m ≤ i ≤ −1 by [80, Proof of Lemma 9.3] for p > 0 and [80, Lemma 9.5] for

p = 0. The rest of the proof is similar to the proof of Theorem 4.1.1. For the case of

d = 2m, one could use a similar procedure.

Let A[i,j] ⊂ DbQ (resp. A ⊂ DbQ) denote the full triangulated subcategory

⟨Ai, . . . ,Aj⟩ (resp. ⟨U0,A0⟩),

that is the smallest triangulated subcategory of DbQ containing Ai, . . . ,Aj (resp.

U0,A0).

Corollary 4.1.2. There is a semi-orthogonal decomposition

DbQd =
⎧⎪⎪⎨⎪⎪⎩

⟨A[−m,−1],A,A[1,m]⟩ if d = 2m + 1;

⟨A[1−m,−1],A,A[1,m−1],Am⟩ if d = 2m.

4.2 Clifford algebras and canonical involution

Let k be a commutative ring (possibly 1
2 /∈ k in this section). Let A be a k-algebra.

Recall that an involution τ ∶ A→ Aop is a k-algebra homomorphism such that τ2 = id.

The inclusion ϕ ∶ P ↪ C(q)op satisfies ϕ(v)2 = q(v), hence it provides a k-algebra

homomorphism σ ∶ C(q) → C(q)op, x ↦ x̄ which is an involution (called canonical

involution). Certainly, the canonical involution preserves the Z/2Z-grading on C(q),
so it restricts to the even part C0(q).

For any Clifford algebra C(q), one could define a ‘reduced’ trace form tr ∶ C(q)→ k,

cf. [78, Exercise 3.14]. The trace tr restricts to the even part C0(q). The trace form

in C(q) together with the canonical involution gives a symmetric bilinear form

B ∶ C(q) ×C(q)→ k ∶ (x, y)↦ tr(xȳ)

Lemma 4.2.1. Assume (P, q) is non-degenerate. Then B is non-degenerate if 1
2 ∈ k.
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Proof. Since 1
2 ∈ k, we can use [80, Corollary 1.2] to identify non-singularity and

non-degeneracy. Then, we apply [80, Proposition 1.1. (a)] to reduce the problem to

the case when the base k is a field. The form B is non-degenerate over a field of

characteristic ≠ 2, cf. [78, Exercise 3.14].

Let A be any k-algebra, and let A∗ ∶= Homk(A,k). If A is viewed as a left A-module,

then A∗ may be considered as a right A-module via the left multiplication. Let M

be a left A-module. Its opposite module Mop equals M as a k-module and can

be viewed as a right A-module: mop ⋅ a = (ām)op for any a ∈ A. It follows that

Homk(Mop, k) can be considered as a left A-module.

Lemma 4.2.2. Consider C(q) as a right C(q)-module. The map

ϑ ∶ C(q)→ Homk(C(q)op, k) ∶ x↦ (ϑ(x) ∶ yop ↦ B(x, y))

is a right C(q)-module isomorphism such that ϑ∨○can = ϑ where can ∶ C(q)→ C(q)∗∗

is the double dual identification.

Remark 4.2.1. The map ϑ preserves the Z/2Z-grading of C(q).

If F is a vector bundle, we denote the sheaf hom H om(F ,O) by F∨. Let canF ∶
F → F∨∨ be the canonical double dual identification. Recall the notation in the

previous section.

Lemma 4.2.3. Let (P, q) be a non-degenerate quadratic form over k. Then, there

are isomorphisms

hi ∶ Ui Ð→ (U op
−1−i)

∨

of O-modules and right C0(q)-modules. Moreover, we have the following equalities

h−1−i = (hi)∨ ○ canU−1−i

Proof. Let Cs denote Cs(q) for s ∈ Z/2Z for simplicity. Define a map

ηi ∶ O(−i)⊗Csi Ð→ (O(i)⊗Cop
s−i)

∨

by ηi(f ⊗ x)(g ⊗ yop) = fg ⋅ tr(xȳ). It is evident that ηi is an isomorphism, because

ηi is the following composition

O(−i)⊗Csi
ψ⊗ϑ

// O(i)∨ ⊗ (Cop
s−i)∗ // (O(i)⊗Cop

s−i)∨

where ψ ∶ O(−i) → O(i)∨ is the natural isomorphism, where ϑ is defined in Lemma

4.2.2 and where the last map is just the canonical isomorphism. It is a pleasure to
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note that Cs = C−s. By Lemma 4.2.2 and Remark 4.2.1, we see ηi are well-defined

right C0(q)-homomorphisms.

The diagram labeled by the symbol ◻

O(−i − 2)⊗Csi+2
` //

η

��

◻

O(−i − 1)⊗Csi+1
η

��

// // Ui

hi
��

(O(i + 2)⊗Cop
s−i−2)∨

`∨ // (O(i + 1)⊗Cop
s−i−1)∨ // // (U op

−1−i)
∨

is commutative. This may be checked locally. Let f ⊗m ∈ O(−i−2)⊗Csi+2 . Assume

k is a local ring (by localizing at a prime ideal), we see the map ` may be interpreted

as `(f ⊗m) = ∑βif ⊗ ξim for some βi ∈ P ∗, ξi ∈ P . Let g⊗nop ∈ O(i+ 1)⊗Cop
s−i−1 . It

reduces to check

η(∑βif ⊗ ξim)(g ⊗ nop) = η(f ⊗m)(∑βig ⊗ (ξin)op)

The left-hand side equals ∑βifg ⋅tr(ξimn̄), while the right-hand side equals ∑βifg ⋅
tr(mξin) = ∑βifg ⋅ tr(mn̄ξ̄i). Note that mn̄ξ̄i = mn̄ξi by ξ̄ = ξ ∈ P , and that

tr(mn̄ξi) = tr(ξimn̄). This provides the equality.

Then, the dotted map hi is just given by the universal property of cokernels. Since ηi

are isomorphisms, so are the maps hi. The last assertion is obtained by the symmetry

of ϑ in Lemma 4.2.2.

4.3 Grothendieck-Witt spectra of Qodd

Let sPerf(Qd) be the dg category of strictly perfect complexes over Qd and let L

be any line bundle over Qd. Let #L denote the dg functor [−,L ] and canL be the

canonical double dual identification. Take quasi-isomorphisms as weak equivalences.

The quadruple

(sPerf(Qd),quis,#L , canL )

is a dg category with weak equivalences and duality, cf. [73, Section 9]. Then, the

triangulated category T (sPerf(Qd),quis) is just DbQd.

Set

GW [i](Qd) ∶= GW (sPerf(Qd),quis,#O[i], canO[i]).

Note that

GW [i](Qd) ≈ GW [i](sPerf(Qd),quis,#O , canO).
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One could write a similar notation for the case of GW -spectra.

For convenience, we introduce notations Ai,A[k,l] and A which are defined to be

the full dg categories of sPerf(Qd) corresponding to the full triangulated categories

Ai,A[k,l] and A of DbQd respectively. Explicitly, Ai,A[k,l],A have objects which

lie in Ai, A[k,l],A respectively. Moreover, Ai,A[k,l] and A are pretriangulated.

Lemma 4.3.1. A ⊂ sPerf(Qd) is fixed by the duality #O .

Proof. It is enough to show A is fixed by the duality #O . By the definition of Ui,

we have an exact sequence

U0
// // O ⊗C0(q) // // U−1

It follows that U−1 ∈ A. By Lemma 4.2.3, we see U ∨
0 ≈ U−1 in A.

Thus we have a pretriangulated dg category with weak equivalences and duality

(A ,quis,#O , canO).

Next, recall the hyperbolic dg category HA[1,m] defined in [73, Section 4].

Theorem 4.3.1. There is a stable equivalence of Grothendieck-Witt spectra

GW (HA[1,m])⊕GW [i](A ) ∼Ð→ GW [i](Qd)

and a stable equivalence of Karoubi-Grothendieck-Witt spectra

GW (HA[1,m])⊕GW [i](A ) ∼Ð→ GW [i](Qd).

Proof. This result is a consequence of the additivity theorem (cf. Theorem 3.5.6)

and Corollary 4.1.2.

Recall from [73] that we have

K(A[1,m]) = GW (HA[1,m]) and K(A[1,m]) = GW (HA[1,m]).

By additivity in K-theory, we conclude

K(A[1,m]) =⊕m
i=1K(Ai) and K(A[1,m]) =⊕m

i=1 K(Ai).

Moreover, note that the exact dg functor

O(i)⊗? ∶ (sPerf(k),quis)Ð→ (Ai,quis)
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induces an equivalence of associated triangulated categories

O(i)⊗? ∶ Db(k) ∼Ð→ Ai.

Applying [72, Theorem 3.2.24] and [72, Theorem 3.2.29], we see

O(i)⊗? ∶K(k) ∼Ð→K(Ai) and O(i)⊗? ∶ K(k) ∼Ð→ K(Ai).

Corollary 4.3.1. There is a stable equivalence of Grothendieck-Witt spectra

(HO(1)⊗?,⋯,HO(m)⊗?, ?) ∶
m

⊕
i=1

K(k)⊕GW [i](A ) ∼Ð→ GW [i](Qd)

and a stable equivalence of Karoubi-Grothendieck-Witt spectra

(HO(1)⊗?,⋯,HO(m)⊗?, ?) ∶
m

⊕
i=1

K(k)⊕GW [i](A ) ∼Ð→ GW [i](Qd).

It remains to understand GW [i](A ) and GW [i](A ). Let w be the set of morphisms

in A that become isomorphisms in the Verdier quotient

T (A ,quis)/T (A0,quis),

which is equivalent to T (A ,w). Then, there is a quasi-exact sequence (hence Morita

exact)

(A0,quis) // (A ,quis) // (A ,w)

in the sense of [73, Section 6] which provides localization sequences of GW [i]-spectra

GW [i](A0) // GW [i](A ) // GW [i](A ,w)

by [73, Theorem 6.6], and localization sequences of Karoubi GW [i]-spectra

GW [i](A0) // GW [i](A ) // GW [i](A ,w)

by [73, Theorem 8.9]. The exact dg form functor

(O, id)⊗? ∶ (sPerf(k),quis,#k)Ð→ (A0,quis,#O)

gives an equivalence O⊗? ∶ Db(k) ∼Ð→ A0 of associated triangulated categories. By

the invariance for GW (cf. [73, Theorem 6.5]) and the invariance for GW (cf. [73,

Theorem 8.10]), one has equivalences of spectra

GW [i](k) ∼Ð→ GW [i](A0) and GW [i](k) ∼Ð→ GW [i](A0).
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Thus, we deduce homotopy fibrations of GW -spectra

GW [i](k) // GW [i](A ) // GW [i](A ,w)

and of GW -spectra

GW [i](k) // GW [i](A ) // GW [i](A ,w).

Next, we study the implicit part GW [i](A ,w) and GW [i](A ,w).

Recall the exact sequence U0
// // O ⊗C0(q) // // U−1 obtained by the definition

of Ui, and delete the component U−1. We obtain a (cochain) complex concentrated

in degree [0,1]
⋯→ 0→ U0 → O ⊗C0(q)→ 0→ ⋯

which is denoted by Cl[0,1].

Lemma 4.3.2. There is a symmetric space (U0, µ) in the category with duality

(T (A ,w),#O[−1], can
O)

where the form µ is represented by the following left roof

Cl[0,1]

t

||

s

&&

µ ∶ U0
// (U0)∨[−1].

The only non-trivial component in the morphism t ∶ Cl[0,1] → U0 is the map id ∶
U0 → U0 in the degree 0, and the only non-trivial component of the map s ∶ Cl[0,1] →

(U0)∨[−1] is the composition O ⊗C0(q)Ð→ U−1
h−1Ð→ (U0)∨ in the degree 1.

Proof. It is clear that s is a quasi-isomorphism so that s ∈ w. Moreover, we observe

that cone(t) is in T (A0,quis) so that t ∈ w. Thus, µ is an isomorphism in T (A ,w).
We show µ is symmetric, i.e. µ∨ ○ canU0 = µ. Observe µ∨ ○ canU0 is represented

by a right roof. The result can be obtained by noting the following morphism of

complexes is null-homotopic.

U0
l //

l∨○h0
��

O ⊗C0(q)
η0

ww

−h−1○`
��

(O ⊗C0(q))∨ −`∨ // (U0)∨

Here, all the maps are defined (recall Lemma 4.2.3 and its proof).
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The proof of [73, Lemma 3.9] tells us that the form (U0, µ) (in Lemma 4.3.2) can

be lifted to a symmetric form (BU0 ,Bµ) in the dg category

(A ,w,#O[−1], can)

with weak equivalences and duality, such that the morphism Bµ is in w and that

(BU0 ,Bµ) is isometric to (U0, µ) in (T (A ,w),#O[−1], can, λ). The form (BU0 ,Bµ)
is displayed as follows.

Cl[0,1]

Bµ
��

U0
l //

l∨○h0
��

O ⊗C0(q)

h−1○`
��

[Cl[0,1],O[−1]] (O ⊗C0(q))∨ −`∨ // (U0)∨

Let A,B be dg k-algebras. Recall from [71, Section 7.2] the definition of dg A-

modules. We denote by A-dgMod ∶= A-dgMod-k, dgMod-B ∶= k-dgMod-B and

A-dgMod-B the dg category of dg left A-modules, dg right B-modules, and of dg

left A-modules and right B-modules. If A is a dg algebra with involution, then for

any dg left A-module M we have a dg right A-module Mop, cf. [71, Section 7.3].

Let (I, i) denote an A-bimodule I together with an A-bimodule isomorphism i ∶
I → Iop such that iop ○ i = id. By abuse of the notation, we write I for (I, i) if the

isomorphism i is understood. In fact, I is called a duality coefficient in [71, Section

7.3]. There is a dg category with duality

(A-dgMod-B,#I , canI)

with #I ∶ (A-dgMod-B)op → A-dgMod-B by M#I = [Mop, I]A and canI ∶ M →
M## by

can(x)(fop) = (−1)∣f ∣∣x∣i(f(xop)).

By abuse of notation, we write (A-dgMod-B,#I) for this dg category with duality.

Let A,B be dg algebras with involution. Then, there is a dg form functor

(A-dgMod-B,#I)⊗ (B-dgMod,#B)→ (A-dgMod,#I)

sending (M,N) to M ⊗B N with the duality compatibility map

γ ∶ [Mop, I]A ⊗B [Nop,B]B → [(M ⊗B N)op, I]A

defined by

γ(f ⊗ g)((m⊗ n)op) = (−1)∣m∣∣n∣f(g(nop)mop).

Applying A = (O, id), I = (O[−1], id) and B = (C0(q), σ), we deduce that
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Lemma 4.3.3. There is a dg form functor

(O-dgMod-C0(q),#O[−1])⊗ (C0(q)-dgMod,#σ
C0(q))→ (O-dgMod,#O[−1]).

We have already seen Bµ ∶ Cl[0,1] → [Cl[0,1],O[−1]] is a symmetric form in the dg

category with duality (O-dgMod,#O[−1]). We further observe the following result.

Lemma 4.3.4. The map Bµ ∶ Cl[0,1] → [(Cl[0,1])op,O[−1]] is a symmetric form in

(O-dgMod-C0(q),#O[−1]).

Proof. We only need to show Bµ is a right C0(q)-module map. This can be seen

directly by Lemma 4.2.3 and its proof.

By Lemma 3.2.4, we obtain

Corollary 4.3.2. There is a dg form functor

(BU0 ,Bµ)⊗? ∶ (C0(q)-dgMod,#σ
C0(q))→ (O-dgMod,#O[−1]).

Let sPerf(C0(q)) be the dg category of strictly perfect complexes of finitely gen-

erated left projective C0(q)-modules. Since sPerf(C0(q)) ⊂ C0(q)-dgMod and A ⊂
O-dgMod are full dg subcategories, we conclude

Corollary 4.3.3. There is a dg form functor

(BU0 ,Bµ)⊗? ∶ (sPerf(C0(q)),#σ
C0(q))→ (A ,#O[−1]).

Taking weak equivalences into account, we get an exact dg form functor

(BU0 ,Bµ)⊗? ∶ (sPerf(C0(q)),quis,#σ
C0(q))

// (A ,w,#O[−1])

which induces an equivalences of associated triangulated categories. Let

GW [i](C0(q), σ) ∶= GW [i](sPerf(C0(q)),quis,#σ
C0(q)).

By invariance for GW and GW , we find stable equivalences

(BU0 ,Bµ)∪? ∶ GW [i+1](C0(q), σ)
∼Ð→ GW [i](A ,w)

and

(BU0 ,Bµ)∪? ∶ GW [i+1](C0(q), σ)
∼Ð→ GW [i](A ,w)

Theorem 4.3.2. There is a stable equivalence of spectra

(HO(1)⊗?,⋯,HO(m)⊗?, ?) ∶
m

⊕
i=1

K(k)⊕GW [i](A ) ∼Ð→ GW [i](Qd).

where GW [i](A ) fits into another homotopy fibration sequence

GW [i](k) // GW [i](A ) // GW [i+1](C0(q), σ).
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Theorem 4.3.3. There is a stable equivalence of spectra

(HO(1)⊗?,⋯,HO(m)⊗?, ?) ∶
m

⊕
i=1

K(k)⊕GW [i](A ) ∼Ð→ GW [i](Qd).

where GW [i](A ) fits into another homotopy fibration sequence

GW [i](k) // GW [i](A ) // GW [i+1](C0(q)).

4.4 Application: Witt groups of Qodd

In this section, we prove Theorem 1.2.3. Let d > 0 be an odd integer. Note that

Balmer’s Witt groups W i(Qd) are just

W [i](Qd) ∶=W [i](sPerf(Qd),quis,#O , can)

in Schlichting’s framework. In fact, W 0(Qd) is isomorphic to the classical Witt group

W (Qd), cf. [7].

Lemma 4.4.1. Let k be a regular ring with 1
2 ∈ k. There is an isomorphism

W [i](A ) ≈W [i](Qd).

Proof. Note that the negative homotopy groups of K(k) vanish if k is regular, cf.

[69, Remark 7]. Taking negative homotopy groups over both sides of the equivalence

m

⊕
i=1

K(k)⊕GW [i](A ) ∼Ð→ GW [i](Qd),

we see the result.

Let W i(C0(q), σ) be the Balmer’s Witt groups of the even part Clifford algebra

C0(q) with the canonical involution σ, which are just

W [i](C0(q), σ) ∶=W [i](sPerf(C0(q)),quis,#σ
C0(q), can).

Note that W 0(C0(q), σ) is isomorphic to the classical Witt group of the non-

commutative algebra C0(q) with the involution σ.

Then, we have a dg functor

F ∶ C0(q)-dgMod-k // dgMod-k

by forgetting the left C0(q)-module structure. Observe that there is a dg form functor

(F, tr) ∶ (C0(q)-dgMod-k,#σ
C0(q))

// (dgMod-k,#k)
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with the duality compatibility map defined by the composition of k-module maps

[M,C0(q)]C0(q)
i // [M,C0(q)]k

[1,tr]
// [M,k]k

where the map i is the inclusion and where the map tr is the trace map. This dg

form functor gives an exact dg form functor

(F, tr) ∶ (sPerf(C0(q)),quis,#σ
C0(q))

// (sPerf(k),quis,#k)

which provides a map (F, tr) ∶W i(C0(q), σ)→W i(k).

Theorem 4.4.1. Let k be a regular local ring with 1
2 ∈ k. If d is odd, then

W 0(Qd) ≈ coker(F, tr)
W 1(Qd) ≈ W 2(C0(q), σ)
W 2(Qd) ≈ 0

W 3(Qd) ≈ ker(F, tr)

Recall the exact sequence A0 → A → A/A0 of triangulated categories. There is

a map ∂i ∶ W i(A/A0) → W i+1(A0) called the “connecting homomorphism” in [9].

The map ∂3 may be interpreted by the map (F, tr) in the following sense.

Proposition 4.4.1. The diagram

W 0(C0(q), σ)
(F,tr)

//

≅U
��

W 0(k)

≅G
��

W −1(A/A0) ∂3 //W 0(A0)

is commutative, where U (resp. G) denotes the map (U0, µ)⊗? (resp. (O, id)⊗?).

Proof. Let b be an element in W 0(C0(q), σ) corresponding to a symmetric space

b ∶M → [Mop,C0(q)]C0(q),

where M is a finitely generated left projective C0(q)-module. It is enough to check

G ○ (F, tr)(b) = ∂3 ○U(b).

Note that G ○ (F, tr)(b) is the symmetric space

ψ ∶ O ⊗M → [O ⊗M,O]O

47



defined by ψ(f ⊗ x)(g ⊗ y) = fg ⋅ tr(b(x)(yop)). Moreover, I claim ∂3 ○ U sends

b to the symmetric space ψ. Firstly, observe that U(b) is the symmetric space

U0 ⊗C0(q)M → (U0 ⊗C0(q)M)∨[−1] represented by the left roof t−1s

Cl[0,1] ⊗C0(q)M

t

vv

s

))

U0 ⊗C0(q)M
// (U0 ⊗C0(q)M)∨[−1].

where t is the projection and where s consists of the composition

e ∶ (O ⊗C0(q))⊗C0 M
`⊗1Ð→ U−1⊗C0 M

h⊗bÐ→ (U op
0 )∨⊗C0 [M

op,C0(q)]
γ
→ (U0⊗C0 M)∨

in the degree 1. Note that s is a quasi-isomorphism. Now, we use the procedure

introduced in [9] to investigate ∂3(U(b)). Observe that there is an exact triangle

(U0 ⊗C0 M)∨[−1] s−1t // U0 ⊗C0 M
`⊗1
// O ⊗M e // (U0 ⊗C0 M)∨

in the triangulated category A, and a symmetric form of exact triangles

(U0 ⊗C0 M)∨[−1]

=
��

s−1t // U0 ⊗C0 M
`⊗1

//

can

��

O ⊗M e //

ψ

��

(U0 ⊗C0 M)∨

=
��

(U0 ⊗C0 M)∨[−1] // (U0 ⊗C0 M)∨∨ e∨ // (O ⊗M)∨
(`⊗1)∨

// (U0 ⊗C0 M)∨

in the triangulated category (A,#O[−1]) with duality. Note that the map

s−1t ∶ (U0 ⊗C0 M)∨[−1]Ð→ U0 ⊗C0 M

is a symmetric form in the triangulated category (A,#O[−1]) with duality. Moreover,

it is isometric to the symmetric space

U(b) = t−1s ∶ U0 ⊗C0 M Ð→ (U0 ⊗C0 M)∨[−1]

in the triangulated category (A/A0,#O[−1]) with duality.

Proof of Theorem 1.2.3. Note that if k is local, then W i(k) = 0 for i /≡ 0 mod 4 and

W i(C0(q), σ) = 0 for i odd (cf. [12]). By four-periodicity and localization, we find a
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12-term long exact sequence

W 0(k) //W 0(A) // 0

%%
W 4(C0(q), σ)

(F,tr)
88

0

��

W 3(A)

OO

W 1(A)

��

0

OO

W 2(C0(q), σ)

yy
0

ff

W 2(A)oo 0oo

(4.4)

Then, we apply Lemma 4.4.1 to finish the proof.

Let q denote the quadratic form ⟨a1, . . . , an⟩ with ai ∈ k×.

Theorem 4.4.2. Let k be a field with 1
2 ∈ k. Then, we have

⟪a1a2, . . . , a1an⟫W 0(k) ⊂ ker(p∗ ∶W 0(k)→W 0(Qd))

where ⟪a1a2, . . . , a1an⟫ is the Pfister form. Moreover, if C0(q) is a division algebra,

then

W 0(Qd) ≈W 0(k)/⟪a1a2, . . . , a1an⟫W 0(k).

Proof. There is always an element β in W 0(C0(q), σ) represented by the form

β ∶ C0(q) ×C0(q)→ C0(q) ∶ (x, y)↦ xȳ

Let {e1, . . . , en} be an orthogonal basis of the quadratic form q. The Clifford algebra

C(q) has a basis {e∆ ∶ ∆ ∈ Fn2} where e∆ ∶= eb11 ⋯⋅ebnn with ∆ = (b1, . . . , bn). Let ∣∆∣ =
∑ bi. Then, C0(q) has a basis {e∆ ∶ ∆ ∈ Ω} where Ω is the set {∆ ∈ Fn2 ∶ ∣∆∣ is even}.

Thus, we see (F, tr)(β) =⊥∆∈Ω q(e∆) ∈ W 0(k) where q(e∆) ∶= q(e1)b1⋯ ⋅ q(en)bn =
ab11 ⋯⋅a

bn
n . Observe that ⊥∆∈Ω q(e∆) ≈ ⟪a1a2, . . . , a1an⟫ in W 0(k) (one may find that

[78, Exercise 3.14] is helpful to see this).

Let (D,σ) be a division algebra with involution, and let S(D) denote the involution

center, i.e. {x ∈D ∶ x = x̄}. It is well-known that W 0(D,σ) is generated by ⟨d⟩ with

d ∈ S(D)×. If C0(q) is a division algebra, I claim this element is exactly the generator

of ker(p∗) ≈ Im(F, tr). Taking ⟨d⟩ ∈W 0(C0(q), σ) with d ∈ S(C0(q)) ∩ {e∆ ∶ ∆ ∈ Ω},
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it is enough to show (F, tr)(⟨d⟩) ∈ ⟪a1a2, . . . , a1an⟫W 0(k). A computation shows

that

(F, tr)(⟨d⟩) = ±q(d)⟪a1a2, . . . , a1an⟫,

but ±q(d) disappears in W 0(k).

Suppose the field k is quadratically closed, i.e. every unit is a square. It is clear that

W 0(k) ≅ Z/2Z. Observe that the map (F, tr) vanishes. Thus, we have

Proposition 4.4.2. W 0(Q) ≈W 0(k) and W 3(Q) ≈W 0(C0(q), σ).

Corollary 4.4.1. If d ≡ 3,5 mod 8, then W 0(Q) = Z/2Z, W 1(Q) =W 2(Q) = 0 and

W 3(Q) = Z/2Z. If d ≡ 1,7 mod 8, then W 0(Q) = Z/2Z, W 2(Q) = W 3(Q) = 0 and

W 1(Q) = Z/2Z.

Proof. Combining Proposition 4.4.1 and Theorem 1.2.3, we conclude the results by

[12, Lemma 4.13] and [48, Proposition 8.4].

This result is well-known in the literature. Over a quadratically closed field k, every

quadric is isomorphic to the split one. The Witt groups of split quadrics are com-

puted in [60] and [93]. Now, we are interested in the case when the field k is not

quadratically closed, e.g. the real numbers R.

Let Q be the quadric defined by the quadratic form qn = n⟨1⟩. The Clifford algebra

of the quadratic form qn is well-known. I will use the exact sequence

0 //W −1(Q) //W 0(C0(q), σ)
(F,tr)

//W 0(k) //W 0(Q) // 0

to compute W 0(Q). Note that C0(q) ≈ C(q′) where q′ = (n − 1)⟨−1⟩. Let Y denote

the quaternion algebra (−1,−1
k ).

Assume −1 is not a sum of two squares. The algebra Y is a division algebra. We

copy parts of the table on [56, p. 125] for this case.

Table 1 n=3 n=5 n=7 n=9

C0(qn) Y M2(Y ) M8(k) M16(k)
Type of σ symplectic orthogonal

The type of the canonical involution is determined in [48, Proposition 8.4]. The

Clifford algebra is 8-periodic in the sense that C(qn+8) ≈ M16(C(qn)). By Morita

equivalence, we see that

W 0(C0(q), σ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

W 0(Y,σs) if n ≡ 3,5 mod 8

W 0(k) if n ≡ 1,7 mod 8
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where σs is the involution which is the 1 on the center and −1 outside the center.

Theorem 4.4.3. Let Q be the quadric defined by the quadratic form n⟨1⟩. Assume

−1 is not a sum of two squares in k, e.g. R. Then,

W 0(Q) ≈W 0(k)/2δ(n)W 0(k)

where δ(n) is the cardinality of the set {l ∈ Z ∶ 0 < l < n, l ≡ 0,1,2 or 4 mod 8}.

Proof. It is enough to show Im(F, tr) ≈ ker(p∗) ≈ 2δ(n)W 0(k). Recall that the map

(F, tr) takes a symmetric space M ×M → C0(q) in W 0(C0(q), σ) to the symmet-

ric space M ×M → C0(q)
tr→ k in W 0(k) by forgetting the left C0(q) structure.

Since there is a surjective group homomorphism Z[k×/k2×] → W 0(C0(q), σ) (via

the Morita equivalence), it is enough to investigate where a symmetric space rep-

resented by the irreducible C0(q)-module goes under the map (F, tr). Note that in

this case C0(q) is simple. Let Σ(q) be the unique (up to isomorphism) irreducible

left C0(q)-module. By Table 1, Σ(q) may be understood as a left ideal of C0(q). As

a k-vector space, Σ(q) is of rank 2δ(n). Consider a space represented by the form

b ∶ Σ(q) × Σ(q) ↪ C0(q) × C0(q)
β
→ C0(q). Note that β(e, e) = eē = 1 for any e in

the set of basis {e∆ ∶ ∆ ∈ Fn2}, and that tr(e∆) = 0 if ∆ ≠ 0. By a proper choice of

k-vector space basis of Σ(q) with respect to the k-vector space basis of C0(q), we

see (F, tr) sends b to the diagonal form 2δ(n)⟨1⟩ in W 0(k).

4.5 An exact sequence

Let (P, q) be an n-dimensional non-degenerate quadratic form over k. Recall that

Qd is the variety Proj(S(P ∗)/q) of dimension d = n−2. Consider the following maps

of exact sequences

0 //

��

0 //

��

ker(l) ≅ //

��

ker(v) //

��

0

Cld+1(Λ)

=
��

// Cld(Λ)

=
��

// Cld−1(Λ)

l

��

// Ud−2(Λ)

∃v
��

// 0

Ld+1
// Ld

ϕd // Ld−1
// coker(ϕd) // 0

(4.5)

where the middle row is the exact sequence (4.3) with Cli(Λ) ∶= O(−i)⊗Λ(si), the

bottom row is the Tate resolution, and where the map l is the projection by taking

the component O(1 − d) ⊗ Λd+2(P ∗) to 0. By the universal property of cokernels,
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we observe that there is a surjective map v ∶ Ud−2(Λ) → coker(ϕd) such that the

lower-third square in the diagram (4.5) is commutative. By taking kernels of maps

between the bottom and the middle exact sequences of the diagram (4.5), we obtain

the exact sequence in the top row. In particular, we see that

O(1 − d)⊗ det(P ∗) ≅ ker(l) ≅ ker(v).

Let s denote the composition

O(1 − d)⊗ det(P ∗)→ ker(l)→ ker(v)→ Ud−2(Λ).

Proposition 4.5.1. There is an exact sequence

0→ O(1 − d)⊗ det(P ∗) s→ Ud−2(Λ)→ L−d+2 → ⋯→ L1 → L0 → O(1)→ 0

where the part

L−d+2 → ⋯→ L1 → L0 → O(1)→ 0

is the Tate resolution truncated from L−d+2.

Corollary 4.5.1. Let d = 2m be an even number. Tensoring the exact sequence of

Proposition 4.5.1 with the line bundle O(m − 1), we obtain another exact sequence

0→ O(−m)⊗det(P ∗) s→ Ud−2(Λ)(m−1)→ L−d+2(m−1)→ ⋯→ L0(m−1)→ O(m)→ 0.

(4.6)

This exact sequence is of length n = d + 2. We denote it by T[−m,m].

4.6 Grothendieck-Witt spectra of Qeven

In this section, we let Qd be a smooth quadric hypersurface of dimension d = 2m

corresponding to a non-degenerate quadratic form (P, q) of rank n = d + 2. Recall

from Corollary 4.1.2 the semi-decomposition

DbQd = ⟨A[1−m,−1],A,A[1,m−1],Am⟩.

Define A′ ∶= ⟨A[1−m,−1],A,A[1,m−1]⟩. Note that A′ is fixed by the duality ∨ ∶=
H om(−,O).

Recall that the quadruple

(sPerf(Qd),quis,#O , canO)
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is a dg category with weak equivalences and duality. Let C ′ be the full dg sub-

category of sPerf(Qd) associated to the triangulated category A′. Let v be the set

of morphisms in sPerf(Qd) which become isomorphisms in the Verdier quotient

T (sPerf(Qd),quis)/T (C ′,quis). Note that C ′ is fixed by the duality #O = [−,O].

Note that the sequence of dg categories with weak equivalences and duality

(C ′,quis) // (sPerf(Qd),quis) // (sPerf(Qd), v)

is quasi-exact (hence Morita exact). So, it induces localization sequences of GW -

spectra

GW [i](C ′) // GW [i](Qd) // GW [i](Qd, v)

and localization sequences of GW -spectra

GW [i](C ′) // GW [i](Qd) // GW [i](Qd, v).

Observe that GW [i](C ′) and GW [i](C ′) may be manipulated similarly as in the

case of odd dimensional quadrics. Thus, we conclude

Theorem 4.6.1. There is a stable equivalence of spectra

(HO(1)⊗?,⋯,HO(m)⊗?, ?) ∶
m

⊕
i=1

K(k)⊕GW [i](A ) ∼Ð→ GW [i](C ′)

where GW [i](A ) fits into another homotopy fibration sequence

GW [i](k) // GW [i](A ) // GW [i+1](C0(q), σ).

Moreover, a similar result holds for GW .

It turns out we really need to study GW [i](Qd, v) and GW [i](Qd, v).

Consider the exact sequence T[−m,m] in Corollary 4.5.1, and delete the component

O(−m)⊗ det(P ∗) in T[−m,m]. We obtain a complex concentrated in degree [−d,0]

0→ Ud−2(Λ)(m − 1)→ L−d+2(m − 1)→ ⋯→ L0(m − 1)→ O(m)→ 0 (4.7)

Denote this new complex by T[1−m,m]. Note that

L−d+2(m − 1) = O(1 −m)⊗ (⊕
j≥0

Λ(−d+2)+1−2j(P ∗)).

That is why I write 1 −m in the brackets of T[1−m,m].
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Lemma 4.6.1. Assume P is free. Then, there exists a symmetric space (O(m), ψ)
in the category with duality

(T (sPerf(Q), v),#O[d], ε ⋅ can)

where ε = ±1 and where the form ψ is represented by the following right roof

T[1−m,m]

ψ ∶ O(m) //

ι
99

[O(m),O[d]]O

s
gg

The only non-trivial morphism of ι ∶ O(m)→ T[1−m,m] is the map id ∶ O(m)→ O(m)
in the degree 0. The only non-trivial morphism of

s ∶ [O(m),O[d]]→ T[1−m,m]

is the composition

O(m)∨ ∼Ð→ O(−m) ∼Ð→ O(−m)⊗ det(P ∗) vÐ→ Ud−2(Λ)

in the degree −d.

Proof. It is enough to show that ι and s are both weak equivalences and that ψ is

symmetric. Indeed, s is a quasi-isomorphism, hence also a weak equivalence. Fur-

thermore, the cone of the morphism ι in DbQ is already in the triangulated category

A[1−m,m−1]. Thus, ι is a weak equivalence and we conclude ψ is an isomorphism in

HomT (sPerf(Q),v)(O(m),O(m)∨[d]).

Define ψt ∶= ψ# ○ canO(m). Note that ψtt = ψ. Next, we show that ψ = εψt for some

sign ε. In fact, the morphism ψ can also induce an isomorphism

HomT (sPerf(Q),v)(O(m),O(m)∨[d]) ≈ HomT (sPerf(Q),v)(O(m),O(m))

The right-hand side is isomorphic to

HomDbQ(O(m),O(m)) ≈ k,

since T (sPerf(Q), v) is just the Verdier quotient DbQ/A′. Thus, we conclude ψt = εψ
for some ε ∈ k×. Observe that ψ = ψtt = (εψ)t = ε2ψ. This suggests ε2 = 1 (so ε = ±1),

because ψ is an isomorphism.
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The sign ε will be determined later. Consider the dg form functor

(O-dgMod-k,#O[d])⊗ (k-dgMod,#k)→ (O-dgMod,#O[d])

with the duality compatibility map

γ ∶ [M,O[d]]O ⊗ [N,k]k → [M ⊗N,O[d]]O

defined by γ(f ⊗ g)(m⊗n) = (−1)∣g∣∣m∣f(m)g(n). The proof of [73, Lemma 3.9] tells

us that the form (O(m), ψ) (in Lemma 4.6.1) can be lifted to a symmetric form

(BO(m),Bψ) in the dg category

(sPerf(Qd), v,#O[d], ε ⋅ can)

with weak equivalences and duality, such that the morphism Bψ is in v and that

(BO(m),Bψ) is isometric to (O(m), ψ) in (T (sPerf(Q), v),#O[d], ε ⋅ can).

Lemma 4.6.2. There is a dg form functor

(BO(m),Bψ)⊗? ∶ (k-dgMod,#k) // (O-dgMod,#O[d], ε ⋅ canO)

for some sign ε.

Proof. This is a consequence of Lemma 3.2.4.

Restricting ourselves to the full dg subcategory sPerf(k) ⊂ k-dgMod and taking the

set v of weak equivalences into account, we obtain

Lemma 4.6.3. There is an exact dg form functor

(BO(m),Bψ)⊗? ∶ (sPerf(k),quis,#k, can) // (sPerf(Qd), v,#O[d], ε ⋅ can)

of dg categories with weak equivalences and duality for ε = ±1.

It is well-known that the composition of functors

i ∶ Am Ð→ ⟨A′,Am⟩Ð→ ⟨A′,Am⟩/A′ ≈ T (sPerf(Q), v)

is an equivalence, where the first functor is the inclusion and the second one is the

quotient. Furthermore, this equivalence induces an equivalence of categories

Dbk Ð→ T (sPerf(Q), v),E ↦ O(m)⊗E.

Thus, the functor BO(m)⊗? ∶ sPerf(k) → sPerf(Q) induces an equivalence of associ-

ated triangulated categories. By invariance of GW and GW , we get
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Lemma 4.6.4. There is an equivalence

(BO(m),Bψ)⊗? ∶ GW [i](k) ∼ //
εGW

[i+d](Q,v)

of spectra for ε = ±1, where εGW
[i+d](Q,v) ∶= GW [i+d](sPerf(Qd), v,#O[d], ε ⋅ can).

A similar result holds for the case of GW .

Recall d = 2m. The sign ε is determined by the following:

Lemma 4.6.5. There is an equivalence

(BO(m),Bψ)⊗? ∶ GW [i](k) ∼ //
εGW

[i+d](Qd, v)

of spectra where ε = (−1)
d(d−1)

2 . A similar result holds for the case of GW -spectra.

Proof. Assume first that k is a field. If m is odd, we argue ε = 1 is impossible, hence

ε must equal −1. Note that by our notation 1GW
[i](Q,v) = GW [i](Q,v). Then,

there is a homotopy fibration

GW [2](C ′) // GW [2](Q) //
1GW

[2](Q,v)

of spectra by the localization. If d = 1, we have 1GW
[2](Q,v) ≈ GW [2](k). Taking

the negative homotopy group π−4 to the fibration, one has an exact sequence

W 2(A′) //W 2(Q) //W 2(k)

By the base change k → k̄, we get an exact sequence

W 2(A′
k̄
) //W 2(Qk̄) //W 2(k̄).

Note that W 2(A′
k̄
) = 0 by a similar argument to the proof of Theorem 1.2.3. Besides,

W 2(k̄) = 0 is well-known. This implies W 2(Qk̄) = 0. This is a contradiction because

W 2(Qk̄) ≈W 2(QC) by [86] and W 2(QC) ≈ Z/2Z by [93].

If m is even, we prove that ε = −1 is impossible, hence ε must equal 1. Under

our notation, we have −1GW
[i+2](Q,v) = GW [i](Q,v). Applying the localization

theorem, we deduce a homotopy fibration sequence

GW [0](C ′) // GW [0](Q) // −1GW
[2](Q,v)

Assume ε = −1. By Lemma 4.6.4 and the 4-periodicity, we have −1GW
[2](Q,v) ≈

GW [2](k). Similar to the procedure above, we get an exact sequence

W 0(A′
k̄
) //W 0(Qk̄) //W 2(k̄).
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By the proof of Theorem 4.4.2, we deduce W 0(A′
k̄
) ≈ W 0(k̄) ≈ Z/2Z. Note that

W 2(k̄) = 0 gives a surjective map W 0(k̄)→W 0(Qk̄), so W 0(Qk̄) = 0 or Z/2Z. This

is a contradiction because W 0(Qk̄) ≈W 0(QC) = (Z/2Z)2 by [60] or [93].

For the general case (k is any commutative ring with 1
2 ∈ k), we consider the base

change k → kP (with P any prime ideal of k) and take the field of fractions of kP .

Note that by our sign convention, εGW
[i](Q) is as the same as GW [i](Q) if ε =

(−1)
d(d−1)

2 and d = 2m is even.

Theorem 4.6.2. Let d = 2m. There exists a homotopy fibration sequence of spectra

⊕m−1
j=1 K(k)⊕GW [i](A ) // GW [i](Qd) // GW [i−d](k)

where GW [i](A ) fits into another homotopy fibration sequence

GW [i](k) // GW [i](A ) // GW [i+1](C0(q), σ).

Theorem 4.6.3. Let d = 2m. There exists a homotopy fibration sequence of spectra

⊕m−1
j=1 K(k)⊕GW [i](A ) // GW [i](Qd) // GW [i−d](k)

where GW [i](A ) fits into another homotopy fibration sequence

GW [i](k) // GW [i](A ) // GW [i+1](C0(q), σ).

4.7 Application: Witt groups of Qeven

Let d = 2m be an even integer. In this section, we continue our study of Balmer’s

Witt groups W i(Qd) in Section 4.4 by considering d = 2m.

Lemma 4.7.1. Let k be a regular ring with 1
2 . Let d = 2m. Then, there is an exact

sequence

⋯ //W [i](A ) //W [i](Q) //W [i−d](k) //W [i+1](A ) // ⋯

Proof. Taking the negative homotopy groups of the fibration sequence

⊕m−1
j=1 K(k)⊕GW [i](A ) // GW [i](Qd) // GW [i−d](k) ,

we see the results.

Having this lemma in hand, we are able to prove
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Theorem 4.7.1. Let k be a regular local ring with 1
2 ∈ k. If d is even, then there is

a 12-term long exact sequence

coker(F, tr) //W 0(Q) //W −d(k)

''

W 3−d(k)

77

W 2(C0(q), σ)

��

W 3(Q)

OO

W 1(Q)

��

ker(F, tr)

OO

W 1−d(k)

ww
W 2−d(k)

gg

W 2(Q)oo 0oo

Proof. By Lemma 4.7.1, we are reduced to study W [i](A ). The computation of

W [i](A ) ≈W i(A) is given in Section 4.4.

Let q be the quadratic form ⟨a1, . . . , an⟩ with ai ∈ k×.

Theorem 4.7.2. Let k be a field of characteristic ≠ 2. Then, we have

⟪a1a2, . . . , a1an⟫W 0(k) ⊂ ker(p∗ ∶W 0(k)→W 0(Qd))

where ⟪a1a2, . . . , a1an⟫ is the Pfister form. Moreover, if C0(q) is a division algebra,

then

W 0(Qd) ≈W 0(k)/⟪a1a2, . . . , a1an⟫W 0(k)

when d ≡ 2 mod 4, and there is an exact sequence

0 //W 0(k)/⟪a1a2, . . . , a1an⟫W 0(k) //W 0(Qd) //W 0(k)

when d ≡ 0 mod 4.

Proof. Apply Lemma 4.7.1. The rest is similar to the proof of Theorem 4.4.2.

Let Q be the quadric defined by the quadratic form qn = n⟨1⟩ with n even. Let X

denote k(
√
−1), and let Y denote the quaternion algebra (−1,−1

k ).

Assume −1 is not a sum of two squares. Then, X is a field and Y is a division

algebra. We copy parts of the table on [56, p. 125] for this case.
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Table 2 n=2 n=4 n=6 n= 8

C0(qn) X Y × Y M4(X) M8(k) ×M8(k)
Type of σ unitary symplectic unitary orthogonal

The type of the canonical involution is determined in [48, Proposition 8.4]. The

Clifford algebra is 8-periodic in the sense that C(qn+8) ≈ M16(C(qn)). By Morita

equivalence, we see that

W 0(C0(q), σ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

W 0(X,σu) if n ≡ 2,6 mod 8

W 0(Y,σs)⊕W 0(Y,σs) if n ≡ 4 mod 8

W 0(k)⊕W 0(k) if n ≡ 8 mod 8

where σu is the unitary involution and σs is the involution which is identity on the

center and −1 outside the center.

Theorem 4.7.3. Assume −1 is not a sum of two squares in k. If d ≡ 2 mod 4, then

W 0(Qd) ≈W 0(k)/2δ(n)W 0(k) and if d ≡ 0 mod 4, then there is an exact sequence

0 //W 0(k)/2δ(n)W 0(k) //W 0(Qd) //W 0(k) .

Moreover, if k is Euclidean, then W 0(Qd) ≈ Z/2δ(n)Z.

Proof. A proof similar to the proof of Theorem 4.4.3 can be applied to obtain the

first part.

If k is Euclidean, then W 0(k) ≈ Z. By [21, Proposition 3.1], we conclude W 0(Qd)
is a 2-primary torsion group. Thus, if d is even, W 0(Qd) is isomorphic to Z/2δ(n)Z
because Hom(Z/2cZ,Z) = 0 for any integer c > 0.
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Chapter 5

Sums-of-squares formulas

A sums-of-squares formula of type [r, s, n] over a field F of characteristic ≠ 2 (with

strictly positive integers r, s and n) is a formula

(
r

∑
i=1

x2
i ) ⋅ (

s

∑
i=1

y2
i ) = (

n

∑
i=1

z2
i ) ∈ F [x1, . . . , xr, y1, . . . , ys] (5.1)

where zi = zi(X,Y ) for each i ∈ {1, . . . , n} is a bilinear form in X and Y (with

coefficients in F ), i.e. zi ∈ F [x1, . . . , xr, y1, . . . , ys] is homogeneous of degree 2 and

F -linear in X and Y . Here, X = (x1, . . . , xr) and Y = (y1, . . . , ys) are coordinate

systems. To be specific, zi = ∑k,j c
(i)
kj xkyj for c

(i)
kj ∈ F .

An old problem of Adolf Hurwitz concerns the existence of sums-of-squares for-

mulas. This problem is valuable because it is related to several other branches of

mathematics. Let m be a strictly positive integer, and let δ(m) denote the cardinal-

ity of the set {l ∈ Z ∶ 0 < l <m and l ≡ 0,1,2 or 4 (mod 8)}. The aim of this chapter

is to prove the following result.

Theorem 5.0.4 (Theorem 1.1 [86]). If a sums-of-squares formula of type [r, s, n]
exists over a field F of characteristic ≠ 2, then 2δ(s)−i+1 divides (n

i
) for all i ∈ Z such

that n − r < i ≤ δ(s).

Corollary 5.0.1 (Hurwitz-Radon Theorem [39] and [67]). If a sums-of-squares

formula of type [r, n, n] exists over F , then r ≤ ρ(n).

Proof. Putting the value r, n, n in the numerical condition of Theorem 5.0.4, we

obtain 2δ(r) divides (n
1
) = n. It follows that r ≤ ρ(n) by [78, Exercise 6, Chapter

0].
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Remark 5.0.1. This result implies one direction of the Hurwitz-Radon Theorem.

There is a mistake in the published version [86]. The triple [3,5,5] does not satisfy

the condition of Theorem 5.0.4 (because 2δ(3) does not divide (5
1
)).

Another consequence of Theorem 5.0.4 is the following result, which has been proved

in [2] and [3] (see also [78, Theorem 14.10]).

Corollary 5.0.2 (Adem’s Theorem). Suppose a sums-of-squares formula of type

[r, n − 1, n] exists over F .

• If n is even, then r ≤ ρ(n);

• If n is odd, then r ≤ ρ(n − 1).

Proof. Putting the value r, n− 1, n in the numerical condition of Theorem 5.0.4, we

obtain 2δ(r) divides (n
2
) = n(n − 1). If n is even, 2δ(s)∣n. If n is odd, 2δ(s)∣(n − 1).

The results follow by [78, Exercise 6, Chapter 0].

Example 5.0.1. Consider the triplet [15,10,16] which does not exist over F by

the above theorem. Neither Hopf’s condition [23] nor the weaker condition in [22]

can give the non-existence of [15,10,16].

Remark 5.0.2. The algebraic K-theory analog (cf. [22, Theorem 1.1]) of our main

theorem works even if the assumption ‘if a sums-of-squares formula of type [r, s, n]
exists over F ’ is replaced by ‘if a nonsingular bilinear map of size [r, s, n] exists over

F ’. The statement with the latter assumption is ‘stronger’. However, this is not the

case under our proof, since we will use the sums-of-squares formula (5.1).

Remark 5.0.3. The triplet [r, s, n] is independent of the base fields whenever r ≤ 4

and whenever s ≥ n− 2 (cf. [78, Corollary 14.21]), so that the main theorem is true.

There is a bold conjecture which states that the existence of [r, s, n] is independent

of the base field F (of characteristic ≠ 2), cf. [76, Conjecture 3.8] or [78, Conjecture

14.22]. Our main theorem and Dugger-Isaksen’s Hopf condition (cf. [23]) suggest

this conjecture to some extent.

In [93], it was shown that the Grothendieck-Witt group of a complex cellular variety

is isomorphic to the KO-theory of its set of C-rational points with analytic topology.

The set of C-rational points of a deleted quadric is homotopy equivalent to the

real projective space of the same dimension, cf. [57, Lemma 6.3]. Moreover, the

computation of topological KO-theory of a real projective space is well-known, cf.

[1, Theorem 7.4]. We therefore have motivations to work on the Grothendieck-Witt

group of a deleted quadric and on the γi-operations. The proof of our main theorem
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requires the computation of Grothendieck-Witt group of a deleted quadric which

will be explored in Section 5.2.

5.1 Terminologies, notations and remarks

Let (E ,∗, η) be a Z[1
2]-linear exact category with duality. For i ∈ Z, Walter’s

Grothendieck-Witt groups GW i(E ,∗, η) are defined in [70, Section 4.3]. The triplet

(Vect(X),H om( ,L), can) (the notation in [70, Example 2.3]) is an exact category

with duality. If X is any Z[1
2]-scheme, then we define

GW i(X,L) ∶= GW i(Vect(X),H om( ,L), can).

By the symbols GW i(X), we mean the groups GW i(X,O). Note that GW 0(X) is

just Knebusch’s L(X) which is defined in [46]. The notation in [7] is used for the

Witt theory. For KO-theory and comparison maps, we refer to [93].

Definition 5.1.1. Let T be a scheme. For us, a smooth T -variety X is called T -

cellular if it has a filtration by closed subvarieties

X = Z0 ⊃ Z1 ⊃ ⋯ ⊃ ZN = ∅

such that Zk−1 −Zk ≅ AnkT for each k.

In this chapter, the following notations are introduced for convenience:

F — a field of characteristic ≠ 2;

K — an algebraically closed field of characteristic ≠ 2;

V — the ring of Witt vectors over K;

L — the field of fractions of V ;

XF — the base-change scheme X ×Z[ 1
2
] F for any Z[1

2]-scheme X;

S — the polynomial ring F [y1, . . . , ys];
Ps−1 — the scheme Proj Z[1

2][y1, . . . , ys];
qs — the quadratic polynomial qs(y) = y2

1 + . . . + y2
s ;

V+(qs) — the closed subscheme of Ps−1 defined by qs;

D+(qs) — the open subscheme Ps−1 − V+(qs) of Ps−1;

ξ — the line bundle O(−1) of Ps−1
F restricted to D+(qs)F ;

R — the ring of elements of total degrees 0 in Sqs ;

P — the R-module of elements of total degrees −1 in Sqs ;

Qn — the Z[1
2]-scheme defined by

∑n/2i=0 xiyi = 0 in Pn+1, if n > 0 is even;

∑(n−1)/2
i=0 xiyi + c2 = 0 in Pn+1, if n > 0 is odd;

DQn+1 — the open subscheme Pn+1 −Qn of Pn+1.
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Remark 5.1.1. (i) Let E be a field containing
√
−1 and of characteristic ≠ 2. Note

that (Qs−2)E is isomorphic to the projective variety V+(qs)E , cf. [23, Lemma 2.2].

This map induces an isomorphism iE ∶ (DQs−1)E →D+(qs)E .

(ii) Observe that V is a complete DVR with the quotient field K, cf. [75, Chapter

II]. Also, note that the fraction field L of V has characteristic 0, cf. loc. cit..

(iii) The scheme D+(qs)F is affine over the base field F , since D+(qs)F and Spec R

are isomorphic, cf. [22, Proof of Proposition 2.2].

5.2 Proof of Theorem 5.0.4

Lemma 5.2.1. If a sums-of-squares formula of type [r, s, n] exists over F , then

there exist a non-degenerate bilinear form σ ∶ ξ × ξ → O on D+(qs)F and a bilinear

space ζ on D+(qs)F of rank n − r such that

r[ξ, σ] + [ζ] = n ∈ GW 0(D+(qs)F )

where n is the trivial bilinear space of the rank n.

Proof. The K-theory analog has been proved, cf. [22, Proposition 2.2]. It is clear

that the group GW 0(D+(qs)F ) is isomorphic to GW0(R) by Remark 5.1.1 (iii). If

the equation (5.1) exits, we are able to construct a graded S-module homomorphism

(S(−1))r → Sn by f = (f1, . . . , fr) ↦ (z1(f, Y ), . . . , zn(f, Y )) where Y = (y1, . . . , ys)
is the coordinate system. This map induces a homomorphism α ∶ P r → Rn of R-

modules by localizing it at qs.

The isomorphism P ⊗R P → R,f ⊗ g ↦ (fg) ⋅ qs gives a non-degenerate bilinear

form σ ∶ P × P → R. Let ⟨−,−⟩Rn be the unit bilinear form over Rn. Let f =
(f1, . . . , fr), g = (g1, . . . , gr) ∈ P r. We claim that ⟨α(f), α(g)⟩Rn equals ∑ri=1 σ(fi, gi).
It is enough to show that ⟨α(f), α(f)⟩Rn = ∑ri=1 σ(fi, fi). Note that ⟨α(f), α(f)⟩Rn =
z1(f, Y )2+...+zn(f, Y )2. By the existence of the triplet [r, s, n], we obtain z1(f, Y )2+
. . . + zn(f, Y )2 = (f2

1 + . . . + f2
r )qs = ∑ri=1 σ(fi, fi).

Note that (P r,∑ri=1 σ) is non-degenerate. It follows that α is injective and (P r,∑ri=1 σ)
can be viewed as a non-degenerate subspace of (Rn, ⟨−,−⟩Rn) via α. Define ζ to be

its orthogonal complement (P r)� with the unit form ⟨−,−⟩Rn restricting to (P r)�.

By a basic fact of quadratic form theory, ζ is non-degenerate and ζ�(P r,∑ri=1 σ) ≅
(Rn, ⟨−,−⟩Rn).

63



Theorem 5.2.1. Let ν denote the element [ξ, σ] − 1 in the ring GW 0((D+(qs)K).

Then, the ring GW 0((D+(qs)K) is isomorphic to

Z[ν]/(ν2 + 2ν,2δ(s)ν)

where δ(s) is the number defined in the beginning of this chapter. Therefore, for any

rational point ς ∶ Spec K → (D+(qs)K), the reduced Grothendieck-Witt ring

G̃W
0(D+(qs)K) ∶= ker (ς∗ ∶ GW 0(D+(qs)K)→ GW 0(Spec K) ≅ Z)

is isomorphic to Z/2δ(s)Z.

Theorem 5.2.1 will be proved in the next section.

Proof of Theorem 5.0.4. It is enough to show this theorem over the algebraic clo-

sure F̄ of F . Indeed, if [r, s, n] exists over F , then it also exists over F̄ .

In order to apply the standard trick (cf. [22, Proof of Theorem 1.3]), we have to

take care of γi-operations on GW 0(D+(qs)F̄ ). To be specific, this standard trick

can not be applied without the list of three properties (cf. Properties (i)-(iii) in

loc. cit.) of γi-operations and their generating power series γt = 1 + ∑i>0 γ
iti on

GW 0(D+(qs)F̄ ). Due to the lack of reference, we will develop γi-operations on

K(Bil(X)) and prove these three properties (see Section 5.4). It is enough for our

purpose because GW 0(X) is just K(Bil(X)) if X is affine (see Remark 5.4.1), and

the scheme D+(qs)F̄ is affine by Remark 5.1.1 (iii).

By Lemma 5.2.1, we have rν + (ζ − (n − r)) = 0 ∈ G̃W 0(DQs−1). Applying γt, we

obtain that γt(ζ−(n−r)) = γt(ν)−r = (1+tν)−r = ∑i (n−i)ν
iti = ∑i(−1)i−1(n−i)2i−1νti =

−∑i (r+i−1
i

)2i−1νti by Theorem 5.2.1. By the property of γ-operation, one sees that

2δ(s) divides 2i−1(r+i−1
i

) for i > n−r. If n−r < δ(s), then 2δ(s)−i+1 divides (r+i−1
i

) for n−
r < i ≤ δ(s). Combining with a reformulation of powers of 2 dividing correspondent

binomial coefficients (cf. [22, Section 1.2]), we are done.

5.3 Proof of Theorem 5.2.1

5.3.1 Rigidity and Hermitian K-theory of cellular varieties

By Remark 5.1.1 (ii), there is always an inclusion map Q→ L where Q (resp. L) is

the algebraic closure of Q (resp. L). Consider the following diagram (5.2).
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K ←ÐÐÐÐ V ÐÐÐÐ→ L W i(K) βi

←ÐÐÐÐ
≅

W i(V ) αi

ÐÐÐÐ→
≅

W i(L)
Õ×××

≅

Õ×××
χi

C ←ÐÐÐÐ Q W i(C) ≅←ÐÐÐÐ
ηi

W i(Q)

(5.2)

On the right-hand side of the diagram (5.2), the maps of Witt groups are all induced

by the correspondent ring maps of the left-hand side for a fixed i ∈ Z. All these

Witt groups are trivial if i /≡ 0 (mod 4), cf. [10, Theorem 5.6]. Note that β0 is an

isomorphism by [45, Satz 3.3]. It is also clear that W 0(K) is isomorphic to Z/2Z and

that all the maps on the right-hand side of the diagram (5.2) preserve multiplicative

identities for i = 0. Since Witt groups are four periodicity in shifting, we obtain

Lemma 5.3.1. The map ηi ○(χi)−1 ○αi ○(βi)−1 yields an isomorphism from W i(K)
to W i(C). Moreover, by Karoubi induction (cf. [15, Section 3]), the left-hand side of

the diagram (5.2) gives an isomorphism GW i(K)→ GW i(C) of Grothendieck-Witt

groups. ◻

Lemma 5.3.2. Let X be a smooth Z[1
2]-cellular variety. Let f ∶ A → B be a

map of regular local rings of finite Krull dimensions with 1/2. Suppose that the

map W i(A) → W i(B) induced by f is an isomorphism for each i, then f gives an

isomorphism of Witt groups (resp. Grothendieck-Witt groups)

W i(XA,LA)→W i(XB,LB) (resp. GW i(XA,LA)→ GW i(XB,LB))

for each i and any line bundle L over X.

Proof. We may use W i(X,L)∗ to simplify the notation W i(X∗,L∗). We wish to

prove the Witt theory case by induction on cells. Firstly, note that the pullback

maps W i(A) → W i(AnA) and W i(B) → W i(AnB) are isomorphisms by homotopy

invariance, cf. [8, Theorem 3.1]. It follows that

W i(AnA) ≅W i(AnB).

Let X = Z0 ⊃ Z1 ⊃ ⋯ ⊃ ZN = ∅ be the filtration such that

Zk−1 −Zk ≅ Ank =∶ Ck.

In general, the closed subvarieties Zk may not be smooth. However, let Uk be the

open subvariety X−Zk for each 0 ≤ k ≤ N . Every Uk is smooth in X. There is another

filtration X = UN ⊃ UN−1 ⊃ ⋯ ⊃ U0 = ∅ with Uk − Uk−1 = Zk−1 − Zk ≅ Ck closed in
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Uk of codimension dk. Consider the following commutative diagram of localization

sequences.

W i−1(Uk−1)AÐ→W i
Ck

(Uk,L)AÐ→W i(Uk,L)AÐ→W i(Uk−1)AÐ→W i+1
Ck

(Uk,L)A
×××Ö

×××Ö
×××Ö

×××Ö
×××Ö

W i−1(Uk−1)BÐ→W i
Ck

(Uk,L)BÐ→W i(Uk,L)BÐ→W i(Uk−1)BÐ→W i+1
Ck

(Uk,L)B

Here, W i
Ck

(Uk,L) means the L-twisted ith-Witt group of Uk with support on Ck.

Note that any line bundle over (Ck)A is trivial, since

Pic(AnA) ≅ Pic(A) = 0 (A is regular local and so it is a UFD).

By the dévissage theorem (cf. [32]), W i
Ck

(Uk,L) is isomorphic to W i−dk(Ck). Thus,

W i
Ck

(Uk,L)A ≅W i
Ck

(Uk,L)B for all i.

Moreover, by induction hypothesis,

W i(Uk−1)A ≅W i(Uk−1)B for all i.

Applying the 5-lemma, one sees that the middle vertical map is an isomorphism.

Since the K-theory analog of this theorem is also true by induction on cells, the

GW -theory cases follow by Karoubi induction, cf. [15, Section 3].

Corollary 5.3.1. The Witt group (resp. the Grothendieck-Witt group)

W i(X,L)K (resp. GW i(X,L)K)

is isomorphic to

W i(X,L)C (resp. GW i(X,L)C)

for each i and any line bundle L over X.

5.3.2 Comparison maps and rank one bilinear spaces

If X is a smooth variety over C, we let X(C) be the set of C-rational points of X

with analytic topology. One can define comparison maps (cf. [93, Section 2])

k0 ∶ K0(X) → K0(X(C))
gw0 ∶ GW 0(X) → KO0(X(C))
w0 ∶ W 0(X) → KO

K

0(X(C))
(5.3)
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where KO
K

0(X(C)) means the cokernel of the realification map from Ktop0(X) to

KO0(X(C)). Let GW 0
top(X(C)) be the Grothendieck-Witt group of complex bilin-

ear spaces over X(C). The map gw0 consists of the composition of the following two

maps

f ∶ GW 0(X)→ GW 0
top(X(C)) g ∶ GW 0

top(X(C))→KO0(X(C))

where the map f takes a class [M,φ] on X to the class [M(C), φ(C)] on X(C).
The map g sends a class [N, ε] on X(C) to the class represented by the underlying

real vector bundle R(N, ε) such that R(N, ε)⊗RC = N and that ε∣R(N,ε) is real and

positive definite, cf. [93, Lemma 1.3]. Let Q(X) (resp. Qtop(X)) denote the group

of isometry (resp. isomorphism) classes of rank one bilinear spaces (resp. rank one

complex bilinear spaces) over X (resp. X(C)) with the group law defined by the

tensor product. There are maps of sets

Q(X)→ GW 0(X), [L, φ]↦ [L, φ] Qtop(X(C))→ GW 0
top(X(C)), [L, ε]↦ [L, ε].

Let PicR(X(C)) be the group of isomorphism classes of rank one real vector bundles

over X(C).

Lemma 5.3.3. The following diagram is commutative

GW 0(X) fÐÐÐÐ→ GW 0
top(X(C)) gÐÐÐÐ→ KO0(X(C))

Õ×××
u
Õ×××

v
Õ×××

Q(X) f̃ÐÐÐÐ→ Qtop(X(C)) g̃ÐÐÐÐ→ PicR(X(C))

where f̃([L, φ]) (resp. g̃([L, ε])) is defined as [L(C), φ(C)] (resp. [R(L, ε)]).

Proof. The square on the left-hand side is obviously commutative. It remains to

show that the right-hand side square is commutative. Check that the map g̃ is well-

defined. Note that, for each couple of complex bilinear spaces (L′
, ε

′) and (L, ε)
on X(C), if R(L′

, ε
′) is isomorphic to R(L, ε), then (L′

, ε
′) is isometric to (L, ε).

Besides, the map g̃ has image in PicR(X(C)). To see this, suppose g̃([L, ε]) =
[R(L, ε)] is not in PicR(X(C)) for some [L, ε] ∈ Qtop(X(C)). It follows that X(C)
has a point with an open neighborhood U such that R(L, ε)∣U is isomorphic to U×Rn

with n ≠ 1. Then, L∣U is isomorphic to U ×Cn (n ≠ 1), since R(L, ε)⊗R C ≅ L. This

contradicts the assumption that the bundle L has rank one. Then, it is clear that

g ○ u = v ○ g̃.

5.3.3 Comparison maps and cellular varieties

Let H(C) (resp. SH(C)) be the unstable A1-homotopy category (resp. the stable

A1-homotopy category) over C. Let H●(C) be the pointed version of H(C). There
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are objects in H●(C):

S1
s − the constant sheaf represented by ∆1/∂∆1 pointed canonically;

S1
t − the sheaf represented by A1 − {0} pointed by 1;

T − the sheaf represented by the projective line P1 pointed by ∞.

Set Sp,q = (S1
s)∧(p−q)∧(S1

t )∧q with p ≥ q ≥ 0. Then, S2,1 and T are A1-weakly equiva-

lent. See [59, Section 3.2] for details and [93, Section 1.4] for discussion. One may take

these objects to SH(C). The category SH(C) is triangulated with translation func-

tor S1,0∧−. Set K̃O
p,q(X ) ∶= [Σ∞X , Sp,q∧KO] and KOp,q(X) ∶= [Σ∞X+, S

p,q∧KO]
where X ∈ H●(C) and X ∈ H(C). The object KO ∈ SH(C) is the geometric model

of Hermitian K-theory in the A1-homotopy theory defined by Schlichting and Tri-

pathi (see [74] or [93, Section 1.5]). Moreover, there are isomorphisms GW q(X) ≅
KO2q,q(X) and W q(X) ≅ KO2q−1,q−1(X). One defines comparison maps (cf. [93,

Section 2])

k̃p,qh (X ) ∶ K̃O
p,q

(X ) → K̃O
p
(X (C))

kp,qh (X) ∶ KOp,q(X) → KOp(X(C)).

In particular, when X is a complex smooth variety, we have

gwq = k2q,q
h ∶ GW q(X) → KO2q(X(C))

wq+1 = k2q+1,q
h ∶ W q+1(X) → KO2q+1(X(C)).

Theorem 5.3.1. Let X be a complex smooth cellular variety. Assume further that

Z is cellular and closed in X, and let U ∶= X − Z. Then, the map k2q,q
h (U) is an

isomorphism and the map k2q+1,q
h (U) is injective.

Proof. When Z = ∅, this theorem is a special case of [93, Theorem 2.6]. We slightly

modify the proof of [93, Theorem 2.6] to show this theorem by induction on cells.

Let Z = ZN ⊃ ZN−1 ⊃ ⋯ ⊃ Z0 = ∅ be the filtration such that

Zk+1 −Zk ≅ Ank =∶ Ck.

Set Uk ∶= X − Zk for each 0 ≤ k ≤ N . Note that there is another filtration X = U0 ⊃
U1 ⊃ ⋯ ⊃ UN = U with Uk − Uk+1 = Zk+1 − Zk ≅ Ck closed in Uk. Then, the normal

bundle NUk/Ck of Uk in Ck is trivial. Hence, Thom(NUk/Ck) and S2d,d are A1-weakly

equivalent, where d is the codimension of Ck in Uk, cf. [59, Proposition 2.17]. We can

therefore deduce the commutative ladder diagram in [93, Figure 1 (p. 486)]. Assume

by induction, the theorem is true for Uk, and we want to prove it for Uk+1. It is

known that k̃2q,q
h (S2d,d) and k̃2q+1,q

h (S2d,d) are isomorphisms and that k̃2q+2,q
h (S2d,d)

is injective, cf. [93, Proof of Theorem 2.6]. The results follow by the 5-lemma.
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5.3.4 Grothendieck-Witt group of a deleted quadric

In this subsection, we simply write X = D+(qs),Q = Qs−2 and DQ = DQs−1. Note

that Q is smooth and closed in Ps−1 of codimension 1. The normal bundle N of Q

in Ps−1 is isomorphic to OQ(2).

Theorem 5.3.2. The comparison map gwq ∶ GW q(DQC) → KO2q(DQ(C)) is an

isomorphism for each q ∈ Z.

Proof. This theorem is a consequence of Theorem 5.3.1.

Lemma 5.3.4. The group GW 0(DQC) is isomorphic to GW 0(DQK).

Proof. Applying Corollary 5.3.1 and the dévissage theorem, we observe that the

vertical maps of W and GW -groups in the following commutative diagram are all

isomorphisms

GW 0
QK

(Ps−1
K )Ð→GW 0(Ps−1

K )Ð→GW 0(DQK)Ð→W 1
QK

(Ps−1
K )Ð→W 1(Ps−1

K )
×××Ö

×××Ö
Ω
×××Ö

×××Ö
×××Ö

GW 0
QC

(Ps−1
C )Ð→GW 0(Ps−1

C )Ð→GW 0(DQC)Ð→W 1
QC

(Ps−1
C )Ð→W 1(Ps−1

C )

where all vertical maps are induced from the left-hand side of the diagram (5.2) (use

the 5-lemma to see the middle map Ω is an isomorphism).

Recall the isomorphism of varieties iK ∶DQK →XK in Remark 5.1.1 (i). Note that

iC ∶DQC →XC gives a homeomorphism i(C) ∶DQ(C)→X(C) by taking C-rational

points. Besides, let υ ∶ RP s−1 → X(C) be the natural embedding. The space RP s−1

is a deformation retract of the space X(C) in the category of real spaces, cf. [57,

Lemma 6.3]. These maps that induce isomorphisms in KO-theory or GW -theory

are described in the diagram (5.4).

Hermitian K-theory Topological KO-theory

GW 0(DQC)
Ω ↑

GW 0(XK)
i∗KÐ→ GW 0(DQK)

gw0

Ð→ KO0(DQ(C))
↓ i∗(C)

KO0(X(C)) υ∗Ð→KO0(RP s−1)

(5.4)

Proof of Theorem 5.2.1. Let ξtop denote the tautological line bundle over RP s−1.

Recall that there is an isomorphism of rings

KO0(RP s−1) ≅ Z[νtop]/(ν2
top + 2νtop,2

δ(s)νtop)
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where νtop represents the class [ξtop]−1, cf. [40, Chapter IV]. Note that PicR(RP s−1)
is isomorphic to Z/2. Let ϑ ∶ GW 0(XK)→KO0(RP s−1) be the composition of maps

in the diagram (5.4). We have known ϑ is an isomorphism. Therefore, to prove

Theorem 5.2.1, we only need to show ϑ(ν) = νtop. To achieve this, we give the

following lemma.

Lemma 5.3.5. The group Q(XK) (cf. Section 5.3.2) is isomorphic to Z/2.

Proof. There is an exact sequence (cf. [46, Chapter IV.1])

1Ð→ O(XK)∗/O(XK)2∗ Ð→ Q(XK) FÐ→ 2Pic(XK)Ð→ 1

where 2Pic(XK) means the subgroup of elements of order ≤ 2 in Pic(XK) and where

F is the forgetful map. Note that 2Pic(XK) ≅ Z/2, cf. [77]. In addition, observe that

O(XK)∗ ≅ R∗ = K∗ and that the group K∗/K2∗ is trivial. It follows that the

forgetful map F is an isomorphism. In fact, it sends the non-trivial element [ξ, σ]
(in Lemma 5.2.1) to the non-trivial element [ξ].

Proof of Theorem 5.2.1 (Continued). In light of Lemma 5.3.3, there is a map

ϑ̃ ∶ Q(XK)→ PicR(RP s−1)

(obtained in an obvious way) such that the following diagram is commutative

GW 0(XK) ϑÐÐÐÐ→ KO0(RP s−1)

i
Õ×××

j
Õ×××

Z/2 ≅ Q(XK) ϑ̃ÐÐÐÐ→ PicR(RP s−1)≅Z/2.

The map i is injective (note that [ξ] and 1 are distinct elements in K0(XK) by its

computation in [22, Proposition 2.4]). The map j is injective by the computation

of KO0(RP s−1). Then, we see that ϑ̃ is bijective and must send [ξ, σ] to [ξtop].
Therefore, ϑ([ξ, σ]) = [ξtop], so that ϑ(ν) = νtop.

5.4 Operations on the Grothendieck-Witt group

The γi-operations on GW 0 of an affine scheme are analogous to those on the topo-

logical KO-theory which have been explained in [5, Section 1 and 2]. For readers’

convenience, details have been added.

Let Bil(X) be the set of isometry classes of bilinear spaces over a scheme X. The

orthogonal sum and the tensor product of bilinear spaces over the scheme X make
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Bil(X) a semi-ring with a zero and a multiplicative identity. Then, by taking the as-

sociated Grothendieck ring K(Bil(X)), we have a homomorphism of the underlying

semi-rings

ι ∶ Bil(X)→K(Bil(X))

satisfying the universal property (see [46, Chapter I.4] for details).

Remark 5.4.1. For an affine scheme X, the ring GW 0(X) is identified with

K(Bil(X)), cf. [46, Chapter I.4 Proposition 1].

Definition 5.4.1 (Chapter IV.3 (p. 235) [46]). Let (F , φ) be a bilinear space over

a scheme X. Let i be a strictly positive integer. The i-th exterior power of (F , φ),
denoted by Λi(F , φ), is the symmetric bilinear space (ΛiF ,Λiφ) over X, where ΛiF
is the i-th exterior power of the locally free sheaf F and where

Λiφ ∶ ΛiF ×X ΛiF → OX

is a morphism of sheaves consisting of a symmetric bilinear form

Λiφ(U) ∶ ΛiF(U) ×ΛiF(U)→ OX(U)

defined by

Λiφ(U)(x1 ∧⋯ ∧ xi, y1 ∧⋯ ∧ yi) = det(φ(U)(xi, yj))

for each open subscheme U of X. The exterior power Λ0(F , φ) for every bilinear

space (F , φ) (over X) is defined as 1 = (O, id).

Lemma 5.4.1. Let (F , φ), (G, ψ) be bilinear spaces over X. Then, we have that

(a) Λ1(F , φ) = (F , φ);

(b) Λk((F , φ)⊕ (G, ψ)) ≅⊕r+s=k Λr(F , φ)⊗Λs(G, ψ);

(c) If (F , φ) is of constant rank Θ, Λi(F , φ) = 0 whenever i > Θ.

Proof. (a) and (c) are clear. For (b), it is enough to show that the canonical isomor-

phism of locally free sheaves

% ∶ ⊕
r+s=k

ΛrF ⊗ΛsG → Λk(F ⊕ G)

respects the symmetric bilinear forms. This may be checked locally. Let U be an

affine open subset of the scheme X. One may choose elements

x(t) = x1,t ∧⋯ ∧ xr,t ∈ ΛrF(U) and y(t) = y1,t ∧⋯ ∧ ys,t ∈ ΛsG(U)
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for t ∈ {1,2}. Let ai,j ∶= φ(U)(xi,1, xj,2) and bk,l ∶= ψ(U)(yk,1, yl,2). We have matrices

A = [ai,j]r×r and B = [bk,l]s×s. On the one hand, we get that

Λrφ(U)⊗Λsψ(U)(x(1) ⊗ y(1), x(2) ⊗ y(2)) = det(A) × det(B). (5.5)

On the other hand, set

u(t) ∶= %(U)(x(t) ⊗ y(t)) ∈ Λr+s(F(U)⊕ G(U))

for t ∈ {1,2}. Consider the elements

(xj,t,0), (0, yk,t) ∈ F(U)⊕ G(U)

for 1 ≤ j ≤ r,1 ≤ k ≤ s and t ∈ {1,2}. It is clear that

u(t) = (x1,t,0) ∧⋯ ∧ (xr,t,0) ∧ (0, y1,t) ∧⋯ ∧ (0, ys,t)

for t ∈ {1,2}. Then, we deduce

Λr+s(φ(U)⊕ ψ(U))(u(1), u(2)) = det
⎛
⎝
A 0

0 B

⎞
⎠

(5.6)

Note (5.5) = (5.6). The result follows.

Let A(X) denote the group 1+tK(Bil(X))[[t]] of formal power series with constant

term 1 (under multiplication). Consider a map

Λt ∶ Bil(X)→ A(X), [F , φ]↦ 1 +∑
i≥1

Λi([F , φ])ti.

If I ∶ (F , φ)→ (G, ψ) is an isometry of bilinear spaces, so is the natural map

ΛiI ∶ Λi(F , φ)→ Λi(G, ψ).

Then, the map Λt is well-defined. Furthermore, Lemma 5.4.1 (b) implies that Λt is a

homomorphism of the underlying monoids. By the universal property of K-theory,

we can lift Λt to a homomorphism of groups

λt ∶K(Bil(X))→ A(X)

such that λt○ι = Λt. Taking coefficients of λt, we get operators (not homomorphisms

in general)

λi ∶K(Bil(X))→K(Bil(X)).

Set γt = λt/(1−t) and write γt = 1 +∑i≥1 γ
iti. Again, we obtain operators

γi ∶K(Bil(X))→K(Bil(X)).
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Explicitly, we deduce

∑
i≥0

γiti =∑
i≥0

λiti(1 − t)−i = 1 +∑
i≥1

( ∑
i≥s≥1

λs(i − 1

s − 1
))ti.

Hence, the γi are certain Z-linear combinations of the λs. By definition, the map γt

is a homomorphism of groups. Hence, for all x, y ∈K(Bil(X)), we have

Corollary 5.4.1. (a) γt(x + y) = γt(x)γt(y);

(b) γt([η] − 1) = 1 + t([η] − 1) where η is a bilinear space of rank 1 over X;

(c) If (F , φ) ∈ Bil(X) is of constant rank Θ, γi((F , φ) −Θ) = 0 if i > Θ.

Proof. (a) is proved. For (b), we deduce

γt([η] − 1) = γt([η])
γt(1)

=
λt/(1−t)([η])
λt/(1−t)(1)

= 1 + [η]t/(1 − t)
(1 − t)−1

= 1 + t([η] − 1).

For (c), see the proof of [5, Lemma 2.1].

5.5 Further investigation

In Theorem 5.2.1, we have only computed GW 0(D+(qs)) over F̄ , which is enough

for deducing Theorem 5.0.4.

Question 1: Can we generalize Theorem 5.0.4 by computing GW 0(D+(qs)F ) over

any field F of char. ≠ 2 (eg. F = R)?

It is valuable to consider this question, because Shapiro’s conjecture (cf. Remark

5.0.3) concerns if the base fields of characteristic ≠ 2 matter. Next, we show that

although GW 0(D+(qs)F ) may provide more information than GW 0(D+(qs)F̄ ) do,

the extra information is not necessary to generalize Theorem 5.0.4. This assertion

provides a little evidence to support the Shapiro’s conjecture.

Recall the number δ(s) in the beginning of this chapter and the Hurwitz-Radon

number ρ(n) in Chapter 2.

Lemma 5.5.1. A formula of type [ρ(n), n, n] exists. Hence, a formula of type

[s,2δ(s),2δ(s)] exists.

Proof. See [29, Theorem 1] for an explicit construction of [ρ(n), n, n], and [78, Ex-

ercise 6, Chapter 0] for the relation between these numbers.
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Applying the formula [s,2δ(s),2δ(s)] and Lemma 5.2.1, we deduce

Corollary 5.5.1. There is an embedding of symmetric bilinear forms

(P,σ)2δ(s) → (R, id)2δ(s) .

Thus, (P,σ)2δ(s) is trivial and 2δ(s)v = 0 in GW 0(D+(qs)F ).

It is also clear (ξ, σ)⊗ (ξ, σ) = (O, id), so that v2 + 2v = 0 in GW 0(D+(qs)F ). Thus,

we find a well-defined map

i ∶ Z[v]/(v2 = −2v,2δ(s)v)→ GW 0(D+(qs)F ).

Lemma 5.5.2. The map i ∶ Z[v]/(v2 = −2v,2δ(s)v)→ GW 0(D+(qs)F ) is split injec-

tive.

Proof. There is a map GW 0(D+(qs)F ) → GW 0(D+(qs)F̄ ) obtained by the base-

change F → F̄ . Note that there is a commutative diagram.

Z[v]/(v2 = −2v,2δ(s)v)

≈
))

i // GW 0(D+(qs)F )

��

GW 0(D+(qs)F̄ )

The isomorphism Z[v]/(v2 = −2v,2δ(s)v) ≅ GW 0(D+(qs)F̄ ) constructed in Theorem

5.2.1 gives the commutativity. The result follows.

Observe that the coefficients (r+i−1
i

)2i−1ν in the proof of Theorem 5.0.4 land in the

image of the injective map i. It follows that (r+i−1
i

)2i−1ν = 0 (for i > n−r) in the ring

Z[v]/(v2 = −2v,2δ(s)v), which implies 2δ(s)∣(r+i−1
i

)2i−1. Thus, we see sums-of-squares

formulas ignore the base field information under the standard trick of γ-operations.
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der reellen Algebra, Comment. Math. Helv., 13 (1941), 201-218.

[80] R. G. Swan, K-theory of a quadric hypersurfaces, Annals of Mathematics, 122

(1985), 113-153.
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