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Abstract

Since the very beginning of K-theory, operations like the lambda or the Adams op-

erations played a crucial role into the statement and the solution of many important

problems. They followed the evolution of K-theory at any stage, generalizing and

refining themselves as long as the theory was growing. The main objective of this

thesis is to study a generalisation of the results contained in the works of Joel Riou

from the category of smooth schemes to the category of schemes having an ample

family of line bundles. In particular we show that it is possible to give a special

lambda ring structure to K-theory seen as an element of the Zariski homotopy cat-

egory of simplicial presheaves over the site of divisorial schemes over some regular

base and that this structure is uniquely determined by the one we have on the level

of the ordinary K-theory of vector bundles. This is done using homotopical methods

and proving along the way that divisorial schemes can be embedded into smooth

ones: result which is of independent interest. We then compare our construction

with other older constructions and we deduce as an application of our main theorems

some interesting results, including an Adams-Riemann-Roch theorem. Finally, we

show that the methods of this thesis and the ones of Riou can be applied in some

cases also to Hermitian K-theory.
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Introduction

Among the fundamental theorems in geometry, the Riemann-Roch theorem certainly

deserves a special mention, not only because of its intrinsic importance but also

because of its prominent role in guiding the mathematics research during the last

two centuries. In his celebrated 1857 masterpiece, Riemann studied his new complex

functions, that we could call nowadays Riemann surfaces, establishing their general

form once a finite number of simple poles is given and relating the number of this

poles to a new geometric invariant he had discovered before: the genus. His seminal

result was slightly generalized a few years later (1865) by one of his students, Roch,

who interpreted analytically his mentor’s results to reach what is nowadays known

as the Riemann-Roch formula for a given Riemann surface Σ with canonical divisor

K and a finite number of simple poles

l(D)− l(K −D) = deg(D)− p+ 1

where p is the genus of Σ, D is the divisor associated with the prescribed poles

and l(D) is a quantity of interest (the dimension of the complex vector space of

the functions on Σ whose associated divisor is D). This formula served as motiva-

tion for a generation of algebraic geometers who tried to improve and generalize it.

Along the way, the mathematicians who were working on Riemann-Roch problems

(many of them were part of the so called Italian School) discovered the notion of

canonical classes, after seminal work of Noether, Segre, Severi and Todd among

others. Meanwhile algebraic topology was growing quickly and homological and co-

homological methods were discovered and appreciated. This eventually led to the

study of characteristic classes of vector bundles in the ’30 after the work of Stiefel,

Whitney and Chern (only to cite a few) which was linked to the theory of canon-

ical classes after the World War II thanks to the introduction of sheaf theory by
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Leray and of the fundamental work by Kodaira and Serre, who envisioned a possible

more general statement of the Riemann-Roch theorem involving both the algebraic

and the topological side of the theory. This dream of Serre became quickly reality

thanks to the work of Hirzebruch which was able to prove what is now called as

the Hirzebruch-Riemann-Roch formula. But those were the years when geometry

was going to be reshaped completely thanks to the genius of Grothendieck. While

giving a very abstract and general framework for the study of algebraic geometry

with the introduction of the notion of scheme, he found the definitive way to look at

the Riemann-Roch problems as a defect of functoriality of a natural transformation

between cohomology theories, one of these being a new extraordinary cohomology

theory which became later known as K-theory. Grothendieck’s insight came not only

as a meaningful reinterpretation and generalization of the problem, but also led to a

simpler proof of the appropriate statement (which is now called the Grothendieck-

Riemann-Roch theorem) towards the introduction of several new concepts. In order

to reach such a result, besides the discovery of K-theory, which is a remarkable

achievement itself, Grothendieck introduced the notion of λ-ring to study it, origi-

nating from the behaviour of the exterior power operations and that turned out to

be an extremely powerful algebraic notion that can be used in several contexts. In-

deed one of the most striking applications of this notions was the simple solution by

Adams of the Hopf invariant one problem (1966) where topological K-theory meth-

ods were used and the so called Adams operations were introduced. Lambda rings

became then very important also in representation theory, class field theory and in

the study of Witt vectors type constructions, convex polytopes and binomial rings.

After a while, K-theory was vastly generalized by Quillen, who introduced higher

K-theory groups in both topology and algebraic geometry as homotopy groups of a

certain H-group K, whose group of path components was identified to the K-theory

groups defined before, call it K0. This new space K came as a loop space of a cer-

tain topological space Q that can be defined functorially out of some categories of

interests, like the one of vector bundles over a scheme. Since Riemann-Roch type

theorems and λ-structures played such an important role in classical K-theory, it

became meaningful to study such structure on the higher K-theory groups. The

most natural way to study maps between homotopy groups of topological spaces is

to obtain them as maps induced by continuous maps between topological spaces.

However, if we pursue this road in the naive way, we are doomed to failure, as re-

marked by Grayson: if we start from operations between vector bundles that should

give rise to our λ-operations, and we plug in the Quillen’s machinery to get a map

between the K-theory spaces, we only end up with maps between topological spaces
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originating group homomorphisms when we pass to the homotopy groups. Alas,

λ-operations are far from being group homomorphisms so we cannot hope to obtain

them in this way, at least not easily. Thus, we have to use subtler methods to build

our operations for higher K-theory groups. One possible approach to circumvent

the issue and to introduce such operations is to use representation theory. In this

way many authors such as Hiller, Kratzer, Schechtman, Gillet, Soulé, Lecomte and

Levine, to cite only a few of them, were able to define on various level of general-

ity lambda and Adams operations for higher algebraic K-theory. They then used

these operations to study Riemann-Roch problems (see the work of Gillet and Soulé

for regular schemes) and to link certain decompositions on the K-theory groups

with other fundamental algebraic invariant such as the (higher) Chow groups (see

the seminal work of Levine), which were acquiring extreme relevance because of

their use in intersection theory and in what became to be known as motivic coho-

mology. This latter theory found a final theoretical place in the (un)stable motivic

homotopy theory envisioned in works of Suslin, Voevodsky, Morel, Levine and many

others after the necessary homotopical maturity was reached thanks to the advances

in simplicial homotopy theory. K-theory found then its final place as a “space” in

the motivic homotopy categories. Joel Riou, in his PhD thesis (2006) was eventually

able, using homotopical methods and the explicit computations of the algebraic K-

theory of grassmannians, to build the lambda, Adams and virtually every operation

we knew for classical K-theory in an homotopical way. In particular he was able to

prove

Theorem 0.0.1 (Riou A.3.14). If S is a regular separated scheme, denoting as

Sm/S the category of smooth separated schemes over S one has the following iso-

morphisms

HomH(S)(K
n,K) ∼= HomH(S)((Z×Gr)n,Z×Gr) ∼= HomPre(Sm/S,Sets)(K0(−)n,K0(−))

where H(S) is the unstable motivic homotopy category of [MV99], K is the K-theory

simplicial presheaf, Gr is the infinite Grassmannian and K0(−) is the presheaf of

sets associating to every smooth scheme X its algebraic K-theory of vector bun-

dles K0(X). The previous isomorphisms are also true if we consider the respective

pointed categories.

We can use this theorem to lift the operations that we have on the K0 level

(for example the lambda operations) to operations on K theory in the unstable

motivic homotopy category. After that we can use them to obtain general versions

of Riemann-Roch type theorems, for example. The methods introduced by Riou
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can be applied also to other cohomology theories. For example, one might wonder

whether it is possible to do the same for Hermitian K-theory, another extraordinary

cohomology theory which tries to study forms associated to vector bundles on geo-

metric objects instead than simply vector bundles themselves. One objective of this

work is then to begin to apply the methods of Riou to this cohomology theories,

using recent advances into that theory. Moreover, the experienced reader will have

noticed that the result of Riou only applies to smooth schemes, while lambda oper-

ations and Riemann-Roch type theorems in ordinary and higher algebraic K-theory

go beyond that class of geometric objects. The main goal of this thesis is then to

investigate how we can obtain a Riou type theorem if we move away from the con-

text of smooth schemes and if such extensions can be applied also to the hermitian

case. It turns out that if we restrict to the class of divisorial schemes the answer

is indeed positive and many interesting facts arise along the way, including a gen-

eral way to embed divisorial schemes into smooth ones and a very general version

of the Adams-Riemann-Roch theorem that holds true in this context. Divisorial

schemes, also known as schemes with an ample family of line bundles, satisfy the

resolution property that makes the study of their algebraic K-theory particularly

nice and pleasant. Indeed, for such schemes, after the groundbreaking results of

Thomason (contained in the seminal [TT90]) all the various definitions of algebraic

K-theory agree and the theory itself is very powerful thanks to descent results. It is

also a quite general class of schemes: indeed every smooth separated scheme over a

regular base scheme is divisorial and the same is true, for example, for every (pos-

sibly singular) quasi-projective variety over a field. This class of schemes has then

a special place into the study of algebraic K-theory and therefore it is important

to properly understand operations on K-theory in this context. The thesis is di-

vided in two parts. the first part studies the problem of defining and studying the

unstable operations on K-theory of divisorial schemes, while the second contains

the applications of the general theory we develop together with the discussion of

the hermitian side of the theory. We will now describe in more detail the content

and the main results contained in the chapters of this thesis. Given a noetherian

regular and divisorial base scheme S (for more, see assumptions 0.1), we will denote

as SchS (Sm/S) the category of divisorial (smooth) schemes of finite type over S

and by sPre(C) the category of simplicial presheaves over a Grothendieck site C.
We will denote as H(S) the unstable motivic homotopy category of Morel and Vo-

evodsky which is the homotopy category of the model category obtained considering

simplicial presheaves over Sm/S and localising the Nisnevich injective local model

structure inverting A1-weak equivalences. With I (I lZar, I lNis) and P (P lZar, P lNis)
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we will denote the global (local with respect to the Zariski or Nisnevich topology) in-

jective or global (local with respect to the Zariski or Nisnevich topology) projective

model structures respectively and we will use the notation [, ] to indicate Hom spaces

in their respective model categories (the same will apply to H(S)). For example,

sPre(SchS , I lZar) will denote the model category of simplicial presheaves over SchS

with the choice of the local injective model structure with respect to the Zariski

topology and Ho(sPre(SchS , I lZar)) will be its homotopy category. We denote by S
the category of simplicial sets.

• Chapter 1 deals with the extension of the operations defined for K-theory

in H(S) to the bigger homotopy category Ho(sPre(SchS , I lZar)). We start

in Section 1.1 with some recollections on the Bousfield-Kan Z∞-completion

which we need in the sequel deviating a little bit from the usual presentations.

In Section 1.2 we use the Bousfield-Kan completion to show the following

Proposition 0.0.2 (1.2.7, 1.2.8). Given a Grothendieck site C, let be X ∈
sPre(C) a simplicial presheaf which is P l-fibrant and Z-complete (meaning

that it is sectionwise Z-complete in the sense of [BK72]). Hence if f : Y →
Y ′ is a map between P-cofibrant presheaves inducing H∗(−,Z)-isomorphisms

sectionwise, one has

[Y ′, X]Pl
∼= [Y,X]Pl

∼= [Y,X]Il
∼= [Y ′, X]Il

The same conclusion holds even if f : Y → Y ′ is a map between I l-cofibrant

presheaves (so any map) inducing H∗(−,Z)-isomorphisms sectionwise.

In Section 1.3 we make some remarks on what happens if we try to localise

the global model structures on simplicial diagrams with respect to integral

homology. This relates to some work of Goerss and Jardine ([GJ98]) and in

some sense can be considered folklore, as explained in the text. In Sections 1.4

and 1.5 we recall some facts we need about bisimplicial sets and the classifying

spaces: everything here is certainly well known except, perhaps, the exposition.

With all these prerequisites, we can prove in 1.7 the following

Proposition 0.0.3 (1.7.1,1.7.3). For n ≥ 0 we have

[BGL+,K]IlZarSchS
∼= [BGL,K]IlZarSchS

[BSp+,GW[n]]IlZarSchS
∼= [BSp,GW[n]]IlZarSchS
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where K (GW[n]) is the (n-shifted Hermitian) simplicial K-theory presheaf

(and 1
2 ∈ Γ(S,OS) when we consider Hermitian K-theory).

The previous is used to show in Section 1.8 the following

Theorem 0.0.4 (1.8.10,1.8.11). For any natural number n,

[Kn,K]IlZarSchS
∼= [(Z× BGL)n,K]IlNisSm/S

∼= [Kn,K]H(S)

Moreover if 1
2 ∈ Γ(S,OS) it holds

[KSpn,KSp]IlZarSchS
∼= [(Z× BSp)n,KSp]IlNisSm/S

∼= [KSpn,KSp]H(S)

where KSp denotes the symplectic hermitian K-theory simplicial presheaf (i.e.

GW[2]).

which is an interesting result itself and allows us to define a λ-ring structure

on K-theory in the above homotopy categories building on the results of Riou.

This is done by a study of the mapping spaces of the simplicial model categories

involved together with the trivial but fundamental observation that the general

and the symplectic linear groups are smooth. The same methods can be applied

in more general situations, as we discuss in the text. In Section 1.9 we consider

the case where our smooth schemes Sm/S are assumed to be separated (in the

absolute sense) linking then our results with a more familiar and used class of

schemes. Finally, in Section 1.10 we investigate which of our theorems hold

true if we remove the hypothesis of being divisorial from our schemes.

• Chapter 2 is devoted to the proof of the following theorem

Theorem 0.0.5 (2.0.1). Let X be a quasi-compact and quasi-separated scheme

of finite type over a noetherian ring R having an ample family of line bundles.

Then there exists a closed embedding f : X �
�
/ //W with W a smooth scheme

over R admitting an ample family of line bundles. Moreover W arises as an

open subscheme of the multihomogeneous spectrum of a suitable Zn-graded

polynomial algebra.

This is an interesting result on its own. When the divisorial scheme involved

is a reduced scheme of finite type over an algebraically closed field, this the-

orem was proved by J.Hausen ([Hau02] Theorem 3.2) and multihomogeneous

projective spaces were introduced by Brenner and Schroer ([BS03]), who were
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able to show that divisorial schemes embed into them. We improve their re-

sults by showing that it is possible to refine their argument to actually get an

embedding into a divisorial smooth scheme contained in such a multihomoge-

neous projective space. This refines classical arguments that can be found in

the context of weighted projective spaces (see the work of Mori, Dolgachev and

Reid among the others). We start in section 2.1 with some recollections on

schemes having an ample family of line bundles (aka divisorial schemes) detail-

ing a folklore technical result in Section 2.1.2 that we will need in the sequel.

Section 2.2 contains a technical lemma that we need to show the smoothness

of the final scheme we will consider in the statement of the emebedding the-

orem and in 2.3 we recollect some facts about multihomegeneous projective

spaces that we need. Note we have given new constructions (equivalent to the

ones given in [BS03]) and proofs whenever possible, to avoid the use of GIT

quotients. Section 2.4 contains the proof of Theorem 2.0.1 that follows the

argument of the proofs of the embedding theorem in [BS03] which follows the

original argument of [Hau02]. Using it, we can prove a very interesting fact,

which is the main result of Section 2.5

Theorem 0.0.6 (2.5.5). Let X be a scheme of finite type over a noetherian

affine scheme S = Spec(R) having an ample family of line bundles. Then

given a finite number vector bundles E1, ..., En ∈ Vect(X) there is a smooth

divisorial scheme YE over S and vector bundles E1,YE , ..., En,YE over it together

with a morphism ψE : X → YE such that ψ∗E(Ei,YE ) ∼= Ei for every i = 1, ..., n.

• In Chapter 3 we prove the Main Theorem of this thesis

Theorem 0.0.7. If S is a regular quasi-projective scheme over a noetherian

affine scheme R, for any natural number n, if we consider the Thomason’s

K-theory presheaf K we have

HomHo(sPreZar(SchS))(K
n,K) ∼= HomPre(SchS)(K

n
0 ,K0)

where Ho(sPreZar(SchS)) denotes the homotopy category of sPreZar(SchS).

Moreover we have that

HomHo(sPreZar(SchS))(K
n,K) ∼= HomH(S)(K

n,K)

and that

HomPre(SchS)(K
n
0 ,K0) ∼= HomPre(Sm/S)(K

n
0 ,K0)
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for any natural n. Passing to the sets of pointed morphisms, analogue isomor-

phisms hold.

This theorem asserts that the endomorphisms of K-theory in the model cate-

gory of Zariski local simplicial presheaves over divisorial schemes depends only

on their behaviour at the level of K0 seen as a presheaf of sets and in addition

these endomorphisms are in bijection with the ones obtained from the theorem

of Riou. This is surprising not only because our schemes are allowed to be

singular but also because we do not invert A1-weak equivalences so that we

cannot see K theory as Z × BGL or as an the ind-scheme Z × Gr as we can

do in the motivic homotopy category. More is true: these endomorphisms are

uniquely determined by they behaviour on affine schemes as summarised by

the following

Theorem 0.0.8 (Theorem 3.2.16). If S is a regular noetherian affine base

scheme, all the arrows in the following commutative cube are isomorphisms

HomHo(sPreZar(Aff/S))(K
n,K)

π0

��

// HomHaff (S)(K
n,K)

π0

��

HomHo(sPreZar(SchS))(K
n,K) //

π0

��

22

HomH(S)(K
n,K)

π0

��

22

HomPre(Aff/S)(K
n
0 ,K0) // HomPre(SmAff/S)(K

n
0 ,K0)

HomPre(SchS)(K
n
0 ,K0) //

22

HomPre(Sm/S)(K
n
0 ,K0)

22

The pointed version of this theorem also holds.

The proof basically consists of two steps: first one considers the top face of the

cube and shows that with the results contained in Chapter 1 together with

some facts available in literature, all the arrows in that square are isomor-

phisms (for some of these maps one can assume S to be any divisorial regular

base scheme). Then one notices that assuming S to be affine, using Theorem

2.5.5 and its variants, we can prove that also the lower horizontal maps are

injective so that chasing the diagram gives the result (Section 3.1.2). We show

in Section 3.1.3 that one can improve Theorem 3.1.6 and assume that S is

regular divisorial quasi-projective of finite type over a noetherian ring R by

improving the result 2.5.5 and arguing in the same way. In Section 3.2 we

take care of the extension to affine schemes to complete the proof of Theorem

3.2.16. As in Chapter 1, in Section 3.3 we consider the case where our smooth

schemes Sm/S are assumed to be separated (in the absolute sense) linking our
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results with a more familiar and used class of schemes. Finally, in Section 3.4

we investigate which of our theorems hold true if we remove the hypothesis of

being divisorial from our schemes.

• Chapter 4 contains a side result which is not used in the remaining parts of

the thesis and appears only during a variant of the proof of Theorem 3.2.16.

Therefore this can be safely skipped at a first reading. The main result of this

chapter is the following

Theorem 0.0.9 (4.2.2). Let S be a regular noetherian scheme. There are weak

equivalences (induced by an explicit map, not via zig-zags) Z×Graff ∼−→ Z×Gr

and P∞aff
∼−→ P∞ in H(S), where Z×Graff and P∞aff are filtered colimits of affine

(in the absolute sense) schemes.

The proof of this theorem is obtained by first showing that in favourable

situations we can make the Jouanolou device functorial enough to give rise

to natural transformations between simplicial diagrams. This is done in full

generality in Section 4.1. Section 4.2 then concludes the proof of the theorem

by mean of simple homotopical algebra. Section 4.3 shows that the ind-schemes

we have also satisfy some important technical properties.

• Chapter 5 contains the main applications of Theorem 3.2.16. In Section 5.1.4,

after some recollections on lambda rings in Section 5.1.1 where we also em-

phasize the fact that ψ-rings, a close friend of λ-rings, also make sense in the

noncommutative world (indeed we where not able to find a single suitable

reference for all the material we use), we define λ, Adams and γ-operations

for higher K-theory of divisorial schemes using 3.2.16. We also discuss the

notion of lambda ring in a very abstract setting in Sections 5.1.2 and 5.1.3

where we spell out in some details how to prove that a given lambda ring in a

suitable homotopy category of simplicial presheaves gives rise to lambda ring

structures on the homotopy groups of simplicial presheaves. This is certainly

subsumed in the work of Riou, although the statements and the details do not

appear there. After that we can use Theorem 3.2.16 to prove the following

Theorem 0.0.10 (5.1.28,5.1.32). Lambda, Adams and γ-operations K0(−)→
K0(−) naturally induce maps on Kn(X ) for every X ∈ sPre(SchS). In par-

ticular this is true for the usual higher K-theory groups Kn(X) for every
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X ∈ SchS. Moreover we have a natural multiplication law −×− : K×K ∪−→ K

which induces a graded ring structure on the graded K0(X)-module

K∗(X) :=
⊕
n∈N

Kn(X)

for any scheme X ∈ SchS, different from the one we would get if we set the

product of two homogeneous positive elements to be zero. Call the latter ring

(K∗(X), ·) and the former (K∗(X),∪). Then the datum (K∗(X), ·, λk) is a

lambda ring with associated ψ-ring (K∗(X), ·, ψk). Moreover, (K∗(X),∪, ψk)
is a noncommutative ψ-ring and the maps ψk : (K∗(X),∪)→ (K∗(X),∪) are

morphisms of noncommutative ψ-rings (see Definition 5.1.7). These struc-

tures are functorial.

The argument used to prove this theorem is the analogue of the argument used

by Riou in the smooth case. In Section 5.2 we compare the structures just

defined to many others available in literature, and we show that they agree.

Even in the smooth case, some of these comparisons, while certainly known

to many experts, were mere folklore. In Section 5.3 we extend some additive

results that were obtained by Riou for smooth schemes, in particular we are

able to show the following theorem adapting the arguments of Riou and using

our 3.2.16

Theorem 0.0.11 (5.3.3). Denotig as Ωi
f the ith right derived functor of the

loop space functor, as Ki the ith higher algebraic K-theory presheaf and as Pic

the presheaf associating to any scheme its Picard group, all the arrows in the

following diagram are isomorphimsms

[BGm,Ω
i
fK]IlZarSchS

//

��

��

[BGm,Ω
i
fK]H(S)

∼=π0

��

HomPre(SchS)(Pic,Ki) res
// // HomPre(Sm/S)(Pic,Ki)

Moreover, also all the arrows in the following commutative diagram are iso-

morphisms

HomPre(SchS),Ab(K0,Ki) //
δ∗Sch //

��

β

��

HomPre(SchS)(Pic,Ki)

∼=
��

HomPre(Sm/S),Ab(K0,Ki) ∼=

δ∗Sm// HomPre(Sm/S)(Pic,Ki) ∼= lim
n
Ki(Pn) ∼= Ki(S)[[U ]]
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where the maps δ∗Sm and δ∗Sch are induced from the presheaves maps δSm,Sch :

Pic → K0 given for any scheme X by the assignment [L] 7→ [L], for any L

line bundle over X.

Section 5.4 recasts in a different language some formal Riemann-Roch algebra

contained in [FL85] in such a way that it can be easily applied to the structures

coming from our Theorem 0.0.10. This starts in Section 5.4.1 with with the

modification of some definitions contained in [FL85], while in sections 5.4.2

and 5.4.3 we remark that some constructions contained in op. cit. can be

performed in the category of schemes we consider. With these prerequisites, we

can prove in Section 5.5 that we can use known results and the functorialities

of the structures just built for higher K-theory using the machiery of [FL85]

just generalized to prove a very general version of the Adams-Riemann-Roch

theorem for higher K-theory

Theorem 0.0.12. 5.5.11 Fix a regular noetherian affine base scheme S. Let

be f : X → Y a projective l.c.i. morphism in SchS. Then (K∗, ·, ψj , f)

((K∗,∪, ψj , f)) is a RR datum and RR holds with respect to the datum (Z[1/j]⊗
K∗, ψ

j , f) for every j with multiplier τf ∈ K0(X) given by Theorem 5.4.4. This

means that the following diagram commutes for any j

Z[1/j]⊗K∗(X)
τf ·ψj

//

f∗
��

Z[1/j]⊗K∗(X)

f∗
��

Z[1/j]⊗K∗(Y )
ψj

// Z[1/j]⊗K∗(Y )

Having pursued the same path, this fact could have been shown before, say

in the late nineties (and it was with a priori different operations, see [K9̈8])

and might be considered by an expert aware of the Gillet-Soulé-Levine con-

structions of the lambda operations, for example, folklore. See also the work

of Alberto Navarro Garmendia [Nav18] and [K9̈8] for general Riemann-Roch

formulas.

• Chapter 6 is devoted to the problem of which of the previous theorems can

be brought to the context of Hermitian K-theory. In this case we do not have

any Riou-like results so we have to provide them ourselves. We then start in

Section 6.1 with some recollections concerning bilinear grassimannians, which

are well studied in [ST15] and [PW10a]. The only novelty is to give a unified

treatment of the facts proven in op. cit. which are usually spelt out only
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in the symmetric or the symplectic case. In Section 6.2 we then consider

the symmetric hermitian analogue of the theorem by Riou. Denoting as GW

the element of H(S) representing symmetric hermitian K-theory, our main

positive result is the following

Theorem 0.0.13 (6.2.8). Fix S is a regular base scheme such that 2 is in-

vertible in Γ(S,OS). The map

π0 : [GW,GW]H(S) → HomPre(Sm/S)(GW0,GW0)

is surjective.

Unfortunately, lacking the computations of the Grothendieck-Witt groups of

the orthogonal grassmannians, we are not able to go further to find a proof of

the following, that we leave as an open conjecture

Conjecture 0.0.14. [GWn,GW]H(S)
∼= HomPre(Sm/S)(GWn

0 ,GW0). GW ∈
H(S) has a structure of λ-ring and this structure lift to a structure on every

GWn(X) for every X ∈ Sm/S.

We only notice that once we had the hermitian Riou theorem, we could define

the λ-ring structure in the statement of the conjecture using the lambda ring

structure defined at the GW0 level by Zibrowius in [Zib18]. For symplectic K-

theory, however, we have the computations we need to run Riou’s machinery

so we can obtain the analogue of Theorem 3.2.16. The main step, besides the

achievement of a Riou like theorem for smooth schemes, which is obtained in

Section 6.3, is the appropriate analogue of 2.5.5 for forms, the homotopical

algebra required for everything else being already handled in Chapter 2. We

succeed in producing such a theorem which asserts that we can pullback forms

in Section 6.4.1 where using bilinear grassmannians we prove

Theorem 0.0.15 (6.4.4). Consider S quasi-projective scheme over a noethe-

rian affine scheme R where 2 is invertible and let X be a divisorial scheme

of finite type over S. Then given a finite number of ε-inner product spaces

over X, V1 = (E1, ϕ1), ..., Vn = (En, ϕn), there is a smooth scheme YV over S

and ε-inner product spaces V1,YV , ..., Vn,YV over it together with a morphism

ψV : X → YV such that ψ∗V (Vi,YV ) ∼= Vi for every i = 1, ..., n. If X and S are

affine schemes, then we can take YV to be affine.

This readily gives
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Theorem 0.0.16 (6.4.5). The natural restriction maps

HomPre(SchS)(GW0(−),GW0(−))→ HomPre(Sm/S)(GW0(−),GW0(−))

HomPre(Aff/S)(GW0(−),GW0(−))→ HomPre(SmAff/S)(GW0(−),GW0(−))

and the restriction maps

HomPre(SchS)(KSp0(−),KSp0(−))→ HomPre(Sm/S)(KSp0(−),KSp0(−))

HomPre(Aff/S)(KSp0(−),KSp0(−))→ HomPre(SmAff/S)(KSp0(−),KSp0(−))

are injective, where S is a quasi-projective (affine if we consider the categories

of affine schemes) noetherian scheme of finite type over a noetherian affine

scheme R where 2 is invertible. We have denoted here by KSp0 the usual

symplectic hermitian K-theory presheaf.

We can then conclude the story in Section 6.4.2 by proving the symplectic

hermitian analogue of Theorem 3.2.16 (denote by KSp the object representing

symplectic hermitian K-theory in the homotopy categories that appear)

Theorem 0.0.17 (6.4.7). Fix S an affine regular noetherian base scheme

with 1
2 ∈ Γ(S,OS). Then all the arrows in the following commutative cube are

isomorphisms

HomHo(sPreZar(Aff/S))(KSp
n,KSp)

π0

��

// HomHaff (S)(KSp
n,KSp)

π0

��

HomHo(sPreZar(SchS))(KSp
n,KSp) //

π0

��

11

HomH(S)(KSp
n,KSp)

π0

��

22

HomPre(Aff/S)(KSp
n
0 ,KSp0) // HomPre(SmAff/S)(KSp

n
0 ,KSp0)

HomPre(SchS)(KSp
n
0 ,KSp0) //

11

HomPre(Sm/S)(KSp
n
0 ,KSp0)

22

with the obvious meaning of the terms involved. The pointed version of this

theorem also holds.

In Section 6.5 we consider the case were our smooth schemes Sm/S are as-

sumed to be separated (in the absolute sense) linking our results with a more

familiar and used class of schemes. Finally, in Section 6.6 we investigate which

of our theorems hold true if we remove the hypothesis of being divisorial from

our schemes.

• There are two appendices. Appendix A recollects some facts from the works

of Riou [Rio06]and [Rio10] and some preliminaries we need as the Jouanolou’s
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device or some logic facts concerning algebraic structures. We also sketch

some arguments of the works in op.cit. spelling out some details that were

abridged or that were written only in french. We hope this could allow the less

expert reader to appreciate more the above mentioned works. Explicitly note

that while essentially all the arguments are due to Riou, we sometimes deviate

from the original proofs and definitions giving a discussion more tailored to this

work. In Appendix B we recollect some technical facts concerning K-theory

and descent that we use in the main text that can be considered certainly

known, except perhaps some technicalities involving divisorial schemes and

the exposition. We also give a very brief dictionary of Hermitian K-theory.

0.1 Assumptions and notations

All the schemes will be always assumed to be Noetherian of finite dimension unless

otherwise stated. Whenever we will say that a base scheme S is regular, we will

mean that it is noetherian, regular in the sense of [Sta18, Tag 02IS] and that it

is divisorial (see Definition 2.1.2) unless otherwise stated. The only reason the

divisorial assumption is needed is that we find convenient to have S as final object

of many of the categories we will consider. We say that a scheme X is smooth over a

base S if its structure map is smooth ([GD67] IV 6.8.6, 17.3.1, [GW10] 6.14, [Sta18,

Tag 01V5]). Explicitly note that we do not require any separation hypothesis. We

also make the blanket assumption that unless otherwise specified, all the schemes

in the categories SchS and Sm/S of (smooth) schemes of finite type over a chosen

base scheme S have an ample family of line bundles. We detail in specific sections

what can be said if we go out of this context.

Notation 0.1.1. Throughout this thesis, given any category C, we will denote as

[−,−]C the Hom sets HomC(−,−). If we are considering C as a model category, by

[−,−]C we will always denote HomHo(C)(−,−), i.e. the hom sets in the homotopy

category of C. If we will speak about pointed homotopy categories of a given model

category C we will mean the homotopy category of the model category obtained by

considering the pointed category C• and giving to it the pointed model structure

induced from C (see [Hov99] Proposition 1.1.8). With P or I we will denote the

global injective or projective model structure on a given category of simplicial dia-

grams. Whenever these simplicial diagrams are categories of simplicial presheaves

over a Grothendieck site (C, τ) we will denote as P lτC or I lτC (or by (sPre(C), I lτ )

and (sPre(C),P lτ )) the model categories of simplicial presheaves over C with the

local projective or injective model structure relative to the Grothendieck topology
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τ . When the site is clear we will abbreviate such notations with P lτ , I lτ or even P l

and I l. Thus, for example, I lZarSchS will denote the model category of simplicial

presheaves over SchS where we consider the injective local model structure with re-

spect to the Zariski topology. If the choice of the injective structure is assumed, we

will use the notation sPreτ (C). In addition, we will use the notation HCτ to denote

Ho(I lτC) while we will reserve the notations H(S) and Haff (S) for the unstable

motivic homotopy category over Sm/S and its full subcategory of smooth affine

schemes SmAff/S respectively. Finally, we will denote as Aff/S the full subcategory

of SchS of affine schemes.
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Part I

Unstable operations on

K-theory
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Chapter 1
Endomorphisms in Higher K-Theory:

homotopy theory

1.1 Some recollections. Topology, completion and sim-

plicial sets

In this Section we recollect some useful facts on the Bousfield-Kan completion and

some topological notions. Everything here is well known, except perhaps the expo-

sition or some observations. For us the category Top(Top∗) of (pointed) topological

spaces will be a convenient category for homotopy theory, such as the category of

compactly generated Hausdorff spaces, see for examples [Vog71]. For background

on model categories see [Hir03],[Hov99],[BK72], [GJ09], [Qui67], [DS95].

Definition 1.1.1. An H-space is a pointed space (Y, p) having the type of a CW

complex together with a map µ : Y × Y → Y of pointed spaces such that p is

a pointed homotopy identity (if we see the point p as as a constant map Y → Y

this means that id, µ ◦ (id, p), µ ◦ (p, id) are pointed homotopic) and µ is homotopy

associative. If such structure has a pointed homotopy inverse then (Y, p) is called

H-group. More generally, given a model category C we will say that an object in

it is an H-space (group) if it is a monoid (group) object in the pointed homotopy

category Ho(C•).

In this section we will be interested in H-spaces (groups) only in the category

of topological spaces and of simplicial sets.

Example 1.1.2. Given a pointed CW complex (Y, y0), then the loop space (ΩY, ω0)

is an H-group (see [Swi02]2.15, for example).
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From the definition it follows that for an H-space (Y, y0), its fundamental

group π1(Y, y0) is abelian and π0(Y ) is a group if in addition Y is an H-group.

Now, it is a general fact that in any space with a homotopy associative multiplication

which makes the set of path components into a group, left or right multiplications by

points induce homotopy equivalences between the path components. As a corollary

(which can be easily proved also directly, see [Hat02] page 291, or [Dug66] page 387)

we have

Lemma 1.1.3. All the path connected components of every H-group (G, ∗) are

homotopy equivalent. In particular the same is true for all the path connected com-

ponents of (ΩY, ω0) for a given pointed CW complex Y .

Definition 1.1.4 ([Spa95] page 384). A path connected space Y is called n-simple

(n > 1) if for some y0 ∈ Y , π1(Y, y0) acts trivially on πn(Y, y0). Y is called simple

if it is n-simple for all n > 1.

Remark that the action could be non trivial even for n = 1.

Theorem 1.1.5. A path connected H-space is simple.

For the proof see [Spa95], Theorem 9 page 384.

Definition 1.1.6. If R is a solid ring (i.e. a commutative unital ring such that the

multiplication R⊗Z R→ R is an iso, see [BK72] page 20) we say that a group G is

R-nilpotent if it has a finite central series

1 = G0 / G1 / · · · / Gn = G

such that for every 1 ≤ i ≤ n, Gi/Gi−1 admits an R-module structure (unique, see

[BK72] pag.82).

Note that a Z-nilpotent group is a nilpotent group in the standard sense.

Remark 1.1.7. In this section we stick to solid rings in order to be faithful with the

standard references where the theory is developed, howewer we explicitly note that

this assumption can be safely removed for homotopy theoretic purposes in virtue of

the so called core lemma, see [BK72] I 4.5 for a discussion, and [BK72] I Section 9

for a proof of that lemma.

Denote as S the category of simplicial sets, and as S∗ its pointed version

(see for example [GJ09], [May92], [FP90], [BK72]). Let Sc∗ denote the category of

connected simplicial pointed sets (i.e. objects with trivial π0X = π0|X|, where | − |
denotes the geometric realization).
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Definition 1.1.8 ([BK72] III 5.2). A simplicial set X ∈ Sc∗ is called R-nilpotent (R

solid ring) if

1) X is nilpotent, i.e. the action of π1X on πnX is nilpotent for every n ≥ 1.

Recall that a group H acts on G nilpotently if there is a finite sequence of

H-equivariant normal subgroups

1 = G0 / G1 / · · · / Gn = G

such that for every 1 ≤ i ≤ n, Gi/Gi−1 is abelian and the induced H-action

on it is trivial.

2) πiX is R-nilpotent for every i ≥ 1.

Remarks 1.1.9. 1) X ∈ Sc∗ is nilpotent if |X| is simple (see [MP12] page 49),

by the definition of homotopy groups of a simplicial set.

2) If R = Z, X ∈ Sc∗ is Z-nilpotent if it is nilpotent.

We notice that a simplicial set X ∈ S∗ is an H-space if and only if |X| ∈ Top∗

is an H-space. Hence X ∈ S∗ is an H-space if it is a monoid in Ho(S∗). The same

can be said concerning H-groups. Recall that Bousfield and Kan defined for every

solid ring R, a functor R∞ : S → S, the so called Bousfield-Kan completion (see

[BK72] I 4.2,[BK71] and [GJ09], for more on localization of topological spaces see

[MP12], and [Ger73] for a comparison with +-construction). The main feature of

this functor is that if a simplicial map f : X → Y induces an isomorphism on

H∗(−, R), then R∞f is a weak equivalence (see [BK72] I 5.5). We recall briefly the

definition of the Bousfield-Kan completion since it is not common to find it outside

[BK72].

Definition 1.1.10 ([BK72] I 4.2). For a simplicial set X, we denote as RX the

reduced free R-module generated by X. Remind that its n-simplices are finite formal

linear combinations
∑

i rixi with xi ∈ Xn, ri ∈ R and
∑

i ri = 1. Then we have

maps ϕ : X → RX, ϕ(x) = x and ψ : RRX → RX given by ψ(
∑

i ai(
∑

j bijxij)) =∑
i,j(aibij)xij . Using these maps we can build a cosimplicial space R•X by letting

(R•X)n = Rn+1X and defining codegeneracy maps si = RiψRn−1−i and coface

maps di = RiϕRn+1−i. We then define R∞X := TotR•X where we denoted as Tot

the total space of a cosimplicial space, i.e. the simplicial set built out a cosimplicial

set X• by taking the cosimplicial mapping space Map(∆•, X•) as defined in [BK72]

I.3.3 for example. R∞X is always a Kan complex (see [BK72] I 4.2).
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Remark 1.1.11. From this definition it is easy to get al the needed functorialities.

Definition 1.1.12 ([BK72] I 5.1). A simplicial set X ∈ S is called

1) R-good if the natural map X → R∞X induces an isomorphism on H∗(−, R).

R-bad if it is not R-good.

2) R-complete if the map X → R∞X is a weak equivalence.

Theorem 1.1.13. ([BK72] III 5.4 or [BK71] 4.2) Every R-nilpotent space X ∈ Sc∗
is R-complete.

If a topological space is locally path connected, hence its connected com-

ponents are exactly the path connected components and in this case the space is

homeomorphic to the disjoint union of its (path) connected components (for the

behaviour of a space having the homotopy type of a CW complex under this re-

spect, the reader may look at [FP90] Proposition 1.4.14 and 5.1.1). We define the

connected components of a simplicial set as follows (in some literature the definition

is slightly different, see [GJ09]). Let vα ∈ X0, define Xα as the smallest subcomplex

of X such that its zero skeleton consists of vertices w with the property w ∼ vα in

π0|X|. One can see that π0(X) = colim( X1

d1 //

d0

// X0 ). This definition gives us for

every simplicial set X a decomposition

X ∼=
⊔

vα∈π0X

Xα =:
⊔
α

Xα

For the details of this decomposition and a more extensive discussion of the path

components of a simplicial set the reader is referred to [Lur19, Subsection 00G5]

where this decomposition appears as Proposition 1.1.6.13 (Tag 00GJ)

Theorem 1.1.14. ([BK72]I.7.1-7.5)

1) (R∞ commutes with
⊔

) Let X ∈ S, then the inclusion⊔
vα∈π0X

R∞Xα ↪→ R∞X

is an homotopy equivalence.

2) Let X,Y ∈ S, then the projections of X × Y → X and X × Y → Y induce a

homotopy equivalence of simplicial sets R∞(X × Y ) → R∞X × R∞Y which

has a natural left inverse ϕ that is associative, commutative and compatible

with the triple structure of R∞ (see [BK72]).
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3) A multiplication m : X ×X → X in S induces a multiplication

m′ : R∞X ×R∞X
ϕ
// R∞(X ×X)

R∞m // R∞X

Moreover if m is associative (commutative or has a left right unit) then so

does m′.

4) Let X ∈ S∗ be an H-space (group, etc.), then R∞X ∈ S∗ is also an H-space

(group, etc.).

We come now to our definition of completion for a topological space.

Definition 1.1.15. Let X be a CW-complex. For a solid ring R define R∞X :=

|R∞Sing(X)| where Sing is the singular functor right adjoint to the geometric re-

alisation | − | (recall from [GJ09] the adjunction | − | a Sing). We say that X is

R-complete if the map

ΨX : X
∼ // |Sing(X)|

|ψSing(X)|
// |R∞Sing(X)| = R∞X

is a weak equivalence, where ψSing(X) is the canonical arrow Sing(X)→ R∞Sing(X)

and the first arrow is a homotopy inverse of the canonical weak equivalence of CW-

complexes |Sing(X)| → X. If X is any topological space having the type of a CW

complex X ′, we say that it is R-complete if X ′ is such.

Remark 1.1.16. Notice that a topological space X having the homotopy type of

a CW complex is R-complete if and only if Sing(X) is R-complete.

Proposition 1.1.17. Let be X any CW complex such that its path components are

nilpotent or Z-complete. Then X is Z-complete as element in Top.As a consequence,

this applies to H-groups and so to loop spaces ΩY for any given pointed CW complex

Y. The same applies for any X simplicial set with Z-complete connected components.

Proof. The proof is an exercise in topology using the functoriality of the Z∞ functor

and 1.1.14. Just remark that the path connected component of the identity of an

H-group is an H-group (this holds more generally for H-spaces, see [Dug66] page

383).

Remark 1.1.18. If X is a pointed CW complex then all the connected components

(ΩX)α of its loopspace are homotopy equivalent by 1.1.3 and they are simple, hence

they are Z-complete since Sing(ΩX)α have to be nilpotent. The same can be said

for every H-group.
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We immediately obtain the following corollaries

Corollary 1.1.19. Given a a CW complex Y such that its path components are

nilpotent or Z-complete, we have that the completion map ψY : Y → Z∞Y is a weak

equivalence.

Corollary 1.1.20. If X is an H-group (could be a topological space or a simplicial

set) then it is Z-complete.

Arguing as above, one can also have the following (which is proved in [BK72]

II.2.7)

Lemma 1.1.21. Every simplicial R-module is R-complete.

1.2 Completion for simplicial diagrams

The results of this section should be regarded as a variation of the methods contained

in the article of Levine [Lev97], and they might be folklore as somewhat subsumed

in [GS99] and [Sou85], although they never appeared in this form nor they were ever

explicitly written down to the knowledge of the author.

Suppose I is a small category, and consider the category of simplicial presheaves on

it, a.k.a. the category of functors Iop → S, denoted SIop or sPre(I). We can put

several model structures on this category (general references are [BK72], [Jar87],

[Jar04], [Jar15], [Dug01b]).

• The Bousfield-Kan projective global model structure P ([BK72]) where weak

equivalences are sectionwise weak equivalences, fibrations are sectionwise fibra-

tions and cofibrations are induced by LLP (Left Lifting Property). This model

structure is simplicial (see for example [GJ09]), with the standard internal

mapping space MapsPre(I)(−,−) (whose simplices are MapsPre(I)(X,Y )n =

HomsPre(I)(X ×∆n, Y ), see for example [Lev97]).

• The injective Heller global model structure I: as before but in this case the

cofibrations are defined sectionwise and fibrations by lifting property.

Both structures are definable in the same way on an arbitrary category of small

simplicial diagrams SI and they are Quillen equivalent. One can Bousfield localize

model structures with respect to certain classes of arrows, see [Hir03] Chapter 3,

and in particular in the case of simplicial sets it is very important to localize with

respect to homology with coefficients in a group G as explained in the classical
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and influential [Bou75] or in modern terms in [GJ09]. We are interested into hZ∗ -

localizations, i.e. into localization with respect to integral homology. For S, the

hZ∗ -local model structure will be the one where an object is fibrant if and only if it

is a fibrant simplical set Y which is hZ∗ -local ([GJ09] X Corollary 3.3), i.e. for every

map of simplicial sets f : X → Z such that H∗(f,Z) is an isomorphism, then the

induced map MapS(Z, Y ) →MapS(X,Y ) is a weak equivalence. Remark that our

definition of hZ∗ -local coincides with the one in loc. cit. because of the properties

of the simplicial model structures and of the Bousfield localisations (also see the

beginning of the proof of Corollary 3.3 in op. cit. or 2.5 in [Bou97]). We start with

the following

Lemma 1.2.1. Let X be a simplicial set. Then Z∞X is hZ∗ -local.

This is proved in [GJ09], X Remark 3.7. The following lemma is then inter-

esting

Lemma 1.2.2. Any fibrant Z-complete simplicial set X is also hZ∗ -local.

Proof. We need to prove that for every homologism f : A → B between simplicial

sets the map f∗ : Map(B,X) → Map(A,X) is a weak equivalence. Now recall

that the map ϕ : X → Z∞X is a weak equivalence between fibrant objects by

assumption. Then the following commutes

MapS(B,X)
ϕ∗
//

f∗

��

MapS(B,Z∞X)

f∗

��

MapS(A,X)
ϕ∗
//MapS(A,Z∞X)

and the horizontal arrows are weak equivalences by [Hir03] Corollary 9.3.3. The

right vertical map is a weak equivalence because Z∞X is hZ∗ -local by 1.2.1 and so

by the 2/3 property we conclude.

The following is a variation of a theorem by Levine.

Theorem 1.2.3. Suppose Z is a P-fibrant object of sPre(I) (or SI) such that for

every i ∈ I, Z(i) is a hZ∗ -local simplicial set. Then given a map of P-cofibrant

objects f : X → Y such that for every i ∈ I the map f(i) : X(i)→ Y (i) induces an

H∗(−,Z)-isomorphism, we have that the map

f∗ : Map(Y,Z)→Map(X,Z)

is a weak equivalence.
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Proof. For every objects i, j of I, since Z(j) is hZ∗ -local, we have that

f∗(i) : MapS(Y (i), Z(j))→MapS(X(i), Z(j))

is a weak equivalence. Hence the result follows from Corollary B.4 of [Lev97].

We now continue to focus on the P-model structure on SI , unless otherwise

stated.

Definition 1.2.4. An element X of SI is called Z-complete if for every i ∈ I, X(i)

is a Z-complete simplicial set.

Lemma 1.2.5. Given a Z-complete simplicial diagram X, there exists a map ϕX :

X → XhZ∗f
which is a sectionwise weak equivalence and such that XhZ∗f

(i) is hZ∗ -local

for any i ∈ I.

Proof. We define XhZ∗f
by applying sectionwise the Z∞-completion functor. This

means that we obtain a family of canonical completion maps {ϕX(i) : X(i) →
Z∞X(i)}i∈Ob(I) which are weak equivalences since X is Z-complete and that form

the required natural transformation ϕX since Z∞ is functorial, where we set for every

i ∈ Ob(I), XhZ∗f
(i) := Z∞X(i). XhZ∗f

is then sectionwise hZ∗ -local by 1.2.1.

Proposition 1.2.6. Assume X ∈ Ob(SI) is P-fibrant and Z-complete. If f : Y →
Y ′ is a map between cofibrant diagrams inducing H∗(−,Z)-isomorphisms section-

wise, one has that

[Y ′, X]P ∼= [Y,X]P

Proof. This follows from the characterization of [−,−]P as π0Map(−,−) and The-

orem 1.2.3.

We turn now to the local case. Consider the case where I = C is a Grothendieck

site (i.e. a small category C together with the choice of a specified Grothendieck

topology τ , see [SGA72] or [Jar15] for one discussion in this context). One can

put model structures on the category sPre(C) such that weak equivalences becomes

local weak equivalences (local weak equivalences being defined in [Jar15] page 64,

for example). The most known is the Jardine’s injective local model structure (de-

scribed in [Jar86] or [Jar15]), denote it as I l, or as I lτC if the site is not clear, where

all presheaves are cofibrant. The second one is the Blander’s local projective model

structure (described for example in [Dug01b] or [Bla01]), denote it as P l, or as P lτC
if the site is not clear. These two structures are homotopy equivalent (see [Dug01b]
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for an explanation or [DHI04] for a full proof) and P l-fibrant objects are also sec-

tionwise fibrant, since P l is obtained by P by left Bousfield localizing at the class

of all hypercovers. One then get

Corollary 1.2.7. Let X be a simplicial presheaf which is P l-fibrant and Z-complete.

Hence if f : Y → Y ′ is a map between P-cofibrant presheaves inducing H∗(−,Z)-

isomorphisms sectionwise, one has

[Y ′, X]Pl
∼= [Y,X]Pl

∼= [Y,X]Il
∼= [Y ′, X]Il

Proof. By the properties of Bousfield localization (see for example [Dug01b] Def.

5.4), P-cofibrant objects are also P l-cofibrant and P l-fibrant objects are in particular

P-fibrant. So [Y,X]Pl
∼= [Y,X]P (same for Y ′) and the last two isomorphisms follow

from the fact that the local injective and the local projective model structures are

Quillen equivalent together with 1.2.6.

Corollary 1.2.8. Under the hypothesis of Corollary 1.2.7 the same conclusion holds

even if f : Y → Y ′ is a map between I l-cofibrant presheaves (so any map) inducing

H∗(−,Z)-isomorphisms sectionwise.

Proof. In fact, we can take P-cofibrant replacements ϕ : Ỹ → Y and ϕ′ : Ỹ ′ → Y ′

for Y and Y ′ respectively (these are functorial).These arrows are sectionwise weak

equivalences so one has that f̃ : Ỹ → Ỹ ′ induce a sectionwise H∗(−,Z)-isomorphism.

In fact if we consider the commutative diagram

Ỹ
f̃
//

ϕ ∼
��

Ỹ ′

∼ ϕ′

��

Y
f
// Y ′

we have that f , ϕ and ϕ′ are sectionwise H∗(−,Z)-isomorphisms and f̃ has also

this property because H∗(−,Z)-isomorphisms satisfiy the 2/3 property on simplicial

sets. So now one can apply 1.2.7 and get [Ỹ , X]Il
∼= [Ỹ ′, X]Il , but ϕ and ϕ′ are in

particular local weak equivalences and so [Y,X]Il
∼= [Y ′, X]Il .

1.3 Localization with respect to homology

The results of the previous section can tell us something about what it could happen

if we could localize the model category SI with the projective or injective model

structure with respect to integral homology. For the injective model structure,
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localisation with respect to homology theories is studied in [GJ98]. However since

the projective analogue of their work has not been spelt out together with its relation

with the the Bousfield-Kan completion, we find there is no harm to write down some

remark. First, we need to remind some facts about the Bousfield localization of a

simplicial model category. We follow [Lur09] Appendix A.3.7 that we find very well

written.

Definition 1.3.1. Let C a simplicial (left proper combinatorial) model category with

mapping space MapC(−,−) and cofibrant and fibrant replacements Q,R : C → C.
We denote RMapC(−,−) := MapC(Q(−), R(−)) and we note that if Z is fibrant,

then RMapC(X,Z) = MapC(QX,Z) for any X ∈ C. Assume S is a class of arrows

in C. We will say that

1) Z ∈ C is S-local if it is fibrant and for every f : X → Y in S the map

f∗ : RMapC(Y,Z)→ RMapC(X,Z) is a weak equivalence.

2) A map f : X → Y is an S-equivalence if for every S-local-object Z the induced

map f∗ : RMapC(Y, Z)→ RMapC(X,Z) is a weak equivalence

Notice we can replace weak equivalence with homotopy equivalence in the

definitions before since all the mapping spaces we are considering are fibrant because

of the properties of a simplicial model category. Indeed we could have defined in

an equivalent way RMapC(−,−) := Ex∞MapC(Q(−), R(−)) as done by Lurie in

[Lur09]. Hence, notice that our definition is equivalent with the one one finds in

[Lur09] A.3.7 or to the one in [Hir03] Definition 3.1.4 provided in the last one

one is careful to notice that we might take into account the properties of what

Hirschorn calls homotopy function complex (notice that usually one forgets this

subtelty because in many model categories all the objects are cofibrant: in general

it is not the case). We can have the following theorem, which follows from [Lur09]

Proposition A.3.7.3 and [Hir03] Theorem 4.1.1

Theorem 1.3.2. Let C be a simplicial (left proper combinatorial) model category

as in the previous definition. Then the left Bousfield localization of C at a certain

small set of arrows S exists as a simplicial model category S−1C. If the left Bousfield

localisation of a simplicial model category S−1C at a class of arrows S exists then it is

a simplicial model category with the same mapping space, the same cofibrations and

with weak equivalence the S-equivalences. The fibrant objects in S−1C are precisely

the S-local objects.

Now given the category sPre(C) for some small category C endowed with

the global projective or injective model structure, we note that it is a simplicial
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left proper ( for the projective model structure this is Lemma 1.7 in [Bla01], see

also the discussion in page 11 of [Isa05]) combinatorial model category by definition

so that we might apply the previous theorem with Sh the class of maps which are

sectionwise H∗(−,Z) isomorphism, i.e. they are the sectionwise homologisms. A

priori, since Sh is a class, S−1
h (sPre(C)) might not exist. For the global injective

model structure, such localisation exists because of Theorem 1.1 in [GJ98] and that

result (or rather its proof) should imply that such a localisation exists as well in the

projective case, although this seems to be folklore and the author has not written

down all the details of this. We then have as a consequence of Theorem 1.2.3 the

following result

Theorem 1.3.3. Consider the category sPre(C) endowed with the global injective

(projective) model structure and let be Sh the collection of the sectionwise homol-

ogisms. Then if the Bousfield localization S−1
h (sPre(C)) exists (this is true in the

injective case) the injective (projective) fibrant diagrams which are levelwise hZ∗ -local

simplicial sets are fibrant objects in it. This implies that “ Z-complete fibrant di-

agrams satisfy hZ∗ -descent”. In this case, for projective Z-complete diagrams, the

assignment X 7→ XhZ∗
is an explicit fibrant replacement in S−1

h (sPre(C)).

Proof. This is a simple application of the previous general theorem and of Theorem

1.2.3 for the projective case, while for the injective case if we consider X I-fibrant

diagram which is levelwise hZ∗ -local and f : Y → Y ′ any homologism, to show that

f∗ : Map(Y ′, X) → Map(Y,X) is a weak equivalence we apply Map(−, X) to the

diagram contained in the proof of 1.2.8 and then we chase using 1.2.3 and [Hir03]

Corollary 9.3.3.

1.4 Bisimplicial sets and Homotopy theory

We need some facts concerning bisimplicial sets, whose category will be denoted as

S2 (good references are [GJ09], [BK72],[BF78]) and concerning homotopy limits and

colimits (same references and [Hir]). These are functors of the form ∆op ×∆op →
Sets. One can define the diagonal functor diag : S2 → S by precomposing with the

diagonal functor ∆op → ∆op × ∆op, [n] 7→ [n] × [n]. One can also see bisimplicial

sets as simplicial objects in the category of simplicial sets, i.e. as functors ∆op → S.

We can define a functor T : S → S2 which sends X• to the functor X•• : ∆op → S
which is obtained by seeing the n-simplices of X• as constant simplicial sets and
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linking them via the faces and the cofaces maps of X•. This means that T is defined

by the assignment

(X• : ∆op → Sets) 7→ (T (X•) : ∆op → Sets→ S)

where the map Sets → S sends a set to its associated constant simplicial set (in

fancier words, T (X•) is X•�∆0 as in [GG03]). In other words T (X•) is the following

bisimplicial set

X0

��

id
X0

��

id
X0 . . .

��

X1

OOOO

�� ��

id
X1

OOOO

�� ��

id
X1 . . .

OOOO

�� ��

X2

OOOO OO

id
X2

OOOO OO

id
X2 . . .

OOOO OO

Also in this case, by inspection, diag(T (X•)) ∼= X•. We can now turn any simplicial

set into an homotopy colimit by the following theorem, whose proof follows by the

description of the homotopy colimits in terms of coend ([Hir]) and by the fact that

the diagonal of a bisimplicial set is isomorphic to its total space (see literature

before). This is the following theorem

Theorem 1.4.1. Assume X : ∆op → S is a bisimplicial set. Then diag(X) is

weakly equivalent to hocolim
[n]∈∆op

Xn

Corollary 1.4.2. Given a simplicial set X• ∈ S, then X• ' hocolim
[n]∈∆op

Xn, where the

Xn are seen as constant simplicial sets and ' denotes a weak equivalence.

Proof. Then by the previous construction and 1.4.1 we get

X• ∼= diag(T (X•)) ' hocolim
[n]∈∆op

T (X•)• ∼= hocolim
[n]∈∆op

Xn

We can now pass to the category of small (bi)simplicial diagrams. Let I

be a small category then we can define the categories of simplicial and bisimplicial

objects on it. The arguments of the proof of the above results gives (see nlab)

Theorem 1.4.3. Let X• be an element in SI (category of covariant functors I → S
seen as a model category with the global injective model structure). Then we have

X• ' hocolim
[n]∈∆op

Xn where the Xn are seen as constant simplicial diagrams. The same

is true if we Bousfield localise SI at some class of morphisms.
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As a particular case, the previous theorem holds for simplicial presheaves,

(by letting considering Iop instead of I). Assume now we are in this last case,

i.e we consider elements X of sPre(I). If Map(−,−) is the standard function

complex in sPre(I), we recall that (see [BK72], XII) it takes homotopy colimits in

the first variable to homotopy limits, i.e. Map(hocolim
i∈J

Xi, Y ) is weakly equivalent

to holim
i∈Jop

Map(Xi, Y ) and these two simplicial spaces are actually isomorphic if one

uses the definition of homotopy limits and colimits given in [Hir03] which we assume

to adopt in our work. See [Hir03] 18.1.10 for the proof of this fact and 18.1.11 for

a comparison with the definition of [BK72] (warning, there is a minor error in

[BK72], see the reference just given for a discussion). Now, if R is a representable

presheaf, then one can calculate that Map(R, Y ) ∼= Y (R). Suppose we give to

sPre(I) a simplicial model structure M coming from some Bousfield localisation of

the global injective model structure with Map(−,−) as function complex. Under

this assumptions we are then able to prove the following

Proposition 1.4.4. Let R• be a simplicial presheaf representing a simplicial object

in I, i.e. such that Rn is representable for any [n] ∈ ∆op. Then if Y is M-fibrant

we have

[R•, Y ]M ∼= π0holim
[n]∈∆

Y (Rn)

Proof. By the previous reasonings using [Hir03] 9.3.3 we have

[R•, Y ]M ∼= π0Map(R•, Y ) ∼= π0Map(hocolim
[n]∈∆op

Rn, Y )

∼= π0holim
[n]∈∆

Map(Rn, Y ) ∼= π0holim
[n]∈∆

Y (Rn)

In particular this holds for I lC, the local injective model category of simplicial

presheaves over a site C.

1.5 Remarks on classifying spaces in algebraic geometry

We partially follow the exposition of [Lev98] which is very clear. For this section

only we let SchS to be the category of schemes over a given base S (we do not require

any extra assumption on these schemes). Given a set X and a finite set T , we define

XT := HomSets(T,X) ∼=
∏
|T |X. We also define the simplicial set EX : ∆op → Sets,

[n] 7→ X |n| with the obvious choices for the faces and the degeneracies (partial

diagonals and projections). This construction, if X is a group, coincides with the
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usual WG construction as detailed in [GJ09] V 4, pag. 269 (this construction in fact

assumes G to be a group). In fact if one consider G as a constant simplicial group,

he gets that WGn =
∏
|[n]|G = EGn and the same faces and degeneracies. The

choice of a point gives a contraction of EX so that it is contractible as simplicial set

(this is detailed in [Lev98] page 357). One call BG the simplicial set EG/G where

the action of G is given by right (or left) multiplication, e.g. G × EGn → EGn,

(h, (gn, ..., g0)) 7→ (hgn, ..., g0) (one can also see this as an action of the simplicial

constant group G on EG, but we do not need this generality). The space BG can be

also described as WG as in [GJ09] pag.269 or [May92] pag. 87, and it is a simplicial

Eilenberg-Mac Lane object of type K(G, 1). We remember that WGn ∼= Gn(:=

G×S · · · ×S︸ ︷︷ ︸
n− 1 times

G). For a more general situation (G a simplicial group) its structure is

detailed in [May92] pag.87. It is then a simple comparison of the definitions that

allows us to see that the simplicial set WG is isomorphic to NG, the nerve of G

seen as a category of one element. Assume one has a sequence G0 ↪→ G1 ↪→ ... of

group homomorphism inclusions, and denote G := colim
n∈N

Gn =
⋃
n∈NGn. Consider

now WG. One has

(WG)i =
∏
|i|

G =
∏
|i|

colim
n∈N

Gn ∼= colim
n∈N

∏
|i|

Gn ∼= colim
n∈N

(WGn)i

and using this it is possible to check that WG ∼= colim
n∈N

WGn. The same applies to

the nerve, i.e. NG ∼= colim
n∈N

NGn. Note also that the nerve functor preserves directed

colimits since the simplices ∆n are compact objects in Cat. If one has a sequence of

groups as above, one can invoke standard arguments on filtered homotopy colimits

of simplicial sets to conclude that hocolim
n∈N

NGn ' colim
n∈N

NGn (weak equivalence). In

fact filtered colimits of simplicial sets are homotopy equivalent to their homotopy

colimits via the standard map (this is proved in [Hir], Proposition 14.11, see also

[BK72]). So in this situation one gets

Proposition 1.5.1. Let G0 ↪→ G1 ↪→ ... a sequence of group homomorphisms in-

clusions, then

NG ∼= WG ∼= colim
n∈N

NGn ' hocolim
n∈N

NGn

If we now consider an S-scheme X and a finite set T , the representable

functor

HomSchS (−, X)T : SchS → Sets
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is represented by the scheme X ×S · · · ×S︸ ︷︷ ︸
|T | − 1 times

X, we denote this representing object

by XT/S . One thus get a simplicial scheme X(−)/S : ∆op → SchS called EX and

similarly to the sets case, if one is given a group scheme X = G, it is possible

to form EG and BG as simplicial schemes as above. By switching from simplicial

schemes to simplicial presheaves on C = SchS one sees that the construction of EX

here gives rise to a simplicial presheaf which is represented by a simplicial scheme,

same for EG and BG. To obtain a description of an analogue of 1.5.1, one notes

that what is a subgroup injection G ↪→ H for groups corresponds, given two group

schemes F , H, to a map of presheaves of groups F → H ∈ Pre(SchS ,Grp) (the

latter being the category of presheaves valued in groups) such that for any S-scheme

A, F (A) ↪→ H(A) is a subgroup or in other terms F ↪→ H is a closed S-immersion

homomorphism. Hence given a sequence of closed subgroups embeddings of S-

group schemes G0 ↪→ G1 ↪→ ... one gets for every A ∈ SchS a sequence of subgroups

G0(A) ↪→ G1(A) ↪→ .... The functor BG : SchS → ∆opSets, A 7→ BG(A) (obtained

as SchS
G // Grp

B // ∆opSets ) is represented by the simplicial scheme BG for

any group scheme G (which has BGn ∼= G×S · · · ×S︸ ︷︷ ︸
n− 1 times

G), see [Lev98] for this part).

Remember that filtered colimits of simplicial sets are homotopy equivalent to their

homotopy colimits via the standard map. This is true for filtered colimits in any

combinatorial model category, because of [Dug01a] Proposition 7.3. Then one has,

forming the homotopy colimit, or the usual colimit of a sequence of group schemes as

above (i.e. by considering the BGi as simplicial presheaves and taking the colimits

sectionwise obtaining an ind-object, see [SGA72] for this last notion) the following

result

Proposition 1.5.2. If G0 ↪→ G1 ↪→ ... is a sequence of S-group schemes as above

(or simplicial presheaves represented by them) then one has

BG ∼= Bcolim
n∈N

Gn ∼= colim
n∈N

BGn ' hocolim
n∈N

BGn

where the last equivalence is a weak equivalence.

Remark 1.5.3. A way to prove that colim
n∈N

BGn ' hocolim
n∈N

BGn in the previous

Proposition is to notice that the diagram of which we are taking the colimit is a

tower of cofibrations where each object is cofibrant and such diagrams are cofibrant

so we do not need to take any cofibrant replacement to compute their homotopy

colimit.
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Consider now the sequence

Gm,S ↪→ GL2,S ↪→ ...

which for every A ∈ SchS translates into (see also [GS99] page 37)

Γ(A,OA)∗ ↪→ GL2(Γ(A,OA)) ↪→ GL3(Γ(A,OA)) ↪→ ...

Then by 1.5.1, BGL(A) ∼= colim
n∈N

BGLn(A) for any commutative ring A, so because

the geometric realization functor commutes with colimits (being a left adjoint) one

gets that BGL(A) is homeomorphic to colim
n∈N

BGLn(A) if by B(−) we denote the

topological classifying space (say | − | ◦ N). By 1.5.2 one also gets the same results

for the ind-object BGL and the simplicial schemes BGLn, where for example GLn

represents the functor A 7→ GLn(Γ(A,OA)). In particular

BGL ∼= colim
n∈N

BGLn ' hocolim
n∈N

BGLn (1.1)

We explicitly point out that one can do the same for symplectic linear groups.

In fact if we denote as Spn,S the scheme representing the functor which associates

to a scheme X the set of rank 2n symplectic matrices with coefficients in Γ(X,OX),

we have a chain of embeddings Sp1,S ↪→ Sp2,S ↪→ ... as well and taking colimits we

have

BSp ∼= colim
n∈N

BSpn ' hocolim
n∈N

BSpn (1.2)

as in the case of the general linear group.

1.5.1 Relation with the classical topological notion of classifying

space

In this section we freely follow [BS08]. The materian of this section is not needed in

the thesis and we include it only for completeness, therefore the reader can skip this

section if he wants. In topology the classifying space of a (discrete or topological)

group G is given by a weakly contractible space EG together with a free (right) ac-

tion of G on it such that, denoting as BG := EG/G we obtain a map π : EG→ BG

with the property that, for every topological space X, every principal G bundle

over it is obtained as pullback of the bundle π. In other words there is a bijection

between homotopy classes of maps X → BG and homotopy equivalent classes of

principal G bundles over X. It can be proved that all the bundles satisfying this
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property are homotopy equivalent so that the classifying space of a group is unique

up to homotopy equivalence. The first notable construction of a classifying space

was given by Milnor and its construction became a standard tool, referred as “the

Milnor’s construction”, which we will not recall here (see [Sel97] page 101 for the

details). However we give here a quick sketch of the proof that, for discrete topo-

logical groups, the BG we have defined is indeed a classifying space, leaving some

details to the reader. In the previous section we gave the following definition

Definition 1.5.4. Starting with a group G, we define its simplicial Bar construc-

tion as follows. One defines the simplicial set EG using the assignment [n] 7→
HomSets([n], G) ∼= Gn+1 which is a simplicial group. G acts on EG by right multi-

plication on the first factor so that we can take the quotient EG/G for this action

to get a simplicial set B′G and a map ψ : EG→ B′G between them.

Example 1.5.5. Given a group G, define the category EG as the groupoid having

as objects the elements of G and as Hom-sets HomEG(g, h) = g−1h. One can also

consider G as a category BG with on object e and HomG(e, e) = G. We have a

functor ϕ : EG → BG given by g 7→ ∗ on objects and g−1h 7→ g−1h on arrows.

We can prove that N(EG) ∼= EG and that N(BG) ∼= B′G. Moreover, N(ϕ) is

isomorphic to ψ of the previous definition.

We now remind the following simple proposition

Proposition 1.5.6. Suppose we have two functors F,G : C → D and a natural

transformation τ between them. Then τ induces an homotopy between the maps

B(f) and B(G). In particular we have that an equivalence of categories C ' D
induces an homotopy equivalence B(C) ' B(D).

Proposition 1.5.7. The geometric realization of ψ : EG → B′G (or N(ϕ) :

N(EG) → N(BG)) characterizes BG (intended as |N(BG)|) as a classifying space

of G.

Proof. We will only explain how to see that N(EG) is weakly contractible, leaving

all the other details to the reader. We consider the trivial category ∗ having only

one object • and one arrow id•. We define the functor η : ∗ → EG via • 7→ 1 and

id• 7→ id1. One easily check that this functor is an equivalence of categories. Using

the fact that the geometric realization of the nerve of ∗ is the point, we conclude

using Proposition 1.5.6.
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1.6 Application to BGL and BSp

The results of this section concerning K-theory might be seen as folklore from some

experts. Indeed although the author was not able to find a precise reference, it

seems that they are ”in the air” in the articles [Sou85], [GS99].

Let now consider a site C = (SchS , τ), where SchS is some small category of schemes

over some base S (the set theoretical issues will be fixed once we bound the size of

the underlying topological spaces of the schemes involved by a large cardinal k, see

[Jar15] example 3.5, for example) and τ is a Grothendieck topology (with enough

points for simplicity). We consider the simplicial presheaves BGL and BSp over this

site, i.e. the simplicial presheaves defined by

SchS → sSets, U 7→ BG(Γ(U,OU )) G = GL,Sp

as in the previous section. Notice that these presheaves are sectionwise fibrant since

the nerve of any groupoid is fibrant (see [GJ09]I 3.5). Denote as BGL+, BSp+ the

presheaves

SchS → Sets, U 7→ BG+(Γ(U,OU ))

where + denotes the application of the Z∞ completion functor. Indeed these

presheaves evaluated at any scheme give us a simplicial set which has the same

homotopy groups of the one one could get using the Quillen’s + construction rela-

tive to the commutator subgroup (references are [Wei13], [Aut], [Ros94], [Hat02]; for

a discussion of the link between + and Z∞ at the level of spaces see [Wei13] or better

[Ger73]). However since the reference given consider just the case of BGL, it makes

no harm to remind why this is true. For any ring R one can in fact consider the

following commutative diagram (with + we mean the Quillen’s construction here)

BG(R)
f

//

��

BG+(R)

��

Z∞(BG(R))
Z∞(f)

// Z∞(BG+(R))

with G being equal to GL or Sp and f being the canonical map given with

the Quillen’s + construction. Then f induces an isomorphism on integral homology

so Z∞(f) is a weak equivalence. But now BG+(R) is a connected H-space (this can

be also seen as a consequence of the general machinery in [Sch17] Appendix A) so it

is simple then 1.1.17 applies and the right vertical map is a weak equivalence, so that

we get the claim. Using the previous diagram one has that this simplicial presheaves
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comes together with a map i : BG→ BG+ which induces an H∗(−,Z)-isomorphisms

sectionwise. This is also true for (BG)n and (BG+)n ' (BGn)+ because of Theorem

1.1.14 2). So 1.2.8 applies and we get

Proposition 1.6.1. Let C = (SchS , τ) be a site as above and let be X a P l-fibrant

simplicial presheaf which is Z-complete. Then [(BG+)n, X]IlτC
∼= [BGn, X]IlτC for

any n ∈ N where G can be both GL or Sp.

Proof. Indeed, since X is P l-fibrant we can apply 1.2.8.

Remark 1.6.2. The previous proposition is the generalization at level of presheaves

of the classical universal property of the + construction. Moreover, the same results

hold for more general algebraic groups, but we will not need that.

1.7 Application to (hermitian) K-theory

Fix now the site C = (SchS , τ) where τ is the Zariski topology, S is a noetherian

scheme of finite dimension and SchS is the category of schemes of finite type over

S admitting an ample family of line bundles (see Section 2.1.1 for this notion). In

this case the P l-fibrant simplicial presheaves are the sectionwise fibrant presheaves

which satisfy the Brown-Gersten property (because of [BG73], [Dug01b], [DHI04];

see discussion in Appendix E.1). We define the K-theory presheaf on C following

Quillen as the presheaf U 7→ ΩEx∞(QVect(U)), where for any scheme U we have

assigned to it Vect(U) the category of vector bundles over U , assignment that can

be made functorial using big vector bundles as explained in the appendix, and Q

denotes the Quillen’s Q-construction (see [Qui73], [Wei13] or [Sch11] among the

others, notice that the resulting simplicial set is naturally pointed). For a pointed

simplicial set X, ΩX is the simplicial loop space defined in [GJ09] page 31 (this can

be defined also as MapS∗((S
1, ∗), X) using the pointed mapping space). Moreover,

we have chosen the Ex∞ as functorial fibrant replacement instead of Sing ◦ | − |
because it does not change the set of zero simplices. Since all the schemes we

are considering are divisorial, this is a good definition of K-theory because of the

seminal work of Thomason and Trobaugh as explained in the appendix. Note this

presheaf can be pointed in a natural way (sectionwise there is a natural choice, see

[Sch11] pag.173) and it is going to be an H-group in every homotopy category we

will consider. As a side fact, remark that if we consider the projective global model

structure on simplicial presheaves, the K-theory simplicial presheaf we just defined

is actually the image of the simplicial presheaf U 7→ Ex∞(QVect(U)) under the

loop functor as defined in [Hov99] Definition 6.1.1, as it can be checked using the
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simplicial model structure that we have for simplicial presheaves (see [Jar15] pages

99 and 106 for some details) and [GJ09] II Lemma 2.3. Now, by its definition K is

P-fibrant (remind that the loop space of a fibrant simplicial set is fibrant because of

its definition and [GJ09] Lemma I 7.5) and moreover by 1.1.20, K is Z-complete in

the sense of Definition 1.2.4. In addition, the discussion contained in Appendix E.2

tells us that K has the Brown Gersten property in C, and so K is also P l-fibrant.

Hence 1.6.1 applies and we get the following

Proposition 1.7.1. [(BGL+)n,K]IlZarSchS
∼= [BGLn,K]IlZarSchS

for any n ∈ N.

Remark 1.7.2. One could be tempted to to use the classical universal property of

the plus construction to prove the previous proposition directly using the fact that

K-theory is an H-space. Indeed it seems that this fact is somewhat subsumed into

the papers of Gillet, Soulé and Loday [GS99], [Lod76] and [Sou85] and as we said is

basically contained in the paper of Levine [Lev97]. However, Levine does not make

any use of local homotopy theory nor he uses the Bousfield-Kan completion and

the former authors do not write down statements as general as ours nor they write

down details or the former theorem so we think that we are doing some service to

the community by writing down this ”folklore”.

We now pass to discuss the analogue of the previous proposition for Sym-

plectic hermitian K-theory.

1.7.1 The case of Symplectic hermitian K-theory

In this section we will assume that we have as a base scheme S a scheme where 1
2 ∈

Γ(S,OS) although recent progresses indicate that this might be unecessary. We will

stick to the category SchS of divisorial schemes of finite type over a noetherian S. As

in the case of K-theory, we can define a simplicial presheaf representing hermitian n-

shifted hermitian K-theory. Denote it as GW[n], GW[2] being symplectic hermitian

K-theory. Roughly speaking one start from a presheaf of dg categories with weak

equivalences and dualities and then one applies the construction made explicit in

[Sch17] 9.1, see Appendix B.5. What is relevant to our discussion is that we end

up with a simplicial presheaf which is P-fibrant and Z-complete since it is an H-

group for any n as remarked for example in [Sch10] 2.7 Remark 2. Moreover, this

presheaf also satisfies Zariski and Nisnevich descent and it is A1-homotopy invariant

on regular schemes([Sch17] Theorems 9.7, 9.8 and 9.9, see also Appendix B.5). So

in particular it is P l-Zariski fibrant. We then have because of 1.6.1

Proposition 1.7.3. [(BSp+)m,GW[n]]IlZarSchS
∼= [BSpm,GW[n]]IlZarSchS

for any

m ∈ N, n ∈ Z. In particular this holds for n = 2.
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1.8 Endomorphisms of K-theory: Part I

In this section, we denote as H(S) the unstable motivic homotopy category over a

regular noetherian scheme S (i.e. the homotopy category of simplicial presheaves

over Sm/S with the Nisnevich A1-localized injective local model structure) as defined

in the seminal [MV99] for example. See also appendix E for more. We let Sm/S be

the category of divisorial smooth schemes of finite type over S. We keep the previous

notations concerning model structures, and we let SchS be the category of divisorial

S-schemes of finite type. Accordingly we will denote, for example, as I lZarSchS the

category of simplicial presheves over the Zariski site of S-schemes as above equipped

with the local injective model structure. We write in that expression Nis instead of

Zar to denote the use of the Nisnevich topology. Let K be the K-theory simplicial

presheaf defined as in 1.6 (our schems are divisorial so it does not matter which

model of K-theory we use). One has that there is a local Zariski-weak equivalence

K ' Z × BGL+ as proved in [GS99] for example. This is nothing more than the

fact that K0 of a local ring is Z and the Quillen’s theorem + = Q. The same holds

for the Nisnevich topology. Our aim is to show that

HomHo(IlZarSchS)(K,K) ∼= HomH(S)(K,K)

It suffices to prove that [BGL+,K]IlZarSchS
∼= [BGL+,K]H(S) by a direct application

of 1.2.8 or because K ' Z × BGL+ ∼= qn∈ZBGL+ in the homotopy categories

considered (these three objects are in fact locally weakly equivalent) and disjoint

unions (finite products) of cofibrant (fibrant) objects are still coproducts (or finite

products) in these homotopy categories so that Hom takes coproducts to products

(more is true, see [Hov99] Example 1.3.11).

Proposition 1.8.1. Under the previous notation if F is any I-fibrant simplicial

presheaf in sPre(Sm/S)

MapsPre(Sm/S)(BGL, F ) ' lim
n∈Nop

holim
i∈∆

F (GLn ×iS GLn)

' holim
n∈Nop

holim
i∈∆

F (GLn ×iS GLn)

in particular

[BGL+,K]H(S)
∼= [BGL,K]IlNisSm/S

∼= π0 holim
n∈Nop

holim
i∈∆

K(GLn ×iS GLn)

∼= π0 lim
n∈Nop

holim
i∈∆

K(GLn ×iS GLn)
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We have denoted as ∼= the isomorphisms and as ' the weak equivalences.

Proof. To start with we prove the first result. We have

MapsPre(Sm/S)(BGL, F ) ∼= MapsPre(Sm/S)(colim
n∈N

BGLn, F )

∼= lim
n∈Nop

MapsPre(Sm/S)(BGLn, F )

' lim
n∈Nop

holim
i∈∆

F (GLn ×iS GLn)

We used in the first isomorphism (1.1), in the second the fact that Map takes colimits

to limits ([Hir03] 9.2.2) and the third weak equivalence comes from the description

of classifying space carried on in Section 4, in particular the fact that BGLn is a

simplicial scheme (recall that GLn is a smooth scheme over S because of [DG11] 4.5

or [GD71] I Proposition 9.6.4, and (BGLn)i ∼= GLn×iS GLn), 1.4.3, [Hir03] Theorem

18.1.10 and the properties of representable presheaves. The fact that

MapsPre(Sm/S)(BGL, F ) ' holim
n∈Nop

holim
i∈∆

F (GLn ×iS GLn)

follows from a similar calculation (use again (1) and the behaviour of Map with re-

spect to homotopy colimits). We turn now to the second assertion. It can be proved

(see [MV99]) that BGL+ 'A1
BGL. So [BGL+,K]H(S)

∼= [BGL,K]H(S). Since K

is A1-homotopy invariant and satisfies Nisnevich descent, i.e. there is a section-

wise weak equivalence d : K → Kf with Kf I lNis-fibrant we have [BGL,K]H(S)
∼=

[BGL,K]IlNisSm/S . We can also write

[BGL,K]IlNisSm/S
∼= [hocolim

n∈N
BGLn,K]IlNisSm/S

∼= [hocolim
n∈N

BGLn,Kf ]IlNisSm/S

∼= π0 MapsPre(Sm/S)(hocolim
n∈N

BGLn,Kf )

∼= π0 holim
n∈N

holim
i∈∆

Kf (GLn ×iS GLn)

∼= π0 holim
n∈N

holim
i∈∆

K(GLn ×iS GLn)

Where we have used the simplicial model structure on I lNisSm/S together

with the result just proved and the fact that d is a sectionwise fibrant replacement

(and a map between P-fibrant presheaves). A minor modification in the argument
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together (use differently (1.1) in the first step) with the result just proved for Map

gives us

[BGL+,K]H(S)
∼= [BGL,K]IlNisSm/S

∼= π0 lim
n∈Nop

holim
i∈∆

K(GLn ×iS GLn)

The following is then very similar to prove

Proposition 1.8.2. If F is any I-fibrant simplicial presheaf in sPre(SchS)

MapsPre(SchS)(BGL, F ) ' lim
n∈Nop

holim
i∈∆

F (GLn ×iS GLn)

' holim
n∈Nop

holim
i∈∆

F (GLn ×iS GLn)

Moreover

[BGL+,K]IlZarSchS
∼= [BGL,K]IlZarSchS

∼= π0 holim
n∈N

holim
i∈∆

K(GLn ×iS GLn)

∼= π0 lim
n∈N

holim
i∈∆

K(GLn ×iS GLn)

Proof. The proof of the first assertion goes exactly as the proof of the previous propo-

sition. Going to the proof of the second part we have from 1.7.1 that [BGL+,K]IlZarSchS
∼=

[BGL,K]IlZarSchS
. Then, since K also satisfies descent for the Zariski topology there

is a sectionwise I lZar-fibrant replacement d : K → Kf as above we can repeat almost

verbatim the argument of 1.8.1 to get

[BGL+,K]IlZarSchS
∼= π0 holim

n∈N
holim
i∈∆

K(GLn ×iS GLn)

∼= π0 lim
n∈N

holim
i∈∆

K(GLn ×iS GLn)

Remark 1.8.3 (important remark). We could actually prove the previous two

propositions in a more general situation, with exactly the same argument. In 1.8.1

we can substitute BGL with any filtered colimit of simplicial smooth schemes over S

and K with any sectionwise fibrant simplicial presheaf satisfying Nisnevich descent

(i.e. P lNis-fibrant) and A1-homotopy invariant. In 1.8.2 we can substitute BGL

with any filtered colimit of simplicial objects over SchS and K with any simplicial

presheaf satisfying Zariski descent. One can even push this further. We do this in

the following Proposition, giving a proof for the convenience of the reader.

23



Proposition 1.8.4. Let C be any Grothendieck site. If F is any I-fibrant simplicial

presheaf in sPre(C), J a small filtered set, (Xj)j∈J a directed family of simplicial

objects of C and X ∼= colim
j∈J

Xj ' hocolim
j∈J

Xj, we have

MapsPre(C)(X,F ) ' lim
j∈Jop

holim
i∈∆

F ((Xj)i)

' holim
j∈Jop

holim
i∈∆

F ((Xj)i)

in particular, if G is any sectionwise fibrant simplicial presheaf satisfying descent

(i.e. P l-fibrant)

[X,G]IlC
∼= π0 lim

j∈Jop
holim
i∈∆

G((Xj)i)

∼= π0 holim
j∈Jop

holim
i∈∆

G((Xj)i)

Let A be a class of maps s.t. we can perform the left Bousfield localization on P lτC
and I lτC in order to obtain the model categories I lAC and P lAC. Then if a sectionwise

weakly equivalent fibrant replacement of G is also A-local, one has in addition that

[X,G]IlAC
∼= [X,G]IlC

Proof. We have to mimic 1.8.1.

MapsPre(C)(X,F ) ∼= MapsPre(C)(colim
j∈J

Xj , F )

∼= lim
j∈Jop

MapsPre(C)(Xj , F )

' lim
j∈Jop

holim
i∈∆

F ((Xj)i)

As before we used in the first isomorphism the definition of X, in the second the

fact that Map takes colimits to limits ([Hir03] 9.2.2) and the third weak equivalence

comes from the properties of representable presheaves. The fact that

MapsPre(C)(X,F ) ' holim
j∈Jop

holim
i∈∆

F ((Xj)i)

follows similarly. We turn now to the second assertion. Because of the assumptions,

there is a sectionwise weak equivalence d : G→ Gf with Gf I l-fibrant and A-local,
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so by Corollary 6.3 of [DHI04] we have [X,G]IlAC
∼= [X,G]IlC . Moreover we can

write

[X,G]IlC
∼= [hocolim

j∈J
Xj , G]IlC

∼= [hocolim
j∈J

Xj , Gf ]IlC

∼= π0 MapsPre(C)(hocolim
j∈J

Xj , Gf )

∼= π0 holim
j∈J

holim
i∈∆

Gf ((Xj)i)

∼= π0 holim
j∈J

holim
i∈∆

G((Xj)i)

Where we have used the simplicial model structure on I lC together with the

result just proved and the fact that d is a sectionwise fibrant replacement (between

P-fibrant presheaves).

Now we come back to K-theory and we obtain

Proposition 1.8.5. [BGL+,K]IlZarSchS
∼= [BGL+,K]H(S)

Proof. Immediate from 1.8.1 and 1.8.2.

Remark 1.8.6. The previous result also holds if we replace BGL+ by a colimit of

simplicial presheaves representing simplicial smooth schemes, because of the previ-

ous two propositions. Moreover we can replace K by a simplicial presheaf having

the properties detailed in the previous propositions. The argument is exactly the

same. We resume this in the following proposition

Proposition 1.8.7. Assume J a small filtered set (Xj)j∈J a directed family of

simplicial objects of Sm/S and X ∼= colim
j∈J

Xj. Let G be a sectionwise fibrant sim-

plicial presheaf in sPre(SchS) satisfying Zariski descent and whose restriction Gs

to sPre(Sm/S) satisfies Nisnevich descent (i.e. it is both P lZar and P lNis-fibrant).

Then abusing the notation

[X,G]IlZarSchS
∼= [X,G]IlNisSm/S

If moreover Gs has a I lNis-fibrant replacement which is also A1-local, we get

[X,G]IlZarSchS
∼= [X,G]IlNisSm/S

∼= [X,G]H(S)

By what we said at the beginning of this section, from what precedes it

follows
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Theorem 1.8.8. [K,K]IlZarSchS
∼= [Z× BGL,K]IlNisSm/S

∼= [K,K]H(S)

After this result was proved, the author discovered that the the previous

statement was basically included in some unpublished 2013 notes by Cisinski, who

sketches a different but simpler argument to reach essentially the same conclusion.

However our method is different and in some extent, “more explicit”.

Remark 1.8.9. The bijections [K,K]IlZarSchS
∼= [K,K]IlNisSm/S

∼= [K,K]H(S) can

be seen to be induced by the functor

Ho(sPre(SchS), I lZar)→ Ho(sPre(Sm/S), I lZar)

induced by deriving the restriction functor sPre(SchS) → sPre(Sm/S) and then

applying the localization functors

Ho(sPre(Sm/S), I lZar)→ Ho(sPre(Sm/S), I lNis)

and

Ho(sPre(Sm/S), I lNis)→ H(S)

as revealed from an adequate analysis of the arguments given. Indeed, the only non

trivial step can be to convince yourself that the restriction functor res : Pre(SchS)→
Pre(Sm/S) induces a bijection π0MapPre(SchS)(X,F ) ∼= π0MapPre(Sm/S)(res(X), res(F ))

for any X ∈ Sm/S and F ∈ sPre(SchS), but this follows from the Yoneda lemma.

The same holds in the generality of the previous remark.

Now by noticing that (Z×BGL+)n ∼= Zn× (BGL+)n ∼=
∐
i∈Zn(BGL+)n, and

that the same holds for BGL, using 1.7.1 we can argue as above to get

Theorem 1.8.10. For any natural number n, [Kn,K]IlZarSchS
∼= [(Z×BGL)n,K]IlZarSm/S

∼=
[Kn,K]H(S)

1.8.1 The case of Symplectic K-theory

In this subsection S will be a regular (remind that we assume all our regular schemes

to be divisorial unless otherwise stated) Noetherian scheme such that 1
2 ∈ Γ(S,OS).

We will consider in this Section the simplicial presheaf GW[2] =: KSp over SchS .

We already recalled its descent properties and there is a local weak equivalence

Z × BSp+ ' KSp in sPre(SchS , I lZar) (argue as in the case of K-theory using

[Sch17] Theorem A.1 and Corollary A.2) so that if our schemes are divisorial, all

the possible definitions of KSp are equivalent. Also, recall that in the paper [ST15],
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it is shown that KSp ' Z× BSp in H(S) and we do not need to consider the étale

classifying space in this context because of the equivalence between symplectic vector

bundles and fppf Sp2n-torsors (the proof of this fact is contained in [AHW18] page

1205, see also [PW10a] page 25). Moreover, we explicitly note that the symplectic

groups are smooth schemes over our chosen base S. This fact usually given for

granted by many authors, can be proven explicitly when S is a field (see [Wat79])

and for the general case one can reduce to fields because of [DG80] page 289. Then

we can repeat the arguments of the previous sections because of the discussion in

Section 1.8 on BSp and BSp+ so that, noticing that Proposition 1.8.4 and that we

have Proposition 1.6.1 we have proved the following theorem and that has to be

considered as the analogue of 1.8.5 and 1.8.10

Theorem 1.8.11. We have [BSp+,KSp]IlZarSchS
∼= [BSp,KSp]H(S). Moreover for

any natural number n it holds [KSpn,KSp]IlZarSchS
∼= [(Z×BSp)n,KSp]IlNisSm/S

∼=
[KSpn,KSp]H(S)

Also, we observe that the analogue of Remark 1.8.9 holds.

1.9 Separated schemes

We notice that if we had chosen a separated base scheme S and considered the full

subcategory Sm/Ssep ⊆ Sm/S ⊆ SchS of separated (in the absolute sense) smooth

schemes over S instead than the category of divisorial schemes nothing would have

changed in the proof of the above theorems. We summarise this into the following

theorem

Theorem 1.9.1. Let S be a regular separated noetherian base scheme (with 1
2 ∈

Γ(S,OS) if we consider hermitian K-theory) and Sm/Ssep ⊆ Sm/S ⊆ SchS the

category of separated (in the absolute sense) smooth schemes over S. Then for any

natural number n we have

[Kn,K]IlZarSchS
∼= [(Z× BGL)n,K]IlZarSm/Ssep

∼= [Kn,K]H(S)sep

and

[KSpn,KSp]IlZarSchS
∼= [(Z× BSp)n,KSp]IlNisSm/Ssep

∼= [KSpn,KSp]H(S)sep
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1.10 Non-divisorial schemes

We remark in this section that many of the theorems we have proved hold in the case

where the schemes considered are not divisorial. Indeed all we have used is that we

can define K-theory as an H-group for the model categories we have considered, that

it satisfies Nisnevich and Zariski descent, that it is homotopy invariant as simplicial

presheaf on Sm/S and that it is locally weakly equivalent to Z × BGL+. Now, we

keep S to be a regular noetherian base scheme (in this case by regular we admit

also non divisorial schemes, i.e. we only ask that the local rings are regular) and we

define K-theory using the definition of Thomason and Trobaugh, i.e. we define for

any scheme X the simplicial set K(X) to be ΩιS•Perf(X) (this is the the simplicial

version of zeroth space of the spectrum defined in [TT90] Definition 3.1) where S•

denotes the Waldhausen S•-construction and Perf(X) is the category of perfect

complexes on X. We then drop the hypothesis of our schemes to be divisorial,

while still of finite type over S. Accordingly we still have Zariski and Nisnevich

descent because of the work of Thomason ([TT90] 10.8) and K is still A1-homotopy

invariant over Sm/S ([TT90] Proposition 6.8). Moreover we also have a Zariski

local weak equivalence between Z× BGL+ and K as simplicial presheaves on SchS

(indeed we can check locally that the natural map is a weak equivalence). So we can

use 1.8.4 and 1.8.7 and still get 1.8.10 dropping the assumption of divisoriality for

the schemes we are considering. Similar considerations apply to KSp. If one wants

to have A1-homotopy invariance for non regular schemes, then one could employ

homotopy invariant K-theory, but this will not be discussed here. We summarise

all these remarks in the following theorem

Theorem 1.10.1. Let Sm/S and SchS the categories of smooth noetherian schemes

and noetherian schemes of finite type over a regular base scheme S (so that 1
2 ∈

Γ(S,OS) when hermitian K-theory is considered). Consider K and KSp the Thoma-

son’s K-theory and the Schlichting’s GW[2]. Then for any n ∈ N we have

[Kn,K]IlZarSchS
∼= [(Z× BGL)n,K]IlZarSm/S

∼= [Kn,K]H(S)

and

[KSpn,KSp]IlZarSchS
∼= [(Z× BSp)n,KSp]IlNisSm/S

∼= [KSpn,KSp]H(S)

Moreover, since for generic schemes we have a well define Nisnevich topology, we

can replace in the above isomorphisms I lZarSchS with I lNisSchS everywhere.
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Proof. The proof goes as the one of Theorems 1.8.10 and 1.8.11 mutatis mutandis

using Proposition 1.8.4.
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Chapter 2
Embedding divisorial schemes into

smooth ones

In this chapter, unless otherwise indicated, R will always denote a commutative

noetherian ring. We are devoted to prove the following theorem.

Theorem 2.0.1. Let X be a quasi-separated scheme of finite type over Spec(R)

having an ample family of line bundles {(Li, si)}ni=1. Then there exists a closed

embedding f : X �
�
/ //W with W noetherian smooth scheme over R admitting an

ample family of line bundles.

2.1 Schemes having an ample family of line bundles

2.1.1 Definition and main properties

We start by fixing some terminology. For schemes locally of finite type over some

base, we adopt the definition found in [GD71] I 6.2.1 or in [GW10] Definition 10.5.

We say that a scheme X is smooth over a base S if its structure map is smooth

([GD67] IV 6.8.6, 17.3.1, [GW10] 6.14, [Sta18, Tag 01V5]). Explicitly note that a

smooth morphism is locally of finite presentation ([GD67] IV 1.4.2) and so locally of

finite type. We do not assume that a smooth morphism is separated. Hence smooth

schemes over a base S are a full subcategory of schemes locally of finite type over S.

Notice also that a morphism X → Y , if Y is at least locally noetherian, is locally of

finite presentation if and only if it is locally of finite type ([GW10] Remark 10.36).

We now recall a simple fact
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Lemma 2.1.1. Let X be a locally noetherian scheme. Then its connected com-

ponents {Uα}α∈I are open and we have an isomorphism of schemes (X,OX) ∼=
qα∈I(Uα,OX|Uα)

Proof. If a topological space is at least locally noetherian, then its connected com-

ponents are open ([GD67] I 6.1.9). Then denoting as {Uα}α∈I the open connected

components of X, the spaces (Uα,OX|Uα) are well defined open subschemes of X.

If we glue this schemes forming their disjoint union (as in [GW10] 3.10 for example)

it is a simple check to obtain the isomorphism stated in the lemma.

Definition 2.1.2. ([SGA71] II 2.2.3 or [TT90] Definition 2.1) A scheme X has an

ample family of line bundles (or it is called divisorial) if it is quasi-separated and

there is a finite family of line bundles L1, ..., Ln on it such that there are finitely

many global sections si ∈ Γ(X,Li) with the property that their non vanishing loci

Xsi ([GD71]0, 4.1.9) form an open affine cover of X.

Remark 2.1.3. Schemes having an ample family of line bundles are quasi-compact.

In fact, if a scheme has an ample family of line bundles, then by definition it has

a finite cover by affine schemes, so that it is quasi-compact. Moreover, allowing

repetitions of the same line bundle, we can assume that an ample family of line

bundles comes into the form {(Li, si)}ni=1 where si ∈ Γ(X,Li) for every i.

Examples of divisorial schemes are PnR, Grasmannians, etc. The definition

of divisorial scheme is equivalent to ask (for schemes quasi-compact and quasi-

separated) that there exists a finite family of line bundles Li such that the open

non vanishing loci Xf form a basis for the topology of X, where f varies over the

global sections Γ(X,L⊗li ) for i = 1, ..., n and l > 1, see [TT90] 2.1.1. Every family

of line bundles satisfying this last property can be in fact twisted (if our scheme is

quasi-compact) to a family of the form given in our definition and sometimes we will

abuse the terminology calling ample family a family of line bundles satisfying one of

these two conditions. More equivalent definitions could be given, and a remarkable

feature of such schemes is that they have the resolution property (see [TT90] 2.1.3).

For our purposes it is relevant to say that if a scheme X admits an ample family

of line bundles L1, ..., Ln then for every quasi-coherent OX -module F of finite type

there exists (see the proof of [SGA71] II 2.2.3.1 or [TT90] Lemma 2.1.3) natural

numbers p,jm1, ...,jmn where j = 1, ..., p and a surjective map

p⊕
j=1

(⊗ni=1L
⊗−(jmi)
i )� F
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Remark 2.1.4. A very important property of divisorial schemes is that they have

affine diagonal, i.e. their diagonal embedding ([Sta18, Tag 01KJ])is affine. For a

simple proof see [BS03] Proposition 1.2.

Many important classes of schemes have an ample family of line bundles.

Notice that noetherian schemes or schemes having affine diagonal are both quasi-

separated.

Lemma 2.1.5. ([SGA71] II 2.2.7.1) Every regular (or locally factorial) noetherian

scheme having affine diagonal has an ample family of line bundles

Corollary 2.1.6. Every quasi-compact scheme X that have affine diagonal and

that is smooth over a noetherian regular base scheme S (and so in particular it is

noetherian) has an ample family of line bundles.

Remark 2.1.7. In [SGA71] the hypothesis of having affine diagonal is replaced

by the stronger separated hypothesis. However the separated hypothesis is used

in the proof of [SGA71]II 2.2.7 in order to apply [SGA71]II 2.2.6; in particular it

is required that an open embedding of an affine scheme into our scheme X is an

affine morphism. But this is true if X has affine diagonal, so the proof goes through

(see also [BS03] Proposition 1.3). Notice also that if we remove the hypothesis of

having affine diagonal, Lemma 2.1.5 fails as the example of the affine plane with

double origin shows ([SGA71]II 2.2.7.2): this is a scheme smooth, quasi-compact,

and quasi-separated that does not have an ample family of line bundles.

Remark 2.1.8. Notice that Lemma 2.1.5 is used in thesis only to justify the fact

that we have a well behaved Nisnevich topology over the category of divisorial

smooth base over a divisorial base S, see Remark B.3.3. Also, we explicitly point

out hat the property of a morphism of shemes of having affine diagonal is stable

under composition and base change because the same proof used for the property

of being separated found for example in [Sta18, Tag 01KH] goes through, affine

morphisms being stable under composition and base change because of [Sta18, Tag

01SC] and [Sta18, Tag 01SD], for example.

In this work, by quasi-compact immersion we mean a morphism which is

both quasi-compact ([GD67] I 6.6.1) and an immersion ([GD67] I 4.2.1, see also

[GW10] Definition 3.43). We can prove the following.

Proposition 2.1.9. Let X be a scheme admitting a quasi-compact immersion i :

X → Y in a divisorial scheme Y . Denoting as L1, ..., Ln an ample family of line

bundles of Y , we have that i∗L1, ..., i
∗Ln is an ample family of line bundles over X

so that X is itself divisorial.
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Proof. For every f ∈ Γ(Y,L⊗li ) if if : Yf → Y is the open embedding of the non

vanishing locus Yf in Y , we can draw the following pullback diagram

Xi∗f

ii∗f
//

��

X

i

��

Yf if
// Y

where i∗f ∈ Γ(X, i∗L⊗li ) and ii∗f is an open embedding. But now we have

that i is a quasi-compact immersion, so factoring it as composition of a closed

embedding followed by an open embedding we notice that, by point set topology,

the preimage of a basis for Y under i is a basis for the topology on X. This

together with the explicit description of the preimage of a non vanishing locus Yf

for f ∈ Γ(Y, L⊗lj ) allows us to see that Xi∗f , i∗f ∈ Γ(X, i∗L⊗lj ) with j = 1, ..., n and

l ≥ 1 are a basis for the topology of Y , so i∗L1, ..., i
∗Ln is an ample family of line

bundles for X.

We explicitly note that the definition of immersion given by Hartshorne in

[Har77] 2.4 is different, but for quasi-compact maps they agree, see [Sta18, Tag

01QV] or [GW10] Remark 10.31. Since in what is left of this chapter we will work

only with schemes which are locally of finite type over a noetherian base S, they

are at least locally noetherian ([GD71] I 6.2.2) and also quasi-separated because

of [Sta18, Tag 01OY] so we can speak simply of immersion without any difficulty

using the definition of Hartshorne or of Grothendieck because for any immersion

f : X → Y , if Y is at least locally noetherian, then f is quasi-compact for [GD67]

I 6.6.4 (i). If such schemes are divisorial, they are indeed quasi-compact and so we

can drop the distinction between locally of finite type and of finite type. We also

have the following

Proposition 2.1.10. Let X be a divisorial scheme and let be E a vector bundle on

it. Then P(E) has an ample family of line bundles.

Proof. One consider the usual projection π : P(E)→ X and notice that OP(E)(1) is

relatively π-ample (see [GD67] II 4.6.1 for this notion): in fact if one considers a finite

trivializing open affine cover {Ui = SpecRi}ni=1 made by connected affine schemes,

we get that π−1(Ui) ∼= PniRj , where the ni are the ranks of E on Ui and OP(E)(1)

restricts to OPniRj
(1) on π−1(Ui), which is ample. Now one can apply [TT90] 2.1.2

(f) to conclude.
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2.1.2 A particular family

In this subsection we show that it is possible, given any ample family on a scheme

X, to build another ample family which has properties useful to our aims.

Proposition 2.1.11. Let X be a scheme having an ample family {(Li, si)}ni=1.

Then there exists an ample family {(Lj , fj)}mj=1 such that {Xfj} forms an affine

open cover of X and there are isomorphisms αij : OX|Xfi
∼= // Lj|Xfi for all i, j

where αii is induced by the restriction of fi to Xfi and in the remaining cases αij

are induced by sections sij ∈ Γ(Xfi ,Lj|Xfi ).

Proof. By the definition of ample family, we know that the open subschemes Xf ,

f ∈ Γ(X,L⊗ni ) form a basis for the topology of X for i, n ≥ 0 varying. We notice

that if an open subscheme of the form Xf is contained in an open affine subscheme

of X, then Xf has to be affine by [SGA71]II 2.2.3.1. Now, for any y ∈ X, find

an open affine subset Uy 3 y of X such that Li|Uy
∼= OX|Uy for every i. Since the

Xf of the above form are a basis for the topology of X, we can then find sections

fy ∈ Γ(X,L
⊗ny
iy

) such that y ∈ Xfy ⊆ Uy are open affine subschemes of X and

αi,y,n : OX|Xfy
∼= // L⊗ni|Xfy

for every y, i ad n induced by sections si,y,n ∈ Γ(Xfy , L
⊗n
i|Xfy

) such that if i = iy and

n = ny, siy ,y,ny = fy|Xfy . Since X is quasi-compact, we can take a finite number

of Xfy as an open affine cover of X corresponding to points y1, ..., ym. Denote

Lj := L
⊗nyj
iyj

and fj := fyj for j = 1, ...,m. The family {(Lj , fj)}mj=1, together with

the choice αij := αiyj ,yi,nyj and sij := siyj ,yi,nyj has the desired properties.

Remark 2.1.12. If X is locally of finite type over a noetherian ring R, then all the

rings Aj = Γ(Xfj ,OX) coming from the previous Proposition are finitely generated

R-algebras.

2.2 Lemma S

We prove in this section a technical lemma which is used in the proof of Theorem

2.0.1. We call this lemma Lemma S, where S stands for smooth. The proof is

essentially combinatorics inspired by the case of weighted projective spaces: it is

given since the author was not able to find in the literature a more general algorithm

to use in order to derive results like the following.
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Lemma 2.2.1. Let d be a fixed element of Z>0, R be any commutative unital ring

and A = R[yik, xij ] =
⊕

p∈Zn Ap a Zn-graded polynomial ring such that, denoting as

e1, ..., en the canonical basis of Zn as Z-module, the following hold

• i, j ∈ {1, ..., n}, yik ∈ Ei, where Ei is a set of variables of cardinality li ∈ N.

• A0 = R.

• deg(xij) = dei + ej.

• deg(yik) = deg(xii) for every i.

Let Tk :=
∏n
j=1 xkj = xk1 · · ·xkn then deg(Tk) = (1, ..., nd+1, 1, ..., 1) where the non

1 term is in the kth position and Tk ∈ A is relevant for every k = 1, ..., n. Moreover

A(Tk) is a smooth R-algebra isomorphic to a polynomial R-algebra in n(n − 1) +∑n
i=1 |Ei| variables.

Proof. Suppose k is fixed. The calculation of the degree of Tk is simple and in

particular Tk is homogeneous. To see that it is relevant we have to consider the

subgroup D in Zn generated by the degrees of xk1, ..., xkn and check that it has

finite index. The n× n matrix

(
deg(xk1)

...
deg(xkn)

)
=

( 1 0
. . .

0 1

)
+

(
d

0
... 0
d

)
(2.1)

is invertible over Q hence has image D of finite index in Zn. This suffices to

show that Tk is relevant. Now consider A(Tk). We note that the usual isomorphism

ATk
∼= Axk1···xkn

∼= R[yil, xij , x
−1
kj ] is graded (giving all the rings the grading induced

from A) and we remark that it induces an isomorphism on the degree zero level

i.e. A(Tk)
∼= (R[yil, xij , x

−1
kj ])0. From now on we will identify ATk and A(Tk) with

R[yil, xij , x
−1
kj ] and (R[yil, xij , x

−1
kj ])0 respectively via the canonical isomorphisms.

By direct computation we easily check that the following are elements of A(Tk)

• yil · x
−(d+1)
ki · xdkk =: yil · ail for every yil ∈ Ei because

(d+ 1)ei − (d+ 1)(dek + ei) + d(d+ 1)ek = 0

• xij · x−1
kj · x

−d
ki · x

d
kk =: xij · bij for all i, j because

dei + ej − (dek + ej)− d(dek + ei) + d(d+ 1)ek = 0
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Define a new Zn-graded ring as follows: as a ring it is the R[x±1
kj ]-algebra

R[x±1
kj ][yjl, xij ]

where (i, j = 1, ..., n) ∧ (i 6= k) and for any j, yjl ∈ Ej with |Ej | = lj = |Ej |. We

give to this ring the grading induced by letting elements in R to have degree 0 and

by giving to the variables the following degrees

• deg(x±1
kj ) = ±(dek + ej).

• deg(yjl) = deg(xij) = 0 where (i, j = 1, ..., n) ∧ (i 6= k).

We now notice that we can see the ring ATk = R[yil, xij , x
−1
kj ] as an graded R[x±1

kj ]-

algebra R[x±1
kj ][yjl, xij ] where i 6= k. We can now define the following R[x±1

kj ]-algebra

homomorphism

R[x±1
kj ][yjl, xij ]

ϕ
// ATk = R[x±1

kj ][yjl, xij ]

yjl
� // yjl · ajl = yjl ·

xdkk
xd+1
kj

xij
� // xij · bij = xij ·

xdkk
xkjx

d
ki

if i 6= k

x±1
kj

� // x±1
kj

The homomorphism ϕ is graded and an isomorphism, so it induces an iso-

morphisms of rings on the zero degree parts of the two graded rings. This means,

since A(Tk) is the degree zero part of ATk , that we have an isomorphism of rings

A(Tk)
∼= R[yjl, xij ], i 6= k, as wanted, so that the lemma is fully proved. This iso-

morphism is obtained by precomposing ϕ−1 with the inclusion α : A(Tk) ↪→ ATk
∼=

R[yil, xij , x
−1
kj ] and then by restricting to the image of the obtained map.

2.3 Recollections on multihomogeneous Proj

We are going to recall some facts about multihomogeneous localization as introduced

and studied in [BS03]. Where it is possible, we take an equivalent but different

approach to op.cit.. This theory is linked with toric geometry but the author has not

been able to find a suitable different reference for this material from that perspective

in the generality required for this work. If S is a Zn-graded ring and f ∈ S is an

homogeneous element, we can define a Zn-grading on Sf by defining deg( g
fn ) =

deg(g)−n ·deg(f) for every g ∈ S homogeneous element. In this case we will denote

as S(f) the degree zero part of Sf .
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Definition 2.3.1. ([BS03] pag. 6) Let S be a Zn-graded ring. We call such a ring

periodic if the degrees of homogeneous units f ∈ S×(a priori this is just a set, but

it easy to verify that this is actually a group) form a subgroup of Zn of finite index.

We say that an element f ∈ S is relevant if it is homogeneous and Sf is periodic.

The following is a simple lemma

Lemma 2.3.2. Let ϕ : A → B a homogeneous ring homomorphism between Zn-

graded rings A and B. Then if f ∈ A is relevant, ϕ(f) ∈ B is relevant.

Note that if f = g1 · · · gn ∈ S is a homogeneous factorization and the degrees

of gi generate a subgroup of finite index in Zn, then f is relevant.

Lemma 2.3.3. Let S be a Zn-graded periodic ring, and f and homegeneous element

in it. Then Sf is periodic.

Proof. One simply notices that the homogeneous units in S are still homogeneous

units in Sf , so their degrees generate a subgroup of Zn of finite index.

Corollary 2.3.4. Let S be a Zn-graded ring, then if f ∈ S is relevant and g ∈ S is

homogeneous it follows that fg is a relevant element.

Proof. It is an immediate consequence of the previous lemma.

Remark 2.3.5. Notice that if S is a Zn-graded ring and f ∈ S is homogeneous

and relevant, then the subgroup D ⊆ Zn of the degrees of the homogeneous units

in Sf is generated by the degrees of a finite family of homogeneous units in Sf , say

u1, ..., ur. Hence f = f · u1u
−1
1 · · ·uru−1

r = g1 · · · gl where all gi are homogeneous

and units in Sf and < deg(gi) >= D.

Now consider S =
⊕

d∈Zn Sd a Zn-graded ring. Assume that the degrees of

the homogeneous units f ∈ S× form a subgroup D ⊆ Zn of finite index (i.e. S

is periodic) and write S
′

=
⊕

d∈D Sd for the induced graded subring of S. Then

S
′

= S0[u±1
1 , ..., u±1

r ] where ui ∈ S× for every i = 1, ..., r.

Proof. First we let u1, ..., ur to be some homogeneous units whose degrees deg(ui) =

di generateD. Then we prove the equality by showing the inclusions S
′ ⊆ S0[u±1

1 , ..., u±1
r ]

and S
′ ⊇ S0[u±1

1 , ..., u±1
r ]. The second one is trivial. For the first one, suppose f ∈ Sd

with d ∈ D. Note that by our assumptions we have d = k1d1 + ... + krdr for some

k1, ..., krıZ. Define αf := u−k1
1 · · ·u−krr ∈ Sd ∩ S×. Then f · αf =: βf ∈ S0. But

f = βf · α−1
f ∈ S0[u±1

1 , ..., u±1
r ]. Iterating for every f ∈ S′ gives the inclusion ⊆ as

we wanted.
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The above reasoning shows that we can find an actual torus into every peri-

odic ring. This fact can be prompted to the following lemma

Lemma 2.3.6. ([BS03] Lemma 2.1) For periodic rings S, the projection Spec(S)→
Spec(S0) is a GIT quotient for the action of the torus Spec(S0[Zn]) on Spec(S)

induced by the grading.

From this it follows that if we set D+(f) := Spec(S(f)) for f relevant, then

the map Spec(Sf ) → D+(f) is a GIT quotient for the induced action. In general,

given a Zn-graded ring, we have an induced action of the torus Spec(S0[Zn]) =: T

on it, represented by a map σ : T × Spec(S) → Spec(S). This action in general is

not well behaved. We can however take the quotient of S by this action (i.e. the

cokernel of σ in the category of locally ringed spaces), which exists as a locally ringed

space Quot(S) (see [DG70] Proposition 1.6). This space however is not always a

scheme, so the following definition is motivated

Definition 2.3.7. ([BS03] 2.2) Let S be a Zn-graded ring as above. Define the

multihomogeneous projective spectrum of S to be

Proj(S) :=
⋃

f∈S relevant

D+(f) ⊆ Quot(S)

By 2.3.6 and the above discussion, it is a scheme.

We can give a more explicit description of multihomogeneous projective

spaces by giving a gluing datum of affine schemes and gluing it, without any use of

GIT quotients. In order to do this, We need the following lemma

Lemma 2.3.8. Let be S a Zn-graded ring, f ∈ S a relevant element and g ∈ S an

homogeneous element. Then

S(fg)
∼= (S(f)) gdu

k−k1
1 ···uk−krr

u
k1
1 u

k−k1
1 ···ukrr u

k−kr
r

∼= (S(f)) gduk−k1
1 ···uk−krr

(u1···ur)k

where the degrees of u1, ..., ur ∈ S and their degrees generate the subgroup D of Zn

of finite index generated by the degrees of the homogeneous units in Sf , there exists

m ∈ N such that fm = u1 · · ·ur, d · deg(g) = k1 · deg(u1) + ... + kr · deg(ur) and

k = max{ki}.

Proof. We first notice that such d, m, k1, ..., kr, u1, ..., ur exist because f is relevant

and so the subgroup D of Zn generated by the homogeneous units of Sf has finite

index. Defining b := uk1
1 · · ·ukrr , which is still a relevant element, we can check that
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S(f)
∼= S(b) by repeating the same argument used in these cases for Z-gradings. In

fact for every h ∈ S homogeneous the map Shl → Sh, a
hl
7→ a

hl
is an isomorphisms for

all i and all l ∈ N so that we first have S(f)
∼= S(fm)

∼= (...(S)u1)u2)...)ur)0
∼= S(u1···ur)

and then by induction S(u1···ur)
∼= S

(u
k1
1 ···u

kr
r )
∼= S(b). So we have S(f)

∼= S(b),

S(fg)
∼= S(bg) and to conclude we need to show that S(bg)

∼= (S(b)) gd
b

. To achieve

this we can argue as in EGA II 2.2.2. Since bg divides bgd which divides (bg)d we

have a canonical isomorphism (Sbg)0
∼= (Sbgd)0

∼= ((Sb) gd
1

)0. Using the fact that b is

invertible in Sb we also get that the following isomorphisms are graded

Sbgd
∼= (Sb) gd

1

∼= (Sb) gd
b

Finally by construction gd

b has degree zero in (Sb) gd
b

and then ((Sb) gd
b

)0
∼= (S(b)) gd

b

.

The lemma is now fully proved.

Using the previous lemma, starting from a Zn-graded ring, we consider the

gluing datum (D+(f), D+(fg), ϕgf : D+(fg)
∼=−→ D+(gf))f,g relevant where D+(fg) ⊆

D+(f) are open subschemes because the previous lemma, the isomorphisms ϕgf are

induced from the canonical isomorphisms Sfg ∼= Sgf and the cocycle conditions

are verified. The scheme resulting from this gluing datum is in fact isomorphic to

Proj(S).

Remark 2.3.9. Note that for f, g relevant elements, we have by the previous

lemma that D+(fg) ⊆ D+(f) and D+(fg) ⊆ D+(g) are actually open embed-

dings such that we can glue the D+(f) in order to get Proj(S) in such a way that

D+(f)∩D+(g) = D+(fg) ⊆ Proj(S). For a counterexample of this behaviour when

f, g are homogeneous but not relevant consider the following situation. Let S =

C[x1, x2, x3, x4] have the Z2-grading defined as S0 = C, deg(x1) = deg(x2) = (1, 0)

and deg(x3) = deg(x4) = (0, 1). Then S(x1)
∼= C[x2

x1
], S(x3)

∼= C[x4
x3

], x1x3 is relevant

and S(x1x3)
∼= C[x2

x1
, x4
x3

] but the graded map S(x1) ↪→ S(x1x3) does not induce an open

embedding A2
C ↪→ A1

C. It is true in general that, for a Zn-graded ring S, the isomor-

phism (Sf )g ∼= Sfg is graded such that ((Sf )g)0
∼= S(fg) and the maps Sf ↪→ Sfg

are graded for any homogeneous f, g such that they induce maps S(f) ↪→ S(fg).

Moreover, results such as [GD67]II 2.2.3 fails in this case if we abandon Z-gradings

for Zn-gradings.
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Giving a Zn-graded ring S, defining S+ ⊆ S to be the ideal in S generated

by all the relevant elements, we call V (S+) in Spec(S) the irrelevant subscheme.

This way we obtain that the induced affine projection map

Spec(S)− V (S+)→ Proj(S)

is a GIT quotient for the induced action of the torus Spec(S0[Zn]) =: T on S.

Proposition 2.3.10. ([BS03]3.1, 3.5) Let S be a Zn-graded ring. Then Proj(S) has

affine diagonal and if S is finitely generated as an S0-algebra, Proj(S) is divisorial.

Consider now X a noetherian divisorial scheme having {(Li, si)}ni=1 as an

ample family of line bundles. Define the OX -algebra

B :=
⊕
d∈Zn

Bd =
⊕
d∈Zn

Ld

where d = (d1, ..., dn) ∈ Zn, Ld = L⊗d1
1 ⊗ ... ⊗ L⊗dnn and L0 = OX . We notice that

the ring multiplication on B is induced by the tensor product and that, X being

noetherian, we do not need to sheafify the direct sum presheaf (see [Har77] Ex.1.11

or [Sta18, Tag 01AI]), so that B is a Zn-graded quasicoherent OX -algebra taking

value on every open subset U of X the graded Γ(U,OX)-algebra
⊕

d∈Zn Γ(U,Ld).

For every f ∈ Γ(X,Ld) (for some d ∈ Zn) the multiplication OX -module map f :

OX → LdX is anOX -module isomorphism over Xf . The same is true replacing f with

fn and Ld with Ln·d for every N 3 n ≥ 0. Notice that by [GD71]0, 4.1.10, Xfn =

Xf for every n and these multiplication maps all together give us an OXf -algebra

isomorphism
⊕

n≥0 L
nd
Xf
∼= OXf [T ], inducing an isomorphism Spec(

⊕
n≥0 Bnd|Xf ) ∼=

A1
Xf

(here by Spec we mean the relative spectrum). Notice further that in this case

our standard definition of vanishing locus coincides with the definition of [BS03] in

Section 4. The following is then a reformulation for our case of [BS03] Proposition

4.2.

Proposition 2.3.11. Let X and B be as above. Let ϕ : S → Γ(X,B) be a ho-

mogeneous map between Zn-graded rings. Let f1, ..., fl be a finite number of rele-

vant elements fj ∈ S. Note ϕ(fj) ∈ Γ(X,Ldeg(fj)) for every j = 1, ..., l. Assume⋃l
j=1Xϕ(fj) = X. Then there is a natural morphism ψ : X →

⋃l
j=1D+(fj) ⊆

Proj(S).
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Proof. For every fj we have a map αj : S(fj) → Γ(X,B)(ϕ(fj)). Moreover, for every

j we have a homomorphism

βj : Γ(X,B)(ϕ(fj)) → Γ(Xϕ(fj),OX), g/ϕ(fj)
n 7→ (ϕ(fj)

n|Xϕ(fj))
−1(gXϕ(fj)

)

where (ϕ(fj)
n|Xϕ(fj))

−1 is the inverse mapping of the OX|Xfj -module isomorphism

OX|Xϕ(fj)
∼= Bnd|Xϕ(fj)

(note that ϕ(fj) is invertible over Xϕ(fj)). The map βj ◦
αj : S(fj) → Γ(Xϕ(fj),OX) give us, since the fj are relevant, maps Xϕ(fj) →
D+(fj).These maps, using the fact that all the fj are relevant, agree on the overlaps

so that we get the desired morphism ψ : X → Proj(S). The map βj ◦ αj , can be

written also in the following way, denoting as dj the degree of fj

S(fj) = (
⊕

n∈Z Sdjn)(fj)
//
⊕

n∈Z Γ(X,Ldjn)(ϕ(fj))
OO

∼=
��

// (
⊕

n∈Z Γ(Xϕ(fj), L
djn))0 = Γ(Xϕ(fj),OX)

Γ(X,B)(ϕ(fj))

Now one can check that this maps agree when restricted over the overlaps, i.e.,

denoting γfj = (βj ◦αj), we have γfj |D+(fi) : D+(fifj)→ Γ(Xϕ(fi)ϕ(fj),OX) is really

γfifj .

Remark 2.3.12. If S is a finitely generated Z-graded polynomial algebra, then as

noticed in [BS03] Example 3.8, Proj(S) is a so called weighted projective space.

These space, although quasi-projective, are not necessarily smooth as the following

example from [BR86] (remark before Corollary 2.7 pag.121) shows. Suppose S =

C[x0, x1, x2] with deg(x0) = deg(x1) = 1 and deg(x2) = 2. Then S(x2)
∼= S

(2)
(x2) =

C[x2
0, x0x1, x

2
1, x2](x2)

∼= C[x2, xy, y2] ∼= C[A,B,C]/B2 = CA which is not smooth over C.

Notation 2.3.13. From now on we shall denote with the arrows �
�
◦ // �

�
/ //

open and closed embeddings respectively.

2.4 Proof of the Embedding Theorem 2.0.1

Let X be a scheme as in 2.0.1 and {(Li, si)}ni=1 a family of line bundles, that we

can assume of the form given by Proposition 2.1.11. As in Section 3 we define the

OX -algebra

B :=
⊕
d∈Zn

Ld
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where for d = (d1, ..., dn) ∈ Zn, Ld = L⊗d1
1 ⊗ ... ⊗ L⊗dnn and L0 = OX . Let

X̂ := Spec(B) be its (relative) spectrum and

q : X̂ → X

the affine projection morphism induced by the OX -algebra morphism OX ↪→ B.

Note that the Zn-grading on B induces an action of the diagonalizable group G :=

SpecR[Zn] on X̂ (see [DG11]) but we won’t need that.

Due to our assumptions on the ample family of line bundles (2.1.11), for any

i = 1, ..., n, we have that Xsi
∼= Spec(Ai) ⊆ X is an open affine subscheme of X

and we have elements x±1
i1 , ..., x

±1
ij , ..., x

±1
in ∈ L

±1
j (Xsi) given by xij = αij(1) (notice

x−1
ij = (α∨ij)(1)), with xii = si|Xsi such that deg(x±1

ij ) = ±(0, ..., 1, 0, ..., 0) with 1 in

the jth place, giving anOX|Xsi -algebra isomorphism OX|Xsi [x
±1
1 , ..., x±1

n ]
∼= // BXsi ,

x±1
j 7→ x±1

ij and Ai[x
±1
1 , ..., x±1

n ]
∼= // B(Xsi) .

This way, for any i, we have q−1(Xsi)
∼= Spec(Ai[x

±1
1 , ..., x±1

n ]). We also get that q

is a G-torsor so that it is a principal homogeneous bundle and then realizing X as

a GIT quotient (for more on GIT quotients, the reader is referred to [MFK94]) of

X̂ under the action of G induced by the grading.

Remark 2.4.1. For every p ∈ Xsi , we have that x±1
ij (p) 6= 0. In fact, under the iso-

morphism (depending on j) of k(p)-vector spaces Bp ⊗OX,p k(p) ∼= k(p)[x±1
1 , ..., x±1

n ],

x±1
ij (p) corresponds to x±1

j and so it is different from 0.

Using the fact that X is locally of finite type over R, we have that for

every i, Ai is a finitely generated R-algebra, generated say by a finite set Ei ⊂ Ai

of cardinality li ∈ N of elements eik. We look at these elements as elements of

OX(Xsi) = B0(Xsi) so that B(Xsi) will be a finitely generated R-algebra generated

by the elements eik, x
±1
ij .

We now use [GD71]I 6.8.1 (or [GW10] 7.22) or better their proof to find, for every

i, a positive integer d and elements e′ik ∈ Γ(X,L
⊗(d+1)
i ), x′ij ∈ Γ(X,Lj ⊗ Ldi ) such

that x′ii = s⊗d+1
i , e′ik|Xsi

= eik ⊗ x⊗d+1
ii and x′ij|Xsi

= xij ⊗ x⊗dii . We note that we

can take d to work for every i.

Remark 2.4.2. In view of Remark 2.4.1, by tensoring any element e′ik, x
′
ij with

si (i.e. increasing d by one), we can assume that for every i, j it is true that

Xx′ij
= Xsi . Moreover we have that in Γ(X,B) they are all homogeneous and

deg(e′ik) = (0, ..., d+ 1, 0, ...0) with d+ 1 in place i, deg(x′ii) = deg(e′ik), deg(x′ij) =

(0, ..., 1, 0, ..., d, 0, ..., 0) with 1 in the jth place and d in the ith place if i 6= j.
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If we denote as w1, ..., wn the canonical basis of Zn as Z-module, we can write

deg(x′ij) = dwi + wj and deg(e′ik) = deg(x′ii) for every i, j.

Now let Ti :=
∏n
j=1 x

′
ij ∈ Γ(X,B). Note that deg(Ti) = (1, ..., nd+ 1, 1, ..., 1)

and that by [GD71]0, 4.1.10 and 2.4.2 XTi = Xsi for every i = 1, ..., n. We now

consider B to be the R-subalgebra of Γ(X,B) generated by e′ik, x
′
ij . Consider the

inclusion ϕ′ : B → Γ(X,B), and let B be graded in such a way that ϕ′ is a homo-

geneous map. This map induces ([GW10] 3.4) a map

ϕ = Spec(ϕ′) : X̂ → Spec(B) =: Y

since Γ(X,B) = Γ(X̂,O
X̂

).

We shall need the following lemma, which has general interest and puts

together [GD71] 0.5.4.6 and I 6.8.1-6.8.2

Lemma 2.4.3. Suppose X is a noetherian scheme, F an OX-algebra, L a line bun-

dle, Γ∗(L) =
⊕

n∈Z Γ(X,L⊗n) and M∗ := Γ(L,F) the Γ∗(L)-algebra
⊕

n∈Z Γ(X,F⊗OX
L⊗n). Then if s ∈ Γ(X,L) we have a ring isomorphism

(M∗)s ∼= Γ(Xs,
⊕
n∈Z
F ⊗OX L

⊗n)

Proof. We give two proofs of this fact. The first one goes as follows. We notice that

we have a canonical restriction ring homomorphism ϕ : (M∗)s → Γ(Xs,
⊕

n∈ZF⊗OX
L⊗n). This map is injective because if a

sm ∈ (M∗)s maps to zero, then a|Xs = 0 and

using [GD71] I 6.8.1.(i) we have that for some natural number n, a⊗ s⊗n = 0 in M∗

and so a = 0 in (M∗)s which conclude the injectivity part. Moreover ϕ is surjective

because of [GD71] I 6.8.1. (ii). We can now give the second proof. Because of the

definition of Xs, Γ(Xs,
⊕

n∈ZF ⊗OX L⊗n) ∼= Γ(Xs,F)⊗Γ(Xs,OX) Γ(Xs,OX)[t, t−1].

Now, we use [GD71] I 6.8.1 to choose, for every f ∈ Γ(Xs,F) a lift f
′ ∈M∗of f⊗snf

such that the following map is a ring homomorphism

Γ(Xs,
⊕
n∈Z
F ⊗OX L

⊗n)→ (M∗)s, f ⊗ td 7→ f ⊗ sd+nf

This map is surjective (every element in the target restricts to an element in the

source via the canonical restriction map) and injective because if f⊗sd+nf = 0 then

f|Xs = 0 since s does not vanish on Xs.

Proposition 2.4.4. ϕ : X̂ → Y is an open embedding.
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Proof. Let {ϕTi : q−1(XTi) = q−1(Xsi) ⊆ X̂} be an open affine cover of X̂ (recall q

is an affine map). We consider the open subscheme

i : Ŷ := ∪ni=1Spec(BTi)
� �◦ // Y

and we want to show that ϕ factor as a composition i ◦ β : X̂
∼= // Ŷ �

�
◦ // Y . We

want to check this locally, i.e. we want to show that for any i, in the following

pullback diagram

A //

��

q−1(Xsi)

ϕ◦ϕTi
��

Spec(BTi)
// Spec(B)

we have that both the upper horizontal arrow and the left vertical arrow are iso-

morphisms and this will conclude the proof. We want to show that Γ(XTi ,B) ∼=
Γ(X,B)Ti

∼= BTi , this way, considering the previous pullbacks, because for any i we

have q−1(Xsi) = q−1(XTi)
∼= Spec(Γ(XTi ,B)), the argument will be concluded. The

first isomorphism exists because of 2.4.3, so that we are left to proveBTi
∼= Γ(X,B)Ti .

Remark 2.4.5. Notice that we are really allowed to use Lemma 2.4.3 because if in

the statement we have that F is a Zn−1-graded OX -algebra (n ≥ 1) then the OX -

algebra
⊕

n∈ZF ⊗OX L⊗n is Zn-graded and M∗ := Γ(L,F) is a Zn-graded algebra

as well.

In what it is left of the proof, i is going to be fixed. The first step is to

notice that B is a finitely generated R-algebra so that it is of the form R[e′pk, x
′
pj ]/I

(p, j ∈ {1, ..., n}) with I ideal generated by finitely many (R is noetherian so by

Hilbert basis Theorem, B is finitely presented) polynomials p1, ..., pα. So BTi
∼=

R[e′pk, x
′
pj , (x

′
ij)
−1]/I ′ where I ′ is generated by p1, ...pα, x

′
i1 · (x′i1)−1 = 1, ..., x′in ·

(x′in)−1 = 1. Now, polynomial relations on the form pi = 0 which holds in B are

true also in Γ(X,B) since the former is a subalgebra of the latter, so they induces

relations also on Γ(XTi ,B) ∼= Γ(X,B)Ti . We already know (using the notation

introduced before) that Γ(XTi ,B) ∼= R[eik, x
±1
ij ]/J where J is an ideal presented by

a finite number of polynomials g1, ...gγ , xi1 · x−1
i1 = 1, ..., xin · x−1

in = 1. Now using

Γ(XTi ,B) ∼= Γ(X,B)Ti we see that the elements e′pk, x
′
pj ∈ Γ(X,B) maps surjectively

to the family eik, xij (up to multiplication by x−dii or by x
−(d+1)
ii ) so that we see that

Γ(X,B)Ti
∼= R[e′pk, x

′
pj , (x

′
pj)
−1]/J ′ where J ′ is generated by f1, ..., fβ, x

′
i1 · (x′i1)−1 =

1, ..., x′in · (x′in)−1 = 1 where the polynomials fl comes from the polynomials gq via
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the isomorphism Γ(XTi ,B) ∼= Γ(X,B)Ti . Now the restrictions of the relations p1 =

0, ..., pα = 0 are implied by the relations f1, ..., fβ after inverting Ti, by definition,

hence (I ′ ⊆ J ′). Now, all the polynomial relations fl in Γ(XTi ,B) ∼= Γ(X,B)Ti can

be lifted to polynomials f ′l in Γ(X,B) in the variables e′ik · (x′ii)m, x′ij · (x′ii)m for

a suitable m(use again [GD71] I 6.8.1 (ii)) and with coefficients in R so that after

inverting Ti, they will be implied by the relations in the set q1, ..., qα. This shows

J ′ ⊆ I ′ so that J ′ = I ′ and the proof is concluded.

From the previous proposition we actually find that the image of the open

embedding ϕ is
⋃n
i=1D(Ti). Now let be E := R[tik, zij ], i, k, j be as above and

consider the surjective homogeneous R-algebra homomorphism

ψ′ : E = R[tik, zij ] // // B

tik
� // e′ik

zij
� // x′ij

where by homogeneous we mean that we are giving to E a Zn-grading induced by

ψ′. This homomorphism induces a closed immersion

ψ : Y = Spec(B)→ Spec(E) =: Z

Every f ∈ E will induce a map ψ′f : Ef → Bψ′(f) such that

Spec(Bψ′(f)) = D(ψ′(f)) �
�
/
ψf

//
� _

◦
��

D(f)� _
◦
��

Y �
�

/
ψ

// Z

is a pullback. Here we have denoted with �
�
◦ // �

�
/ // open and closed embeddings

respectively. Hence letting T ′i =
∏n
j=1 zij we have that ψ′(T ′i ) = Ti and so we get

closed embeddings s.t.

D(Ti)
� �

/ //
� _

◦
��

D(T ′i )� _
◦
��

Y �
�

/
ψ

// Z
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are pullbacks. Now using the fact that

q−1(XTi)
∼= //

� _

◦
��

D(Ti)� _

◦
��

X̂ �
�

◦
ϕ

// Y

are pullbacks, one can check that the following is also a pullback

X̂
∼= //

∼=
��

⋃n
i=1D(Ti)

� �
/ //

� _

◦
��

⋃n
i=1D(T ′i ) =: Z

X̂� _

◦
��

X̂ �
�

◦
ϕ

// Y �
�

/
ψ

// Z

This means that the preimage of Z
X̂

under ρ = ψ ◦ ϕ is exactly X̂. Note also

that all these maps come from ring maps which are homogeneous, i.e. preserve

the Zn-grading. In other words, they are G-equivariant morphisms for the action

of G induced naturally by the grading. Moreover, ρ is actually a (quasi-compact)

embedding because all the schemes considered are noetherian.

proof of 2.0.1. Let C := Γ(X,B). We have a homogeneous map α = ϕ′ ◦ ψ′ : E =

R[ti,k, zij ]→ Γ(X,B) = C giving the map ρ as above. Now using 2.2.1 we have that

T ′i are relevant elements in E and α(T ′i ) = Ti for any i = 1, ..., n. We can then use

2.3.11 to get the following map that is also a closed embedding as we show below

f : X �
�

/ //
⋃n
i=1D+(T ′i ) =: W ⊆ Proj(E)

. In fact f is closed because of the construction (the ring maps E(T ′i )
� Ai are

in fact surjective: use again Γ(XTi ,B) ∼= Γ(X,B)Ti) and we already noted that

X =
⋃n
i=1XTi so we can apply 2.3.11. Moreover W is smooth (and noetherian

since it is quasi-compact) over R since the D+(T ′i ) are smooth over R because of

Lemma S 2.2.1. In addition, Proj(E) is divisorial because of 2.3.10, and W is a

noetherian open subscheme of it (hence it embeds into Proj(E) via a quasi-compact

open embedding) so by 2.1.9 it is divisorial. The theorem is now fully proved.

Remark 2.4.6. • We note that the morphism ρ obtained in the proof can be

seen as an equivariant morphism of schemes for the action of G = Spec(R[Zn])
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induced by the grading. Hence one might check that the embedding we built

can be seen as arising from ρ after taking the GIT quotient. This is in fact

the strategy of the argument contained in [Hau02]. Both our proof and the

proof of Theorem 4.4 in [BS03] have in fact to be regarded as a generalisation

of the proof of Theorem 3.2 contained in [Hau02].

• If we start with X = Pnr and we consider the ample family of line bundles

{O(1), xi}ni=1 we can run the construction of our smooth embedding choosing

in the lifting process d = 0 and we end with a W ⊆ Proj(S) such that W ∼= PnR,

by checking the gluing data.

• The scheme Proj(E) obtained in the proof is a simplicial torus embedding

(with affine diagonal) as defined in [BS03] page 220.

Observation 2.4.7. We observe that the philosophy behind the previous proof

is to find embeddings of Spec(Ai) in suitable affine spaces of the form AniR that

can be patched together to a morphism from X to a suitable multihomogeneous

projective space that contains those affine spaces as open subschemes. This is similar

to solving the problem of finding local embeddings of a scheme into affine planes

that glue together to give an embedding into the smooth locus of a suitable weighted

projective space.

In fact we have the following corollary of our proof

Corollary 2.4.8. Suppose to have a gluing datum

G = (Spec(Ai), Uij ⊆ Spec(Ai), ϕji : Uij
∼=−→ Uji)

i = 1, ..., n where Ai are finitely generated R-algebras Ai[eil]/J for some noetherian

ring R. Then if the scheme X resulting from G is divisorial, it admits a closed

embedding to a divisorial scheme W arising from a gluing datum of the form

((AmR )i,Wij ⊆ (AmR )i, ψji : Wij
∼=−→Wji)

for some positive integer m.

2.5 Applications

Let E be a vector bundle over a scheme Y . Denote as Grassn,Y (E) (or simply

Grassn(E) if the base scheme is clear) the Grassmannian functor which associates

to a Y -scheme f : X → Y the set of locally free OX -modules of rank n quotients
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of f∗E ([GD71] I 9.7.3). This functor is representable by a Y -scheme Grassn,Y (E)

([GD71] I 9.7.4).

Proposition 2.5.1. If Y is a quasi-separated scheme having an ample family of

line bundles and E is a vector bundle on it, then for any n ∈ N, Grassn,Y (E) has

an ample family of line bundles.

Proof. For any n, [GD71] I 9.8.4 tells us that the Plucker embedding Grassn,Y (E)→
P(∧n(E)) is a closed embedding. Since P(E) has an ample family of line bundles by

2.1.10, we conclude using 2.1.9 that Grassn,Y (E) has an ample family too.

Proposition 2.5.2. Under the above assumptions, Grassn,Y (E) is separated and

smooth over Y .

Proof. We have separatedness because of [GD71] I 9.7.7. Moreover, choose a trivial-

izing open subset U of Y for E , so that E|U ∼= OmX|U for somem. Then Grassn,Y (E)×Y
U ∼= Grassn,U (OmX|U ) is an open subscheme of Grassn,Y (E), see [GD71] I 9.7.6.

Varying U , this schemes form a Zariski cover for Grassn,Y (E). But now we know

that Grassn,U (OnX|U ) is smooth over U because it is the standard Grassmannian,

see [GW10] Corollary 8.15 for example. So because U is smooth over Y , it is easily

verified by choosing a trivializing cover of Y that Grassn,Y (E) is smooth over Y .

We can now prove the following Proposition, whose proof relies on Theorem

2.5.2.

Proposition 2.5.3. Let X be a scheme over a noetherian base scheme S admitting

a quasi-compact immersion i : X → Y into a smooth divisorial scheme Y over S.

Then for every vector bundle E ∈ Vect(X) there is a smooth divisorial scheme YE

over both Y and S, with a vector bundle EYE over YE together with a morphism

ψE : X → YE such that ψ∗E(EYE ) ∼= E.

Proof. Assume X is connected as a topological space so that every vector bundle

over it has constant rank. Denote by L1, ..., Ln an ample family of line bundles for

Y , so that i∗L1, ..., i
∗Ln are an ample family for X (2.1.9). Given a vector bundle E

of rank m, we have, by the properties of the ample families of line bundles ([SGA71]

II 2.2.3 or [TT90] 2.1-2.1.3), that there exists natural numbers p,j q1, ...,j qn where

j = 1, ..., p and a surjective map

L′ :=

p⊕
j=1

(⊗ni=1i
∗L
⊗−(jqi)
i )� E
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is an epimorphism. Now note that L′ is a vector bundle and defining L :=⊕p
j=1(⊗ni=1L

⊗−(jqi)
i ), L is a vector bundle, and i∗L ∼= L′. Define now YE :=

Grassm,Y (L), and note that this scheme is smooth over Y (2.5.2), and, since Y

is smooth over S, it is also smooth over S and it is also divisorial because of 2.5.1.

By (1), we have that E is an element of Grassm,Y (L)(X), so that we can use the

universal property of the Grassmannian ([GD71] I 9.7.5) to find ψE and EYE as in

the statement of the proposition (this last one will be the tautological vector bundle

over YE). Hence we proved the proposition for X connected. Assume now X not

connected and consider E vector bundle on it. Use 2.1.1 to write X as a disjoint

union of its finite (remember divisorial schemes are assumed to be quasi-compact)

connected components (X,OX) ∼= qα∈I(Uα,OX|Uα) and let be Eα := E|Uα . Every Uα

is connected, so that we can apply the previous case to every Uα (note that Uα are

noetherian so they embed with a quasi-compact open embedding in X, and so they

embed in Y with a quasi-compact immersion because the composition of two im-

mersions is still an immersion, [GD67] I 4.2.5) and find YEα := Grassnα,Y (Lα), ψEα

and EYEα as before, where nα is the rank of Eα on Uα. Defining now YE := qα∈IYEα ,

EYE := ⊕α∈IEYEα (which is a vector bundle over YE) and gluing together the maps

ψEα to a map ψE : X → YE we see that we have obtained the elements requested in

the statement of the proposition, whose proof is now complete.

We extend the previous result to a finite number of vector bundles

Proposition 2.5.4. Let X be a scheme over a noetherian base S admitting a quasi-

compact immersion i : X → Y into a smooth divisorial scheme Y over S. Then

given a finite number vector bundles E1, ..., En ∈ Vect(X) there is a smooth diviso-

rial scheme YE over S and a vector bundles E1,YE , ..., En,YE over it together with a

morphism ψE : X → YE such that ψ∗E(Ei,YE ) ∼= Ei for every i = 1, ..., n.

Proof. We apply n times Proposition 2.5.3 to get n schemes YE1 , ..., YEn , vector

bundles EYE1 , ..., EYEn and morphisms ψEi : X → YEi for any i = 1, ..., n such that

ψ∗Ei(EYEi )
∼= Ei for any i. Define

YE := YE1 ×Y · · · ×Y YEn , ψE := ψE1 × · · · × ψEn : X → YE

Ei,YE := pr∗i (EYEi )

Note YE is still smooth over Y and divisorial because the YEi are quasi-projective

(they are grassmannians, which are quasi-projective via the Plucker embedding)

and quasi-compact quasi-separated over Y so since quasi-projective morphisms are
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stable under base change by [GD67] II.5.3.4 (iii) we can use [TT90] 2.1.2 (h). Since

ψEi = pri ◦ ψE we know ψ∗Ei
∼= ψ∗Epr∗i so that for every i,

ψ∗E(Ei,YE ) ∼= ψ∗E(pr∗i (EYEi ))
∼= ψ∗Ei(EYEi )

∼= Ei

Merging Proposition 2.5.2 and Theorem 2.0.1 we immediately get the follow-

ing

Proposition 2.5.5. Let X be a scheme of finite type over a noetherian affine scheme

S = Spec(R) having an ample family of line bundles. Then given a finite number

vector bundles E1, ..., En ∈ Vect(X) there is a smooth divisorial scheme YE over S

and vector bundles E1,YE , ..., En,YE over it together with a morphism ψE : X → YE

such that ψ∗E(Ei,YE ) ∼= Ei for every i = 1, ..., n.
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Chapter 3
Endomorphisms in Higher K-Theory:

going to K0

3.1 From the homotopic world to K0

We shall stick to the notations and assumptions detailed in 0.1 unless othewise in-

dicated. Thanks to the result of Riou A.3.14 detailed in the appendix and Theorem

1.8.8, we begin the path to extend the work of Riou. That theorem identifies the

endomorphisms of K-theory in the unstable motivic homotopy category with gen-

uine endomorphisms of a presheaf of sets, K0, which are well studied. Via this link

we can obtain the necessary information to use the operations at the level of K0

to define operations on higher K-theory without too much efforts: one simply use

the theorem to lift them! So one obtains a powerful tool to study operations on

higher K-theory using what is known at level of K0, and one obtains in an eas-

ier way important results such as higher Riemann-Roch theorems. This was done

by Riou in [Rio10], obtaining new theorems and also new proofs of some results

of Gillet ([Gil81]). Operations on K-theory were studied with other methods be-

cause of their importance (see [Lev97], [GS99], [Sou85], [HKT17] and many others),

so this new tool to define and study them is very important because it allows to

have these operations in an easier way and it allows to easily get many functorial

properties. In addition, because of the generality of the argument involved, this

method could be used to study also operations on other theories which are repre-

sentable in the unstable category by nice geometric objects as for example Hermitian

K-theory. Moreover, by the explicit calculations of the K0 of the Grassmannians

due to Berthelot ([SGA71]) one can also obtain a more explicit description of these
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operations, using the fact that Grassmannians represent K-theory in the unstable

motivic homotopy category. More precisely, one gets

[K,K]H(S)
∼= EndH(S)(Z×Gr) ∼= EndPre(Sm/S)(K0(−))

∼=
∏
i∈Z

K0(S)[[c1, ..., cn, ...]]
(3.1)

were the ci are the usual Chern classes as detailed in [SGA71] or [Rio06]. This result

of Riou only works on the Nisnevich site on Sm/S. One would then investigate if such

results are true if we change the site. In particular it would be nice to say something

for sites containing singular schemes over some nice scheme (fields for example), since

the classical results such as the Riemann-Roch theorems also apply to this cases.

From now on we will stick to the notation introduced in 0.1.1. The work done in

the previous sections goes in this direction. We have linked the endomorphisms of

K-theory on a site larger than the smooth one with endomorphisms in the unstable

category in Section 1.8, so that merging those results with the theorem of Riou we

immediately get the following

Proposition 3.1.1. Let S be a regular scheme. Hence we have

[K,K]PlZarSchS
∼= [K,K]HSchS

Zar

∼= [K,K]H(S)
∼= EndH(S)(Z×Gr)

∼= EndPre(Sm/S)(K0(−)) ∼=
∏
i∈Z

K0(S)[[c1, ..., cn, ...]]

Proof. This follows under the assumptions detailed in the previous sections from

1.8.8, the theorem of Riou A.3.14 and the fact that the projective local model

structure is homotopy equivalent to the injective local one.

This is yet interesting since it gives us an explicit description of the operations

of K-theory in HSchS
Zar . We would now like to strengthen this result by proving that

[K,K]HSchS
Zar

∼= EndPre(SchS)(K0(−)). Before that we note that even at this stage we

have as a corollary of 1.8.7, the following proposition

Proposition 3.1.2. If S is a regular noetherian scheme

[K,K]HSchS
Zar

∼= [K,K]IlNisSm/S
∼= [Z×Gr,K]H(S)

[(Z×Gr)n,K]HSchS
Zar

∼= [(Z×Gr)n,K]IlNisSm/S
∼= [(Z×Gr)n,K]H(S)
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3.1.1 Endomorphisms of K-theory only depend on π0: statement

of the theorem

Fixed S regular noetherian scheme we now consider the Zariski sites SchS of quasi-

compact quasi-separated schemes of finite type over S admitting an ample family of

line bundles and the full subcategory Sm/S of smooth schemes over S. We denote

their injective local model categories as I lZarSchS and I lZarSm/S. Recall we have

an obvious restriction functor

res : Pre(SchS)→ Pre(Sm/S)

which takes a presheaf over the category SchS to its restriction on Sm/S. This also

leads to a functor at the level of simplicial presheaves,

sres : sPre(SchS)→ sPre(Sm/S)

and we explicitly noted in Remark 1.8.9 that this functor together with the identity

functors induces the isomorphisms

[K,K]HSchS
Zar

∼= [K,K]HSm/S
Nis

∼= [K,K]H(S)

Hence we can draw the following commutative diagram

[K,K]HSchS
Zar

∼=
//

��

π0

��

[K,K]H(S)

π0∼=
��

HomPre(SchS)(K0(−),K0(−))
res // // HomPre(Sm/S)(K0(−),K0(−))

where for a simplicial presheaf F satisfying descent, we denote π0F :=

[−, F ]H with H the appropriate homotopy category. We could have argued similarly

for the case of n variables in the first entry of the various Hom spaces considered so

that we can also draw the following

[Kn,K]HSchS
Zar

∼=
//

��

π0

��

[Kn,K]H(S)

π0∼=
��

HomPre(SchS)(K0(−)n,K0(−))
res // // HomPre(Sm/S)(K0(−)n,K0(−))
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Suppose we are able to prove that the lower horizontal arrows are also injec-

tive. Then we would have

Conjecture 3.1.3 (conjecture). Let S be a regular noetherian scheme. Then for

any n ∈ N
π0 : [K,K]HSchS

Zar

→ HomPre(SchS)(K0(−),K0(−))

π0 : [Kn,K]HSchS
Zar

→ HomPre(SchS)(K0(−)n,K0(−))

are bijections.

We are going to prove the previous conjecture for S being affine

Theorem 3.1.4. Let S = Spec(R) be a regular noetherian affine scheme of finite

Kruul dimension and SchS be the category of divisorial schemes of finite type over

S. Then the maps

π0 : [K,K]HSchS
Zar

→ HomPre(SchS)(K0(−),K0(−))

π0 : [Kn,K]HSchS
Zar

→ HomPre(SchS)(K0(−)n,K0(−))

are bijections for any n ∈ N.

Remark 3.1.5. From now on we will always suppose to point K ∈ H(S)

(I lZar,Nis(SchS ,Sm/S)) and K0 ∈ Pre(SchS ,Sm/S) with the same element of K0(S)

whenever we consider these objects as pointed. Unless otherwise stated, from now

on the default choice will be the one of 0 ∈ K0(S).

Summing up we have, as a corollary

Corollary 3.1.6. Under the assumptions of the previous theorem we have for any

n ∈ N

[K,K]HSchS
Zar

∼= HomPre(SchS)(K0(−),K0(−)) ∼= [K,K]H(S)
∼= HomPre(Sm/S)(K0(−),K0(−))

[Kn,K]HSchS
Zar

∼= HomPre(SchS)(K0(−)n,K0(−)) ∼= [Kn,K]H(S)
∼= HomPre(Sm/S)(K0(−)n,K0(−))

Moreover, the following pointed versions hold

[K,K]HSchS
Zar ,•

∼= HomPre(SchS)•(K0(−),K0(−)) ∼= [K,K]H•(S)
∼= HomPre(Sm/S)•(K0(−),K0(−))

[Kn,K]HSchS
Zar ,•

∼= HomPre(SchS)•(K0(−)n,K0(−)) ∼= [Kn,K]H•(S)
∼= HomPre(Sm/S)•(K0(−)n,K0(−))

Proof. We only notice that the pointed version follows from A.3.10 (with X = E =

K) and A.3.12 (with F = G = K0). This because of the fact that S is final and

that we are pointing K and K0 coherently as remarked in Remark 3.1.5.
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3.1.2 Proof of Theorem 3.1.4

We want to show that the lower horizontal maps res are injective. Denote as

Pre(SchS) the category of presheaves of sets over the category of divisorial schemes

of finite type over a noetherian affine base scheme S as above, Pre(Sm/S) the cat-

egory of presheaves over the category of divisorial smooth schemes over S, and as

K0(−) the algebraic K-theory presheaf. We can prove the following

Proposition 3.1.7. Assume to have, for any given n ∈ N, two natural transfor-

mations K0(−)
f
//

g
// K0(−) on Pre(SchS) which agree after restriction to Sm/S.

Then f = g.

Proof. For every X ∈ SchS , by the very definition of K0(X), we will need to ver-

ify that for every element E ∈ K0(X), fX(E) = gX(E). One first notices that

(representatives of) elements E ∈ K0(X) are of the form E = [E0] − [E1] where

E0, E1 ∈ Vect(X). Now using 2.5.4, we can find for every such E0, E1 ∈ Vect(X)

vector bundles over a scheme X, a divisorial smooth scheme YE over S and vec-

tor bundles E′0, E
′
1 over it together with a morphism ψE : X → YE such that

ψ∗E(E
′
i)
∼= Ei for i = 1, 0. One now notices, since pullback is a group homomorphism

that this implies that the element EYE = ([E′0] − [E′1]) ∈ K0(YE) has the property

that ψ∗E(EYE ) = E . This means that for every E ∈ K0(X) we can find a divisorial

smooth scheme YE over S and EYE ∈ K0(YE) together with a morphism ψE : X → YE

(over S) such that ψ∗E(EYE ) = E . Then we have the following commutative diagram

K0(YE)
fYE //

gYE
//

ψ∗E
��

K0(YE)

ψ∗E
��

K0(X)
fX //

gX
// K0(X)

which implies that fX(E) = gX(E). In fact we know that fYE = gYE by assumption

so that

fX(E) = (fX◦ψ∗E)(EYE ) = (ψ∗E◦fYE )(EYE ) = (ψ∗E◦gYE )(EYE ) = (gX◦ψ∗E)(EYE ) = gX(E)

Iterating this for every X ∈ SchS and any E ∈ K0(X) gives us the assert.

Now we come to the product case
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Proposition 3.1.8. Assume to have two natural transformations K0(−)n
f
//

g
// K0(−)

on Pre(SchS) which agree after restriction to Sm/S. Then f = g.

Proof. As in the proof of the previous proposition, for every X ∈ SchS , by the very

definition of K0(X), we will need to verify that for every element E = (E1, ..., En) ∈
K0(X)n, fX((E1, ..., En)) = gX((E1, ..., En)). By 2.5.4, arguing as in the proof of

the previous proposition, we can find for every such element E , a smooth scheme

YE over S and EYE = (E1,YE , ..., E1,YE ) ∈ K0(YE)
n together with a morphism ψE :

X → YE such that ψ∗E(Ei,YE ) = Ei for every i = 1, ..., n. Then we have the following

commutative diagram

K0(YE)
n

fYE //

gYE
//

ψ∗,nE :=ψ∗E×···×ψ
∗
E
��

K0(YE)

ψ∗E
��

K0(X)n
fX //

gX
// K0(X)

which implies that fX((E1, ..., En)) = fX(E) = gX(E) = gX((E1, ..., En)). In fact we

know that fYE = gYE by assumption so that

fX((E1, ..., En)) = (fX ◦ ψ∗,nE )((E1,YE , ..., En,YE )) = (ψ∗E ◦ fYE )((E1,YE , ..., En,YE )) =

(ψ∗E ◦ gYE )((E1,YE , ..., En,YE )) = (gX ◦ ψ∗,nE )((E1,YE , ..., En,YE )) = gX((E1, ..., En))

Iterating this for every X ∈ SchS and every E ∈ K0(X)n gives us the assert.

The previous propositions complete the proof of 3.1.4. We also notice the

following

Proposition 3.1.9. Assume to have, for a given presheaf F and a given n ∈ N,

two natural transformations K0(−)n
f

//

g
// F on Pre(SchS) which agree after re-

striction to Sm/S. Then f = g.

Proof. Repeat verbatim the proof of the previous Proposition.

The structure of the previous proposition can be easily generalised as follows
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Proposition 3.1.10. Let A ⊆ C a full subcategory of a given category C and Res :

Pre(C)→ Pre(A) the restriction functor. Consider the map res : HomPre(C)(F,G)→
HomPre(A)(F,G) induced by Res for two fixed F,G ∈ Pre(C) and assume that for

every X ∈ Ob(C) and for every a ∈ F (X) there exist YX,a ∈ Ob(A), ϕ : X → YX,a

and b ∈ F (YX,a) so that ϕ∗F (b) := F (ϕ)(b) = a. Then res is injective.

Proof. Suppose we have two natural transformations F
f
//

g
// G such that res(f) =

res(g). To show that f = g it suffices to show that for any X ∈ Ob(C),
fX = gX : F (X) //

// G(X) In order to do that, let us consider a ∈ F (X), YX,a ∈
A, b ∈ F (YX,a) and ϕ : X → YX,a as in the statement. Then we have

fX(a) = fX(ϕ∗F (b)) = ϕ∗G(fYX,a(b)) = ϕ∗G(gYX,a(b)) = gX(ϕ∗F (b)) = gX(a)

Iterating this for any a ∈ F (X) gives the result.

3.1.3 The case of S regular and quasi-projective over a noetherian

affine scheme

Suppose S is a regular (in the absolute sense) quasi-projective (over R) scheme

(hence of finite type) over a noetherian affine scheme R. We want to show, under

the assumptions and the notations of 0.1 that, as in the previous cases, that all the

arrows in the following diagram are isomorphisms

[Kn,K]HSchS
Zar

∼=
//

��

π0

��

[Kn,K]H(S)

π0∼=
��

HomPre(SchS)(K0(−)n,K0(−))
res // // HomPre(Sm/S)(K0(−)n,K0(−))

(3.2)

To do this we need the following lemma

Lemma 3.1.11. Let X be a divisorial scheme of finite type over S quasi-projective

scheme over a noetherian affine scheme R and let be E a vector bundle over X.

Then there exists a scheme YE divisorial and smooth over S, a vector bundle F on

YE and an arrow ψ : X → YE over S such that ψ∗F ∼= E.

Proof. Because of the assumptions denoting f : X → S and ϕ : S → R the two

structure morphisms, we have by Theorem 2.5.5 that there exists a divisorial scheme

Z smooth over R and and an arrow X
γ−→ Z

α−→ R over R such that there exists
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a vector bundle G on Z having the property that γ∗G ∼= E . We now consider the

following diagram

X
f

&&

γ

��

∃β

##

Z ×R S α′ //

ϕ′

��

S

ϕ

��

Z α
// R

Where the inner square is a pullback, the outer square commutes because of our

assumptions, β exists because of the universal property of the pullback and ϕ′ and

α′ are of finite type and smooth respectively because of stability under base change

of these two properties. If we denote ψ := β, YE := Z ×R S and F := ϕ′∗G the

lemma is fully proved: indeed YE is divisorial because ϕ′ is quasi-projective (quasi-

projective maps are stable under base change) so that we can apply [TT90] 2.1.2

(h).

Remark 3.1.12. If in the previous lemma R is supposed to be regular and ϕ : S →
R is a regular R-scheme, with affine diagonal and of finite type over R, then the proof

goes through as well. Indeed the property of being regular, having affine diagonal

and being of finite type is stable under base change so also ϕ′ in the previous proof

has all these properties but then Z ×R S is regular and with affine diagonal as well

and so divisorial because of Lemma 2.1.5.

We also have the variant ”with many variables” of the previous lemma, which

one can prove as 2.5.4 and which holds also under the assumptions of the previous

remark.

Proposition 3.1.13. Let X be a divisorial scheme of finite type over S quasi-

projective scheme over a noetherian affine scheme R. Then given a finite number

of vector bundles E1, ..., En ∈ Vect(X) there is a smooth divisorial scheme YE over

S and vector bundles E1,YE , ..., En,YE over it together with a morphism ψE : X → YE

such that ψ∗E(Ei,YE ) ∼= Ei for every i = 1, ..., n.

We can now prove the following arguing as in Proposition 3.1.8

Proposition 3.1.14. Assume to have two natural transformations K0(−)n
f
//

g
// K0(−)

on Pre(SchS) which agree after restriction to Sm/S. Then f = g.

From this it follows that the lower arrow of the diagram (3.2) is injective so

that all the arrows in that diagram are isomorphisms. This means we have proved

the following
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Theorem 3.1.15. Under the assumptions of this subsection (i.e. S regular quasi-

projective scheme over a noetherian affine scheme R) we have for any n ∈ N

[K,K]HSchS
Zar

∼= HomPre(SchS)(K0(−),K0(−)) ∼= [K,K]H(S)
∼= HomPre(Sm/S)(K0(−),K0(−))

[Kn,K]HSchS
Zar

∼= HomPre(SchS)(K0(−)n,K0(−)) ∼= [Kn,K]H(S)
∼= HomPre(Sm/S)(K0(−)n,K0(−))

Moreover, the following pointed versions hold

[K,K]HSchS
Zar ,•

∼= HomPre(SchS)•(K0(−),K0(−)) ∼= [K,K]H•(S)
∼= HomPre(Sm/S)•(K0(−),K0(−))

[Kn,K]HSchS
Zar ,•

∼= HomPre(SchS)•(K0(−)n,K0(−)) ∼= [Kn,K]H•(S)
∼= HomPre(Sm/S)•(K0(−)n,K0(−))

The same holds true under the hypothesis of Remark 3.1.12.

3.2 Restriction to affine schemes

In this sections we will see that Theorem 3.1.4 only relies on what happens to affine

schemes, in a sense we will make precise below. We will fix a Noetherian regular base

scheme S. We will denote as SchS the category of divisorial schemes locally of finite

type over S and with Sm/S ⊆ SchS its full subcategory of (noetherian) smooth

schemes over S. We let Aff/S ⊆ SchS the full subcategory of SchS generated

by the schemes of SchS which are affine (over Spec(Z)). Finally, we denote as

SmAff/S ⊆ Sm/S the full subcategory of Sm/S generated by the schemes of Sm/S

which are affine (over Spec(Z)). Notice that SmAff/S is the full subcategory of

Aff/S consisting of smooth affine schemes of finite type over S.

3.2.1 The case of smooth affine schemes

We now focus on smooth affine schemes. Assume in this subsection that S is a

regular noetherian scheme of finite dimension. We first consider the inclusion i :

SmAff/S ↪→ Sm/S which gives restriction functors i∗ : Pre(Sm/S)→ Pre(SmAff/S)

and i∗s : sPre(Sm/S)→ sPre(SmAff/S)

Definition 3.2.1. We denote as Haff (S) the homotopy category of the model cate-

gory sPre(SmAff/S) having model structure determined by considering the injective

local model structure relative to the affine Nisnevich topology on it and then by in-

verting A1-weak equivalences (see [AHW17]). The restriction functor i∗s gives rise

to a functor sres : H(S)→ Haff (S) as follows

Remark 3.2.2. We have the following adjoint functors arising from the inclusion

SmAff/S ⊂ Sm/S (see [SGA72] I Proposition 5.1)

i#,s, i∗,s : sPre(SmAff/S) // sPre(Sm/S) : i∗s
oo
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where i#,s and i∗,s are respectively left and right adjoint of i∗s. Recall that a weak

Quillen adjunction is a pair of adjoint functors such that the left (right) adjoint is

only required to preserve cofibrant (fibrant) objects and weak equivalences between

them (indeed, this is enough to derive the adjunction). If we give to both categories

the Nisnevich injective local model structure and we invert A1-weak equivalencesthen

these adjunctions becomes Quillen adjunctions (weak in the case of i#,s a i∗s) and

we can derive them. One notice that i∗s preserves weak equivalences on the nose so

we do not need to derive it. We call then sres := i∗s : H(S) → Haff (S) the functor

we get in this way.

We notice that since all the schemes in Sm/S and SmAff/S have an ample

family of line bundles and S is regular we have that the Quillen’s K-theory presheaf

satisfies descent in both H(S) and Haff (S) and that sres(K) represents K-theory

in Haff (S). Hence for every representable X ∈ SmAff/S we have [X,K]Haff (S)
∼=

K0(X). As a consequence it makes sense to study the following diagram

[K,K]H(S)
//

π0∼=
��

[K,K]Haff (S)

π0

��

HomPre(Sm/S)(K0,K0)
i∗
// HomPre(SmAff/S)(K0,K0)

(3.3)

We would like to show that all the arrows in the previous diagram are iso-

morphisms giving two proofs of this result: one very simple relying on the work by

Riou, the other a little bit more complicated but more “hands on”.

First proof

For the first proof we will need the following theorem, asserting that the top hori-

zontal map is bijective

Proposition 3.2.3. The arrow [K,K]H(S) → [K,K]Haff (S) is an isomorphism.

Proof. We can do this in two ways. For the first one we notice that in H(S) we

have a weak equivalence (so an isomorphism) π : Z × Graff → Z × Gr because of

Theorem 4.2.2. This weak equivalence restricts to a weak equivalence in Haff (S)

so that K-theory is represented in Haff (S) by Z × Graff as well so that we can

replace K with Z × Graff in both H(S) and Haff (S). Moreover the K-theory

presheaf satisfies descent also in Haff (S) (one needs to use the affine BG property,

as in [AHW17] 2.1.5) so we are left to prove that the map [Z × Graff ,K]H(S) →
[Z × Graff ,K]Haff (S) is an isomorphism. This can be seen reasoning exactly as in
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Theorem 1.8.8 using Proposition 1.8.4. For the second proof we notice that the

functor i∗s because of Theorem 3.3.2 in [AHW17] induces an equivalence on I lNis-
fibrant simplicial presheaves so that we can see directly that the arrow [K,K]H(S) →
[K,K]Haff (S) is an isomorphism. Strictly speaking, in op.cit. the do not assume

their schemes to be divisorial but we can repeat their argument even in this case or

use our Theorem 1.10.1 directly to conclude (see also Remark 6.3.7).

Remark 3.2.4. If S would have been an affine scheme R then we could have chosen

in the first proof of the previous proposition Z×BGL instead of Z×Graff to represent

K-theory, the schemes GLn,R being affine in this case.

To conclude that all the arrows in the diagram (3.3) are isomorphisms, we

shall need the following proposition, proved by Riou in [Rio06] and [Rio10]. Be-

fore that we recall some terminology in op.cit.. We denote by T the collection of

maps in Sm/S which are vector bundle torsors (we could even assume that these

vector bundle torsors are affine but we do not need it) and as Taff the collection of

projection maps of the form A1
X → X in SmAff/S. We then have the following fact

Proposition 3.2.5 ([Rio06] Proposition II.16). There is an equivalence of categories

Θ : SmAff/S[T −1
aff ]

'−→ Sm/S[T −1]

Using [Rio06] Proposition B.8 or Remark 1.2.8 of [Rio10] we then have

Corollary 3.2.6. The equivalence Θ induces an equivalence of categories between

T −1-invariant presheaves in Pre(Sm/S) and the A1-invariant presheaves in Pre(SmAff/S)

Because K0(−) is A1-invariant (remember in our case S is regular), we obtain

putting together Corollary 3.2.6 and Proposition 3.2.3, the following

Theorem 3.2.7. Let S be a noetherian regular base scheme, Sm/S the category of

smooth schemes over S having an ample family of line bundles and SmAff/S its full

subcategory of affine smooth schemes. Then all the arrows in the following diagram

are isomorphisms

[K,K]H(S)
//

π0

��

[K,K]Haff (S)

π0

��

HomPre(Sm/S)(K0,K0)
i∗
// HomPre(SmAff/S)(K0,K0)

Second proof

To obtain an alternative proof of Theorem 3.2.7 we will need the following lemma
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Lemma 3.2.8. ([Rio06] Lemme III.11, [MV99] Example 2.3 page 106) Let X be

a noetherian scheme, and E a vector bundle over it. For every E-torsor (in the

sense of Appendix A.2) π : T → X over X, the arrow π induces an isomorphism

π : T ∼= X in H(S)

Corollary 3.2.9. The arrow i∗ : HomPre(Sm/S)(K0,K0)→ HomPre(SmAff/S)(K0,K0)

is injective.

Proof. Assume that f, g : K0 //

//
K0 are two natural transformations between

functors in Pre(Sm/S) which agree once restricted on SmAff/S. Then we want to

show that for every X ∈ Sm/S, fX = gX . We use the Jouanolou’s trick to find

πX : TX → X affine vector bundle torsor on X. The previous lemma then implies

that π∗X : K0(X)
∼=−→ K0(TX) is an isomorphism. The fact that f, g are natural

transformations implies that the following diagram commutes

K0(X)
gX
//

fX //

π∗X ∼=
��

K0(X)

π∗X ∼=
��

K0(TX)
gTX
//

fTX //
K0(TX)

so that the equalities π∗X ◦ fX = π∗X ◦ gX and fTX = gTX together with the fact that

π∗X is an isomorphism and so a mono, imply that fX = gX for all X ∈ Sm/S and

so that f = g.

To conclude that all the arrows in the diagram (3.3) are isomorphisms, we

are then left to prove the following Proposition

Proposition 3.2.10. The map π0 : [K,K]Haff (S) → HomPre(SmAff/S)(K0,K0) is

an isomorphism.

Proof. One uses the model Z×Graff forK-theory inHaff (S). Then taking SmAff/S =

C = A in Theorem A.4.5 we have that Z×Graff satisfies the property (ii) relative toA
because of Corollary 4.3.2. It then follows that the arrow π0 : [Z×Graff ,K]Haff (S) →
HomPre(SmAff/S)(K0,K0) is surjective so that chasing diagram (3.3) we have that

it is an isomorphism. One can see that it is an isomorphism also by noticing that

K theory satisfies the property (K) relative to the system Kaff
• which have colimit

Z×Graff because of Proposition 4.3.4.

Summarizing we have given another proof of Theorem 3.2.7
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3.2.2 The case of singular affine schemes

We now want to extend the result of the previous section to the singular case. In

order to do so we need to assume that S is an affine regular scheme R since we

need to use the fact that BGL can be seen as a homotopy colimit (not indexed by

a filtered category!) of affine (in the absolute sense) schemes. We can then choose

Z×BGL+ as representative ofK-theory inHSchS
Zar . As in the beginning of this section,

we are interested in the categories Sm/S, SchS , SmAff/S and Aff/S of (affine)

divisorial scheme of finite type over S and of (affine) smooth divisorial schemes over

S. We denote as HSchS
Zar the homotopy category of the model category of simplicial

presheaves over SchS with the Jardine local model structure with respect to the

Zariski topology and we will use the notation HAff/S
Zar for the analogous homotopy

category having underlying Grothendieck (affine, see [AHW17])Zariski site Aff/S.

Even in this case as in the case of smooth affine case we have a functor s̃res : HSchS
Zar →

HAff/S
Zar arising from the adjunctions (as in Remark 3.2.2)

i#,s, i∗,s : sPre(Aff/S) // sPre(SchS) : i∗s
oo

By what we know so far we have the following commutative cube

[K,K]HAff/S
Zar��

π0

��

ϕ

∼=
// [K,K]Haff (S)

∼= π0

��

[K,K]HSchS
Zar

∼= //

∼= π0

��

∼=̃
sres 44

[K,K]H(S)

∼= π0

��

∼=̃
sres 44

[K0,K0]Pre(Aff/S)
// // [K0,K0]Pre(SmAff/S)

[K0,K0]Pre(SchS) ∼=
//

33
33

[K0,K0]Pre(Sm/S)

∼=
33

The only thing stated in the diagram that we haven’t proven so far is that

all the arrows of the upper square are isomorphisms but this is easily solved by the

following lemma

Lemma 3.2.11. The arrow ϕ : [K,K]HAff/S
Zar

→ [K,K]Haff (S) is an isomorphism.

Proof. The proof follows arguing as in Proposition 1.6.1 and Theorem 1.8.10 using

1.8.4 because all the GLn,R are affine schemes.

To show that all the arrow in the cube are isomorphism we only need to

prove the following Proposition
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Proposition 3.2.12. The restriction map [K0,K0]Pre(Aff/S) → [K0,K0]Pre(SmAff/S)

is injective.

This proposition follows as Proposition 3.1.8 provided we show the following

two facts

Lemma 3.2.13. Let U ∈ Aff/S and P a vector bundle over it (i.e. a finitely

generated projective module). Then there exists an arrow f : U → UP over S such

that UP ∈ SmAff/S and there exists a vector bundle Q on UP such that f∗Q ∼= P .

Proof. Every vector bundle (say of rank n for simplicity otherwise we can reason

on the connected components or we can use 2.5.5 directly) on U is generated by

global sections so there exists a grassmannian Grassn over S together with a map

g : U → Grassn in SchS such that g∗T ∼= P where T is the universal vector

bundle of the grasmannian. Since the Grasmannians are divisorial we can use the

Jouanolou’s device to build an affine vector bundle torsor π : W → Grassn over the

Grassmannian, which is then an element of SmAff/S. Now consider the following

pullback

U ×Grassn W

pr2

��

pr1 //W

π

��

U g
// Grassn

We then have that pr2 : U ×Grassn W → U is a torsor under a vector bundle and it

is affine (π is affine so it is pr2) so that it is a vector bundle ([Wei89] page 475) so

that there exists an arrow i : U → U ×GrassnW which splits pr2. If we set UP := W ,

Q := π∗T and f := pr1 ◦ i we have a datum as the one wanted in the statement of

the lemma.

We then have the following extension of the previous lemma in many vari-

ables, whose proof follows as in the previous lemma given 2.5.4.

Proposition 3.2.14. Let U be a scheme in Aff/S. Then given a finite number

vector bundles E1, ..., En ∈ Vect(U) there is a scheme YE ∈ SmAff/S and vector

bundles E1,YE , ..., En,YE over it together with a morphism ψE : U → YE such that

ψ∗E(Ei,YE ) ∼= Ei for every i = 1, ..., n.

proof of Proposition 3.2.12. The proof now is formally the same than the proof of

Theorem 3.1.4.

Remark 3.2.15. We point out that the proofs of 3.2.3, 3.2.7, 3.2.11, 3.2.12 and the

conclusion concerning the arrows in the cube of page 63 can be repeated verbatim
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replacing K and K0 with Kn and Kn
0 for n ∈ N in the first variable of the Hom sets

considered.

Summing up we have

Theorem 3.2.16. Let be S an affine regular noetherian base scheme. All the arrows

in the following commutative cube are isomorphisms for any n ∈ N

[Kn,K]HAff/S
Zar

π0

��

// [Kn,K]Haff (S)

π0

��

[Kn,K]HSchS
Zar

//

π0

��

44

[Kn,K]H(S)

π0

��

44

[Kn
0 ,K0]Pre(Aff/S)

// [Kn
0 ,K0]Pre(SmAff/S)

[Kn
0 ,K0]Pre(SchS)

//

33

[Kn
0 ,K0]Pre(Sm/S)

33

The pointed version of this theorem also holds.

3.3 Separated Schemes

Since Riou and many authors do not consider divisorial smooth schemes over a

regular divisorial base S but rather separated smooth schemes over a separated

regular base S, we show how to add the hypothesis of separatedness to the one of

divisoriality on smooth schemes. For this section we will always consider a base

scheme S which is regular and separated. We denote as Sm/Ssep be the category of

separated (in the absolute sense) smooth S-schemes. Notice this is a full subcategory

of the divisorial schemes over S as we have remarked in Section 1.9. If S is affine,

for any natural n we have the following commutative diagram (use the theorem of

Riou and Theorem 1.9.1)

[Kn,K]HSchS
Zar

∼=
//

��

π0

��

[Kn,K]H(S)sep

π0∼=
��

HomPre(SchS)(K0(−)n,K0(−))
res // // HomPre(Sm/Ssep)(K0(−)n,K0(−))

to show that all the maps in the previous commutative diagram are isomorphisms

we shall need the following

Proposition 3.3.1. Let S be an affine regular noetherian scheme. Assume to have

two natural transformations K0(−)n
f
//

g
// K0(−) on Pre(SchS) which agree after

restriction to Sm/Ssep. Then f = g.
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Proof. We assume that n = 1 for simplicity, the general case being the same. Fol-

lowing what we did for divisorial schemes, for every X ∈ SchS , by the very definition

of K0(X), we will need to verify that for every element E ∈ K0(X), fX(E) = gX(E).

As in the proof of Proposition 1.8.7 we find for every E ∈ K0(X) a divisorial smooth

scheme YE over S and EYE ∈ K0(YE) together with a morphism ψE : X → YE (over

S) such that ψ∗E(EYE ) = E . Now we use the Jouanolou’s trick to find an affine vector

bundle torsor π : T → YE , here T will be affine in the absolute sense, so separated (in

the absolute sense), divisorial, and smooth over YE hence smooth over S: henceforth

it lies in Sm/Ssep. Moreover π induces an isomorphism on K0 (because of Lemma

3.2.8) so we get the following commutative diagram

K0(T )
fT //

gT
// K0(T )

K0(YE)
fYE //

gYE
//

ψ∗E
��

π∗∼=

OO

K0(YE)

ψ∗E
��

π∗∼=

OO

K0(X)
fX //

gX
// K0(X)

and since fT = gT by assumption, chasing we get fX(E) = gX(E). Iterating this for

every X ∈ SchS and any E ∈ K0(X) gives us the assert.

Remark 3.3.2. The proof actually allows us to see that if two natural transforma-

tions K0(−)n
f
//

g
// K0(−) on Pre(Sm/S) agree after restriction to Sm/Ssep, Then

f = g.

As a corollary we have the following theorem

Theorem 3.3.3. Assume that S is an affine regular noetherian scheme. All the

arrows in the following commutative cube are isomorphisms for any n ∈ N

[Kn,K]HAff/S
Zar

π0

��

// [Kn,K]Haff (S)

π0

��

[Kn,K]HSchS
Zar

//

π0

��

44

[Kn,K]H(S)sep

π0

��

33

[Kn
0 ,K0]Pre(Aff/S)

// [Kn
0 ,K0]Pre(SmAff/S)

[Kn
0 ,K0]Pre(SchS)

//

33

[Kn
0 ,K0]Pre(Sm/Ssep)

33
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The pointed version of this theorem also holds.

Proof. The proof follows as the one of Theorem 3.2.16 mutatis mutandis.

3.4 Non-divisorial schemes

We fix a regular noetherian base S. For this section only we assume that the

condition of being regular does not come with the additional divisorial hypothesis,

as in section 1.10. The methods we have used to link the homotopic world to what

happens at the level of π0 relied on the Riou’s result and on 2.5.5 which makes

use of the fact that if a scheme has an ample family of line bundles, we can find

an embedding of it into a smooth one. Now, if we remove the hypothesis of being

divisorial from all the schemes in SchS and Sm/S, and we want to keep Nisnevich

and Zariski descent, in addition to homotopy invariance for regular schemes, we need

to define our K-theory with the Thomason-Trobaugh definition as we did in 1.10.

Hence the problem changes completely because then the K0 are possibly different

from the usual ones (i.e. they are not the Grothendieck’s K0). But we notice that

the rear face of the cube does not change since affine schemes trivially satisfy the

resolution property and 3.2.14 does not change. Moreover, by work of Cisinski

and Khan ([Kha16] 2.4.5 and 2.4.6 or [CK17]), or Theorem 3.3.2 in [AHW17], we

still have that [Kn,K]H(S)
∼= [Kn,K]Haff (S) and if we denote as Sm/St the full

subcategory of smooth schemes having an affine vector bundle torsor we have an

analogue of Corollary 3.2.6 that we can use. In addition, if S is affine, because of

what we proved in Section 1.10, we can conclude the following

Theorem 3.4.1. If S is an affine noetherian regular scheme, SchS and Sm/S the

categories of (smooth) schemes of finite type over S, K is the Thomason’s K-theory

and n is any natural number, we have that the following commutative cube

[Kn,K]HAff/S
Zar

π0∼=

��

∼= // [Kn,K]Haff (S)

π0∼=

��

[Kn,K]HSchS
Zar

∼= //

��

π0

��

∼= 44

[Kn,K]H(S)

π̃0∼=

��

∼= 33

[Kn
0 ,K0]Pre(Aff/S)

∼= // [Kn
0 ,K0]Pre(SmAff/S)

[Kn
0 ,K0]Pre(SchS)

// //

33 33

[Kn
0 ,K0]Pre(Sm/St)

∼=
33

where π̃0 is obtained as composition of the arrows

[Kn,K]H(S)
π0−→ [Kn

0 ,K0]Pre(Sm/S)
res−−→ [Kn

0 ,K0]Pre(Sm/St)
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with res induced by the inclusion Sm/St ⊆ Sm/S. By diagram chase we also have

the injectivity and the surjectivity of some maps as depicted in the diagram. Note

that the arrows in the front face of the cube have the same properties even if S is

not affine but any regular noetherian scheme. The pointed analogue also holds.

Proof. The proof uses what we said at the beginning of this section in addition to

Theorem 1.10.1 and Remark A.3.11.

Hopefully, a further study of the remaining maps will be addressed in a future

work. Also, the fact that the K0 of derived affine schemes only feels the K0 of their

ring of path components ([KST18] Theorem 2.16) and the above mentioned work of

Cisinski and Khan suggests that maybe one can look also at the derived analogue

for the cube, and get some interesting conclusions although this should be studied in

a further work. If one wants to have homotopy invariance for non regular schemes,

then one could employ homotopy invariant K-theory, but this will not be discussed

here.

68



Chapter 4
Affine representability of K-theory

In this section we prove that in H(S) (S regular noetherian base scheme, all the

schemes are assumed to have an ample family of line bundles as detailed in 0.1),

K-theory is representable not only by Z×Gr as shown in [MV99] but also by what

we will call Z × Graff where Graff is an ind-scheme obtained as filtered colimit of

affine (in the absolute sense) schemes. This will imply that K-theory can be written

in H(S) as the filtered colimit of affine representable schemes, in a way analogous

to what Riou did. We start by discussing in full generality some consequences of

the Jouanolou’s trick.

4.1 Pulling back certain affine vector bundle torsors

As discussed in the seminal [Wei89], for schemes having an ample family of line

bundles, the Jouanolou’s trick does not give a construction of affine vector bundle

torsors which is functorial for two reasons: the first is that the construction of these

torsors over the divisorial schemes strongly depends on the choice of the ample

family we consider and the second is that it is not true that affine vector bundle

torsors pullback to affine vector bundle torsors. Ad hoc reasonings should then be

made once one needs any kind of functoriality for such torsors. For example consider

the following standard system of embeddings of projective spaces

· · ·Pn−1 ↪→ Pn ↪→ Pn+1 · · ·

In this case every Pn has (O(1), x0, ..., xn) as ample family of line bundles

and this family is the pullback of (O(1), x0, ..., xn, xn+1) on Pn+1 after omitting the

section which becomes = 0. Moreover all the morphisms involved in this system
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are closed embeddings, that pullback affine vector bundle torsors. So in this very

particular situation one might hope to find a system πn : Wn → Pn of affine vector

bundle torsors (remind that as in Definition A.2.5 we require Wn to be affine in the

absolute sense, i.e. over Spec(Z)) such that the following diagram commutes

· · · Wn−1

πn−1

��

� � //Wn

πn
��

� � //Wn+1 · · ·
πn+1

��

· · · Pn−1 � � // Pn �
�

// Pn+1 · · ·

This is what can be done in the situations we would like to consider. We now

lay down the general situation. Suppose X is a divisorial scheme with an ample

family of line bundles {(Li, si)}ni=0 as in 2.1.3. Assume also that we have a closed

embedding f : Y → X. Hence the family {(L′i := f∗Li, s
′
i := f∗si)}ni=0 is an ample

family on Y . We have the following

Proposition 4.1.1. Let be X a divisorial scheme with an ample family of line

bundles L = {(Li, si)}ni=0 and f : Y → X a closed embedding so that L′ =

{(f∗Li, f∗si)}ni=0 is an ample family on Y as above. Then the affine vector bun-

dle torsor π′ : W ′ → Y built on Y using the Jouanolou device on the family L′ is

the pullback along f of the one over X built using L. The result does not change

if we use the Jounalolou device on Y on an ample family I isomorphic to L′ (by

isomorphic we mean that the line bundles considered in the two families are isomor-

phic via some isomorphisms that map the sections being part of the datum of one

family to the others).

Proof. We need to follow the construction found in [Wei89] Proposition 4.4. Let

E = ⊕ni=0Li and s = (s0, ..., sn) : OX → E the map induced by the sections si. If

we set F := coker(s) and we notice that s is a split mono on every Xsi we have the

following exact sequence of vector bundles

OX
s−→ E → F

[Wei89] 4.4 tells us that the open subschemeW = Spec(S(E)/(s−1)) = P(E)\P(F) ⊆
P(E) is an affine vector bundle torsor π : W → X where π is obtained as the compo-

sition of the open embedding of W in P(E) and the projection P(E) → X. Pulling
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back along f , denoting E ′ := f∗E ∼= ⊕ni=0f
∗Li, we have that the following is a

pullback

P(E ′)

��

� � // P(E)

��

Y �
�

f
// X

and the map s pullbacks to a split mono s′ = (s′0, ..., s
′
n) : OY → E ′ so that the

following sequence of vector bundles is exact and it is the pullback of the previous

one

OY
s′−→ E ′ → F ′ := coker(s′)

Accordingly, we have that W ′ = f∗W = Spec(S(E ′)/(s′ − 1)) = P(E ′)\P(F ′) is an

affine vector bundle torsor and is the pullback of W . In other words the following

is a pullback

W ′

π′

��

� � //W

π
��

Y �
�

f
// X

The last part of the statement is trivial.

We are then in the position to prove the following

Corollary 4.1.2. Let X, Y , L′ and W ′ as in the statement and in the proof of

the previous Proposition. If we assume that s′n = f∗sn = 0 (so that Ys′n = ∅)
then L′′ = {(L′i, s′i)}

n−1
i=0 is an ample family of line bundles for Y and the affine

vector bundle torsor resulting from the Jouanolou device naturally embeds as a closed

subscheme of W ′. The result does not change if we start with an ample family I on

Y isomorphic to L′.

Proof. First we notice that because of the hypothesis, Ys′n is the empty scheme

(∅,O∅) affine and isomorphic to Spec((0)) (O∅(∅) = 0). Hence L′′ is an ample

family for Y . Using now the assumption that s′n = 0 we have that the following

commutative diagram of OY -modules.

OY s′ //

id

��

E ′ = ⊕ni=0L
′
i

pr
����

// // F ′ ∼= G ⊕ L′n

����

OY
g=(x′0,...,x

′
n−1)
// E ′′ := ⊕n−1

i=0 L
′
i

// // G = coker(g)
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Using this one can see that the following induced diagram commutes

P(G) �
�

//
� _

��

P(E ′′)� _

��

P(F ′) �
�

// P(E ′)

and with a little more effort, one can check that it is actually a pullback. It then

follows from the construction of the affine vector bundle torsor on Y starting from

the family L′′ that the affine torsor

π′′ : W ′′ := P(E ′′)\P(G) = Spec(S(E ′′)/(g − 1))→ X

is a closed subscheme of W ′ such that the following diagram commutes

W ′′ �
�

//

π′′
""

W ′ �
�

//

π′

��

W

π
��

Y �
�

f
// X

and the square is a pullback. The last assertion is easy.

The previous corollary allows us to consider the system · · ·Pn−1
S ↪→ PnS ↪→

Pn+1
S · · · with S any base scheme and build affine vector bundle torsors πn : Wn → PnS

for every n so that the following diagram commutes

· · · Wn−1

πn−1

��

� � //Wn

πn
��

� � //Wn+1 · · ·
πn+1

��

· · · Pn−1 � � // Pn �
�

// Pn+1 · · ·

This means that if we see the system of embeddings of the projective spaces and

of the torsors as functors W•, P• : N → SchS where by N we denote the natural

numbers seen as a poset, then the projections πn define a natural transformation

π• : W• → P•.

Definition 4.1.3. We define the affine (infinite) projective space P∞aff := colimW•.

The natural transformation π• just defined induces a map P∞aff → P∞ in Pre(SchS).

This point of view is natural once we try to do the same for the Grassman-

nians, where we seek an analogous result. First we need to recall some facts. We

fix a base scheme S. With Grd,r and Grn(E) we shall stick to the notation of Morel
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[Mor06] page 5 and of Grothendieck ([GD71] I 9.7) because for this section it is

going to be more convenient. This means that for a scheme X ∈ SchS we have

Grd,r = { locally free quotients of rank d of Od+r
X }

Thus we differ from the notation used by Riou in [Rio06] and introduced in Appendix

A.2 (i.e. d and r are swapped) but the reader will recognize that the two notions,

although different, are interchangeable, in particular the embeddings f(d,r)(d′,r′) :

Grd,r → Grd′,r′ for (d, r) ≤ (d′, r′) are defined in the same way, i.e. following Morel-

Grothendieck they are compositions of the maps f(d,r)(d,r+1) = ld,r : Grd,r → Grd,r+1

defined for every scheme X ∈ SchS by the assignment

(Od+r
X → P ) 7→ (Od+r+1

X → Od+r
X → P )

and the map f(d,r)(d+1,r) : ϕd,r : Grd,r → Grd+1,r defined by the assignment, for

every scheme X

(Od+r
X → P ) 7→ (Od+r+1

X → P ⊕OX)

We also have isomorphisms τd,r : Grd,r ∼= Grr,d and equalities τd,r+1 ◦ ld,r = ϕr,d ◦τd,r
and ϕd,r+1◦ld,r = ld+1,r◦ϕd,r. For a given vector bundle E there is an ambiguity very

similar between the Grothendieck notation we follow and for example the notation

of [GW10] 8.6. Given such a vector bundle over S, it is well known that we have

the Plucker embedding $n,E : Grn(E) ↪→ P(∧nE) given by the assignment, for any

X ∈ SchS

(EX → P ) 7→ (∧nE → ∧nP )

see [GD71] I 9.8.1.1 or [GW10] 8.10. In the case E = On+d
S we have that P(∧nOn+r

X ) ∼=

P(n+r
n )−1

S so that we have our standard Plucker embeddings $d,r : Grd,r ↪→ P(d+rd )−1

S .

We notice that the ample families {O(1), x0, ..., x(d+rd )−1
} on P(d+rd )−1

S pullback to

ample families

Ld,r = {Ld,r := $∗d,rO(1), x′0 = $∗d,rx0, ..., x
′
(d+rd )−1

= $∗d,rx(d+rd )−1
}

Remark 4.1.4. By the definition of the Plucker embedding, it follows that for

any (d, r), Ld,r ∼= detT ∗d,r where we have denoted by T ∗d,r the dual of the rank

d universal bundle on Grd,r. Moreover, because of [GD71] I 9.8.3 we have that

ld,r+1 ◦$d,r = $d,r+1 ◦ ld,r so that the pullback of the ample family Ld,r+1 along ld,r

is actually Ld,r. Using the maps τd,r and the identities stated before, we can also

see that the pullback of the family Ld+1,r along the map $d,r is isomorphic to Ld,r
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so that putting everything together we get that the pullback of the ample family

Ld′,r′ on Grd′,r′ along the embedding f(d,r)(d′,r′) for (d, r) ≤ (d′, r′) is isomorphic to

Ld,r.

Now we consider N2 as a poset with the order given by (d, r) ≤ (d′, r′) if

d ≤ d′ and r ≤ r′ and hence we see N2 as a category in this way. Using the Yoneda

lemma, we define the functor Gr• : N2 → Pre(SchS) as the usual filtered system,

i.e.

Gr•((d, r)) = Grd,r Gr•((d, r) ≤ (d′, r′)) = f(d,r)(d′,r′)

The colimit of this functor is the usual infinite Grassmannian Gr. Choosing on every

Grasmannian Grd,r the ample family Ld,r we can use Remark 4.1.4 and Corollary

4.1.2 to construct, for every (d, r) ∈ N2 affine vector bundle torsors πd,r : Graff
d,r →

Grd,r which bundle together to give a functor

Graff
• : N2 → Pre(SchS) (d, r) 7→ Graff

d,r

which takes an arrow (d, r) ≤ (d′, r′) to a closed embedding faff
(d,r)(d′,r′) : Graff

d,r ↪→
Graff

d′,r′ built using Corollary 4.1.2.

Definition 4.1.5. We define the affine (infinite) Grassmannian as Graff := colimGraff
• .

Corollary 4.1.2 gives us the following Proposition, whose proof is immediate

given 4.1.2 and 4.1.4

Proposition 4.1.6. The projections πd,r bundle together to give a natural transfor-

mation π• : Graff
• → Gr•. This induces a map π : Graff → Gr.

We can now build the affine analogue of the systems K• and P• that Riou

built in [Rio06], see Appendix A.2. We define the system Kaff
• : N2 → Pre(SchS) by

the assignment Kaff
(d,r) =

⊔
2d+1 Graff

d,r and using the arrows faff
(d,r)(d′,r′) to define the

functor. Using the cofinal sequence i : N→ N2, n 7→ (n, n) we define as in Appendix

A.2 Paff
• = Kaff

• ◦ i. We then have the following proposition, which follows from 4.1.2

and 4.1.4

Proposition 4.1.7. The arrows πd,r define a natural transformation π• : Kaff
• → K•

which restricts to π• : Paff
• → P•. Moreover we have colimKaff

•
∼= colimPaff

•
∼= Z ×

Graff and the natural transformations just defined induce a map Z×Graff → Z×Gr.

4.2 Proving the affine representability of K and Pic

We shall begin with a simple lemma in homotopical algebra
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Lemma 4.2.1. Suppose that a model category M is given and that we have two

functors F,G : N→M and a natural transformation ϕ : F → G between them such

that

1) F (n) and G(n) are cofibrant for every n ∈ N and all F (a ≤ b), G(a ≤ b) are

cofibrations.

2) All ϕn : F (n)→ G(n) are weak equivalences.

Then hocolim F ∼= colim F , hocolimG ∼= colimG and the induced map

colim F → colimG

is a weak equivalence.

Proof. Everything follows by basic homotopical algebra. The first assertion follows

because of the construction of homotopy colimits, since in virtue of condition 1) F

and G are cofibrant objects in the projective module structure of MN. The second

assertion follows because π, in virtue of our assumption 2), is a weak equivalence

in MN with the projective model structure. For a reference see [Cis19] 2.3.13,

2.3.15.

We recall that we have defined in the previous section the affine grassmannian

and the affine projective spaces Graff and P∞aff . We then have

Theorem 4.2.2. Let S be a regular noetherian scheme. The affine vector bundle

torsors πn : Wn → PnS and πd,r,Graff
d,r → Grd,r induce weak equivalences Z×Graff ∼−→

Z×Gr and P∞aff
∼−→ P∞ in H(S).

Proof. The assertion follows from the previous lemma using the construction we

gave in the previous section. The closed embeddings in the systems W• and Graff
•

are all cofibrations in sPre(Sm/S) and all the objects involved are cofibrant by

definition. The arrows πn and πd,r induce isomorphisms in H(S) because of Lemma

3.2.8 so that they are weak equivalences. Hence we can apply the previous lemma

to the maps π• : W• → P• and π• : Paff
• → P• to conclude.

Corollary 4.2.3. Let be S a regular noetherian base scheme. Then Z×Graff ' K
and Pic ' P∞aff in H(S), i.e. the affine Grassmannian represents K-theory and the

affine projective space represents the Picard functor in the unstable motivic homotopy

category.

Remark 4.2.4. We point out that we can repeat similar reasonings replacing Graff ,

P∞aff , Kaff
• and W• with their finite nth products (Graff)n, (P∞aff)n, (Kaff

• )n and (W•)
n

(notice that the schemes involved are affine because of [Sta18, Lemma 01SG]).
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4.3 Affine Grassmannian and the properties (ii) and (K)

The aim of this section is to discuss the properties (ii) and (K) for the affine

Grassmannian and the affine projective space. We will discuss in full detail only

the case of the affine Grassmannian, the other being very similar. In this section

by S we denote a regular noetherian base scheme and by Sm/S we denote the

category of smooth schemes over S having an ample family of line bundles. We let

SmAff/S to be its full subcategory of affine (over Spec(Z)) schemes. First recall we

defined the functor ϕ, and the properties (ii) and (K) in Appendix A.3 following the

original definitions in [Rio06] and [Rio10]. We now want to show that the functor

Z × Graff satisfies the property (ii), i.e. that for every U ∈ SmAff/S the natural

transformation (in Pre(Sm/S))

Z×Graff
τZ×Graff

−−−−−→ ϕ(Z×Graff) =: π0(Z×Graff) =: [−,Z×Graff ]H(S)

is surjective, i.e. Z×Graff(U)
τZ×Graff (U)
−−−−−−−→ ϕ(Z×Graff)(U) is surjective. Remember

we have a map π : Z × Graff → Z × Gr in Pre(Sm/S) which induces a weak

equivalence in H(S) because of Theorem 4.2.2. Because of this, the induced map

ϕ(π) : ϕ(Z × Graff) → ϕ(Z × Gr) is an isomorphism in Pre(Sm/S). Moreover, for

every U ∈ SmAff/S the following diagram commutes

Z×Graff(U)

π(U)

��

τZ×Graff (U)
// ϕ(Z×Graff)(U)

∼= ϕ(π)(U)

��

Z×Gr(U)
τZ×Gr(U)

// // ϕ(Z×Gr)(U)

Here the arrow τZ×Gr(U) is surjective because Z×Gr satisfies the property (ii).

Proposition 4.3.1. For any U ∈ SmAff/S, the arrow τZ×Gr(U)◦π(U) is surjective.

Proof. We need to recall how Riou proved that τZ×Gr(U) is surjective. For any

γ ∈ K0(U) (we can see that there exists P , a finitely generated projective module

on U , such that γ = [P ]− d+ n in K0(U)) Riou builds a map fγ : U → Grd,r such

that the map Fγ ∈ Z×Gr(U) defined as the composition

U
fγ−→ Grd,r → {n} ×Gr→ Z×Gr
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is mapped by τZ×Gr(U) to γ. Consider now the following pullback in Sm/S

U ×Graff
d,r

pr2

��

pr1 // Graff
d,r

πd,r

��

U
fγ

// Grd,r

Now, πd,r : Graff
d,r → Grd,r is an affine vector bundle torsors so its pullback U ×Graff

d,r

is a vector bundle torsor over U and since the last is affine, as remarked in [Wei89]

page 475 we have that pr2 : U × Graff
d,r → U is an affine vector bundle torsor and

in particular a vector bundle, so that there exists a section of pr2, i.e. a map

(a closed embedding) i : U → U × Graff
d,r such that pr2 ◦ i = idU . We define

f ′γ = U
i−→ U ×Graff

d,r

pr1−−→ Graff
d,r and we check that the following diagram commutes

U

id

��

f ′γ
//

fγ

  

Graff
d,r

πd,r

��

// {n} ×Graff
d,r

id×πd,r
��

// Z×Graff

π

��

U
fγ
// Grd,r // {n} ×Grd,r // Z×Gr

In fact

πd,r ◦ f ′γ = πd,r ◦ pr1 ◦ i = fγ ◦ pr2 ◦ i = fγ ◦ idU = fγ

where for the second and the third equality we have used the previous pullback

and the fact that i is a section of pr2. Defining the the composition of the top

horizontal line of the previous diagram to be F ′γ : U → Z × Graff we have that

F ′γ ∈ Z×Graff(U) and finally the previous diagram tells us that π(U)(F ′γ) = Fγ so

that we have concluded the proof.

Corollary 4.3.2. The arrow τU×Graff (U) is surjective for every U ∈ SmAff/S. In

other words Z×Graff satisfies the property (ii).

Proof. It follows immediately from the previous Proposition by diagram chase.

Proposition 4.3.3. P∞aff satisfies the property (ii).

Proof. One adapt the argument of Riou in a similar way to what we did for the

affine Grassmannian.

Proposition 4.3.4. The K-theory presheaf K satisfies the property (K) with respect

to the system Kaff
• . Pic satisfies the property (K) with respect to the system W•
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having colimit P∞aff . The same holds replacing Kaff
• and W• with their finite nth

products (Kaff
• )n and (W•)

n

Proof. It suffices to show that for any map faff
(d,r)(d′,r′) : Graff

d,r → Graff
d′,r′ the induced

map (faff
(d,r)(d′,r′))

∗ : K1(Graff
d′,r′) → K1(Graff

d,r) is surjective, but this follows from

Lemma 3.2.8 which gives us that the affine vector bundle torsors πd,r : Graff
d,r →

Grd,r induces isomorphisms Kn(Graff
d,r)
∼= Kn(Grd,r) for any n and the fact that

π : Kaff
• → K• is a natural transformation. The case of Pic is the same and the the

last statement of the Proposition can be proved in an analogous way.
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Part II

Applications and Hermitian

K-theory
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Chapter 5
Applications to K-theory

5.1 Operations on higher K-theory

Using Theorem 3.1.15, we can define structures on K as an object of HSchS
Zar and

we can define operations on the higher K-theory groups for any scheme qcqs over

a regular noetherian ring (for example) admitting an ample family of line bundles.

The construction is the same than the one in [Rio10] 2.3 and uses Appendix A.5.

The point is to use 3.1.15 together with the results of 3 to lift operations defined

on K0 to operations on K in HSchS
Zar . As an example we consider the structure of

special λ-ring. We begin with some recollections on λ-rings.

5.1.1 Recollections on λ-rings

Let us start with the following definition (see [Wei13] Definition I 4.3.1 and [Yau10]

Definition 1.10)

Definition 5.1.1. A special λ-ring, or simply a λ-ring, is the datum of a commu-

tative unital ring R together with a family of sets maps λk : R → R, k ≥ 0 such

that

1) λ0(x) = 1, λ1(x) = x for every x ∈ R.

2) λk(x+ y) = λk(x) + λk(y) +
∑k−1

i=1 λ
i(x)λk−i(y) for every x, y ∈ R for k > 1.

3) λk(1) = 0 for k ≥ 2.

4) λk(xy) = Pk(λ
1(x), ..., λk(x);λ1(y), ..., λk(y)) for all x, y ∈ R.

5) λk(λl(x)) = Pk,l(λ
1(x), ..., λkl(x)) for all k, l ∈ N and x ∈ R.
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where Pk and Pk,l are certain universal polynomial with coefficients in Z. A pre-λ-

homomorphism between λ-rings (R, {λrR}) and (S, {λrS}) is a ring homomorphism

f : R→ S such that f ◦ λrR = λrS ◦ f for all r ≥ 0 ([Yau10] Definition 1.25).

In literature one can find the name pre-λ-ring or simply λ-ring for a ring

satisfying 1)-2) above and the name special λ-ring for rings satisfying 1)-5). Since

we will be interested mainly in special λ-rings we will not make such a difference and

we will stick to the notation introduced in the previous definition. Finally, note that

for a λ-ring, a splitting principle is always satisfied, see [Yau10] Theorem 1.44 (a

priori one could not require a so called positive structure or that our ring is λ-finite

dimensional).

Definition 5.1.2. Suppose R is a λ-ring and A is an R-algebra (not necessarily

unital) together with a family of sets maps λk : A→ A for k ≥ 1, we will say that A

is an R-λ-algebra if R×A with the addition, the multiplication and the operations

defined below is a λ-ring (see [Kra80] page 240).

1) For all a, b ∈ R and x, y ∈ A we set (a, x) + (b, y) := (a+ b, x+ y).

2) For all a, b ∈ R and x, y ∈ A we set (a, x)(b, y) := (ab, ay + bx+ xy)

3) For all (a, x) ∈ R×A we set λk(a, x) := (λk(a),
∑k−1

i=0 λ
i(a)λk−i(x)), k ≥ 1.

Example 5.1.3. Suppose to have an N-graded R-module M∗ = ⊕n∈NMn where

M0 = R is a λ-ring. Assume that we give to M∗ the following product

(a0, a1, a2, ...)(b0, b1, b2, ...) := (a0b0, a0b1 + a1b0, a0b2 + b0a2, ...)

and that we define, for k ≥ 1 (λ0 being the map (a0, a1, · · · ) 7→ (1, 0, 0, · · · ))

λk(a0, a1, a2, ...) := (λk0(a0),

k−1∑
i=0

λi0(a0)λk−i1 (a1),

k−1∑
i=0

λi0(a0)λk−i2 (a2), ...)

where λin : Mn → Mn are group homomorphisms for all n ≥ 1 and all i ≥ 1. Then

the R-algebra M∗ automatically satisfies 1)-3) of the definition of λ-ring. Moreover

if Mn is an R-λ-algebra for n 6= 0, the product in Mn being trivial, then M∗ satisfies

also 4)-5) of 5.1.1 and so it is a λ-ring, see for example the proof of 7.1 and 8.13 in

[HKT17].

Given a λ-ring, one can always define the so called Adams operations, which

are very useful for many purposes.
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Definition 5.1.4. Let R be a λ-ring. For each n ≥ 1 we can define the nth

Adams operation ψn by recursion as ψ1(x) = x, ψ2(x) = x2 − 2λ2(x), ψk(x) =

λ1(x)ψk−1(x)−λ2(x)ψk−2(x) + ...+ (−1)kλk−1(x)ψ1(x) + (−1)k+1kλk(x) (these are

called Newton formulas, see [Yau10] 3.10).

The Adams operations have the following properties

Proposition 5.1.5. Let R be a λ-ring. Then the Adams operations satisfy the

following properties

1) Each Adams operation ψn is a ring homomorphism.

2) For each m,n ≥ 1, we have ψmψn = ψnm = ψnψm.

3) If p is a prime number and x ∈ R, then ψp(x) ≡ xp (Mod pR).

For a proof see [Yau10] 3.6, 3.7. The Adams operations are very important on

their own and they motivated the following definition, found for example in [Yau10]

Definition 3.44 and probably having origin in [Knu73], page 49.

Remark 5.1.6. The Adams operations defined via the Newton formulas, if R is a

pre-λ-ring, coincide with the ones defined in [SGA71] V 7.1 or in [Yau10] 3.1. This

gives that ψn are group homomorphism even if R is only a pre-λ-ring.

Definition 5.1.7. A commutative ring R is called a ψ-ring if it is equipped with

ring endomorphisms ψk : R → R for k ≥ 1 such that ψ1 = idR and for each

m,n ≥ 1 ψmψn = ψnψm = ψmn. If R is noncommutative, we say that it is a

noncommutative ψ-ring if as in the commutative case, it is equipped with ring

endomorphisms ψk : R → R for k ≥ 1 such that ψ1 = idR and for each m,n ≥ 1

ψmψn = ψnψm = ψmn.

While in the previous Definition we considered also noncommutative rings

for future use, we explicitly say that in this section, we only consider commutative

rings (unless otherwise stated).

Remark 5.1.8. We note that as far as we know, there isn’t a well developed the-

ory (or even a notion) of lambda rings in the context of noncommutative rings.

The problem, roughly speaking, is that the axioms of a λ-rings involves symmet-

ric polynomials that do not easily fit in the context of noncommutative rings (the

reader can try to make sense of axiom 2) in this context for example). However, the

definition of ψ-ring easily extends to the noncommutative case. Indeed the only def-

inition of “noncommutative λ-ring” we have been able to find in literature is the one
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contained in [Pat95] (Definition I.1) that agrees with our definition of noncommu-

tative ψ-ring (notice that in [Pat95] the only noncommutative rings considered are

noncommutative R-algebras for some commutative ring R containing the rationals).

By the previous Proposition, it is clear that every λ-ring together with its

Adams operations is a ψ-ring. If the ring R is Z-torsion free, more can be said

thanks to the following theorem of Knutson [Knu73], see also [Yau10] Theorem 3.49

Theorem 5.1.9. Suppose we have a Z-torsion free ψ-ring. Then we can define

lambda operations λk : R ⊗Z Q =: RQ → RQ for k ≥ 0 which endows RQ with the

structure of a λ-ring.

The structure that we have defined can be seen to be the unique on RQ

compatible with the ψkQ in an obvious sense and under additional assumptions can

also be seen to extend to a λ-ring structure on R. In fact we have the following

important theorem of Wilkerson ([Wil82] or see [Yau10] Theorem 3.54)

Theorem 5.1.10 (Wilkerson). Let R be a Z-torsion free ψ-ring such that for every

x ∈ R and every prime integer p we have ψp(x) ≡ xp (Mod pR). Then the

structure defined in 5.1.9 on RQ descends to a λ-ring structure on R which is the

unique λ-ring structure on R whose Adams operations coincide with the ones given

by the ψ-ring datum on R.

We also have the following highly related theorem, found in [Yau10] Theorem

3.15

Theorem 5.1.11. Let R be a Z-torsion free ring. Then every λ-structure on it is

uniquely determined by its associated ψ-structure and vice versa.

Remark 5.1.12. One might notice that the definition of λ-ring does make sense

in every category C admitting finite products as it will be studied in the following

section. Indeed this is well known for the structure of commutative unital ring,

and adding to this datum a family of unary operators λk satisfying the relations

listed in the definition of special λ-ring (notice this relations only involves universal

polynomials in a finite number of variables and with coefficients in Z so this actually

makes sense) actually allows us to define a language and then an abstract algebraic

structure (both in the sense of Appendix A.5), Sλ, characterizing the structure of

special λ-ring (one can do the same with the notion of pre λ-ring) so that a λ-

ring in a category with finite products is, under the terminology introduced in the

appendix, simply a Sλ-object ( see also A.5).
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Remind that Z ha a unique structure of λ-ring (lambda operations being de-

fined by the formula λr(n) =
(
n
r

)
for the naturals and

(−n
k

)
is set to be (−1)k

(
n+k−1

k

)
),

so that also Zn will have an induced λ-ring structure for any n ∈ N≥1.

Definition 5.1.13. We say that a λ-ring A is augmented ([Yau10] Definition 1.30)

if it admits a λ-ring homomorphism ε : A→ Z. If for some n ∈ N, A =
∏n
i=1Ai is a

lambda ring so that Ai are augmented (via maps εi) sub-λ-ring of it, we will say as

well that A is augmented abusing the notation and we will call ε :=
∏
i εi : A→ Zn

its induced augmentation. Now let R be a λ-ring. We can define for every r ≥ 0

the γ operations γr : R → R via the formula γr(x) = λr(x+ r − 1), valid for every

x ∈ R (see [Yau10] Proposition 3.19).

Notice that our abuse of notation in the definition of augmented lambda

ring is not really harmful since we can always reason ”componentwise”. We will

stick to the classical definition of augmented until the end of this section leaving to

the reader to notice that the following results are true even if we use the ”abused”

terminology.

Definition 5.1.14 ([Yau10] 3.26). For every augmented λ-ring (R, ε) we define for

every n ≥ 0 the additive subgroup FnR ofR generated by products γn1(a1) · · · γnd(ad)
where every ai ∈ ker(ε) and

∑d
i=1 ni ≥ n. The sequence

F 0R ⊇ F 1R ⊇ F 2R · · ·

is called the Grothendieck γ-filtration

Proposition 5.1.15 (essentially [Yau10] 3.27, 3.31, 3.41). Let (R, ε) be an aug-

mented λ-ring. Then F 0R = R, F 1R = ker(ε), every FnR is a λ-ideal of R and it

is closed under γr for every r ≥ 1. Moreover for every x ∈ FnR, r, n ≥ 1 we have

ψr(x)− rnx ∈ Fn+1R.

Definition 5.1.16. Given any augmented λ-ring (R, ε), we can associate a graded

ring

Gr(R) := ⊕∞k=0
F kR/F k+1R

Moreover, for any a ∈ R, we say that a has γ-dimension n ([Yau10] 3.17) if it exists

an integer n such that γm(a) = 0 for all m > n. If there is a natural number n such

that every element of R has γ-dimension smaller than it, we will say that R has

finite γ-dimension.

Given any augmented λ-ring (R, ε), we denote RQ = R ⊗Z Q and we will

denote, for any natural numbers i, j, as R
(i,j)
Q the eigenspace of ψi : RQ → RQ
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relative to the eigenvalue ij . Noticing that the proof of [FL85] III 3.2 only relies on

Proposition 5.1.15 (and the extra hypothesis below), we have the following

Theorem 5.1.17 ([Wei13] Theorem II 4.10, [FL85] proposition III 3.2). Assume

(R, ε) is an augmented λ-ring such that there exists an natural number n such that

Fn+1R = 0, then the following facts are true

1) The eigenspaces R
(i,j)
Q are independent of i, so that we can denote them simply

as R
(j)
Q .

2) We have

RQ = ⊕ni=0R
(i)
Q
∼= ⊕ni=0

F iRQ/F i+1RQ
∼= Gr(R)Q ∼= Gr(RQ)

In particular R
(i)
Q
∼= F iRQ/F i+1RQ for every i ∈ N.

5.1.2 Lambda ring objects in a category

The previous section allows us to make sense of the notion of lambda ring in any

category with finite products and a terminal object (sometimes the terminal object

is referred as the empty product). We fix in this section such a category C. Since

we do not know any explicit reference for the notion of lambda ring object is such

category besides the one that can be given using the reasoning of the previous

section, we think it is worthwhile to spell out its structure here. We will denote by ∗
the terminal object of C. Suppose we are given a commutative unital ring K in C (we

define this notion using the machinery of Appendix A.5, see also [Bor94] Section 3.2

page 125). Thus a commutative ring object in C is a datum (K,+,−, ·, 0, 1) where

K is an object of C, + : K × K → K and · : K × K → K represent the additive

and the multiplicative laws of K, with a map − : K → K denoting the inverse for

the group structure and with two maps 0, 1 : ∗ → K representing the additive and

the multiplicative neutral elements. These maps satisfy the usual axioms required

from the definition of commutative ring object, i.e. (K,+,−, 0) is an abelian group

object in C, (K, ·, 1) is a commutative monoid object in C and we require the obvious

diagram expressing the right and left distributivity of the multiplication with respect

of the addition to commute. We will write a polynomial of degree m in n variables

with integer coefficients as

P =
∑
|J |≤m

aJx
J , J = (j1, . . . , jn), |J | =

n∑
i=1

ji ≤ m, xJ = xj11 · · ·x
jn
n (5.1)
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here the xi are the variables and aJ ∈ Z for every J . Now, given an integer q ∈ Z
we define the multiplication by q as a map ·q : K → K to be the zero map if q = 0,

and as the following composition if q > 0

K
diagonal−−−−−→ Kq := K × · · ·×︸ ︷︷ ︸

q − 1 times

K
+−→ K

which is well defined because of the associativity of the group law. If q < 0 we define

the map in the same way but we postcompose with the map − : K → K. We can

do something analogue with the operation “raising to the power of j” for any j ∈ N.

If j = 0 we define this map as 1 : K → K. Otherwise we define the map ·j : K → K

as the following composition

K
diagonal−−−−−→ Kj ·−→ K

also here this map is well defined because of the associativity of the multiplicative

law. With the same process, we can define for every multivariable xJ of length n

and degree m as above a map

xJ : Kn → K

by considering the composition

Kn ·j1×···×·jn−−−−−−−→ Kn ·−→ K

which is well defined because of the axioms of commutative ring. Post composing

the previous map with a· for any integer a gives us maps

axJ : Kn → K

Now, suppose to have a polynomial P =
∑
|J |≤m aJx

J in n variables and of degree

m as in (5.1). Denote by qP the number of summands in P . We can define a map

P : Kn → K as follows

Kn ×|J|≤maJx
J

−−−−−−−−→ KqP +−→ K

which is well defined because of the ring axioms (associativity, distributivity etc.).

The last step to make sense of the λ-ring axioms is then to consider a family of maps

λr : K → K with r ≥ 0. Then we can write expressions using these operations

as variables. For example suppose we want to formalize the axiom λr(x + y) =
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∑
i+j=r λ

i(x)λj(y) as the equality between two maps K×K → K. We then interpret

the left hand side as the composition

K ×K +−→ K
λr−→ K

For the right hand side, we see it as the composition

K ×K (λ0×···×λr)×(λ0×···×λr)−−−−−−−−−−−−−−−−→ Kr+1 ×Kr+1 P−→ K

where P is the polynomial of degree 2 involved in the right hand side. If a map

K ×K → K is built in this way, we will denote it as P λ. Asking if the axiom 2) of

lambda ring holds then amount to ask if those two maps are equal. The same can be

done for the remaining axioms of special lambda ring: they all involve polynomials

with coefficients in Z. We can then give the following

Definition 5.1.18. A λ-ring object in a category (C,×) with finite products is the

datum of a commutative ring object (K,+,−, ·, 0, 1) in it together with a family of

morphisms {λn : K → K}n∈N in C such that the axioms 1)-5) of definition 5.1.1

hold, provided we make sense of the terms involved as we explained above. Remark

that this definition coincides with the one we would get by using the machinery of

Appendix A.5, see also Remark 5.1.12.

Notice that all the arrows induced by the polynomials involved in the defi-

nition of a λ-ring are naturally pointed, i.e. they are pointed maps (K, 0)→ (K, 0).

5.1.3 Lambda rings in homotopy categories of simplicial presheaves

In this section we study the lambda ring structure that naturally arises on the

homotopy groups of a simplicial presheaf, provided it is a lambda ring in a suitable

homotopy category and that it satisfies certain properties. We fix a Grothendieck

site C, and we consider the model category sPre(C) of simplicial presheaves with

the Jardine local model structure localised at some class of maps S. This covers

all the situations covered into this thesis. We denote as H the homotopy category

Ho(sPre(C)) defined above. We let H• to be its pointed version. Notice that by this

we mean that we consider the pointed category of simplicial presheaves, we give to

it the pointed model category structure induced by the one we are considering on

the unpointed one and we take the homotopy category, as customary (so we are not

considering the homotopy category pointed). We suppose to have a (special) lambda

ring (K,+, •,−, 0, 1) in H (which is then pointed) where all the maps λr : K → K

are pointed for r > 0 and where the ring structure comes from a ring structure in H•
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(in this last category we are only looking at the non unital ring structure because

we have to take care of the point). We also assume that the product • : K×K → K

factors through the smash product i.e. that there exists a map ∧• so that the

following diagram commutes

K ×K
•

##

ϕ

��

K ∧K ∧•
// K

Remark that K is in particular an H-group, hence for every simplicial presheaf F ,

the set

πnK(F ) := [Sn ∧ F+,K]H• =: Kn(F )

has a group structure inherited from the H-group structure of K. Now, we assume

that K satisfies descent (i.e. it admits a weakly equivalent sectionwise fibrant re-

placement) so that for every element X ∈ C, Kn(X) is really the nth homotopy

group of the simplicial set K(X). Moreover we assume that the H-group structure

on K is compatible with the homotopy groups, i.e. that the group structure on

Kn(F ) for n ≥ 0 induced from the H-group structure coincides with the standard

one (the one defined as in topology using the co-group structure on S1). Loopspaces

are of this form, for example. We could relax these assumptions but we do not have

a reason to do that since they allow the discussion to be simpler and all the exam-

ples we have in mind fall in this description. Now, for any simplicial presheaf F we

immediately notice that by applying the functor π0 we obtain a λ-ring structure on

the set K0(F ). This is true because π0 preserves finite products so that taking π0 of

the datum of maps and compatibilities we have for K in H gives us what we want.

Remark 5.1.19. Notice that the product induced by • on any Kn(F ) is trivial

if n ≥ 1 because of Lemme 5.2 in [Kra80]. Indeed that lemma says that if we

are given an H-space E together with a distributive multiplication over its H-

space structure that factors through the smash product and a co-H-space X having

the comultiplication factoring through the join (for example any suspension) in

Ho(Top•) then the monoid structure induced on HomHo(Top•)
(X,E) by the structure

of E is trivial and in our case the same argument holds.

Since the multiplication of K factors through the smash product, we can

define pairings K0(F )×Kj(F )→ Kj(F ) as for K-theory in Theorem 5.1.28.
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Remark 5.1.20. We remind that for elements x ∈ K0(F ) and y ∈ Kj(F ), the

product x · y, using the fact that in H• we have • = ∧• ◦ϕ : K ×K → K, is defined

to be the image of the couple (x, y) via the following composition of maps

HomH•(S0 ∧ F+ = F+,K)×HomH•(Sj ∧ F+,K)

∧
��

HomH•(F+ ∧ (Sj ∧ F+),K ∧K)

−◦∆F

��

HomH•(Sj ∧ F+,K ∧K)

∧•◦−
��

HomH•(Sj ∧ F+,K)

Here with ∆F we have denoted the map induced by the diagonal F → F × F .

This coincides with the construction given in Theorem 5.1.28 in this case. If we

now define the product of two elements a, b ∈ Kn(F ) to be the one induced on Kn

by • : K × K → K we see that we can make sense of Axiom 4) of the definition

of lambda ring using polynomials Pr built as in the previous section. The only

caveat here is that in the construction of these polynomial maps, we build the

monomial maps xJ using smash products instead of products, i.e. we get maps

xJ : K ∧n K → K. We can do this since under our assumptions, the multiplicative

product we have factors through the smash. Now, reminding ourselves the notation

of the previous section and the caveat just specified, the LHS (RHS) of the equation

λr(xy) = Pr(λ
1(x), ..., λr(x);λ1(y), ..., λr(y)) = P λr (x, y) representing axiom 4) can

be read as the image of a map

HomH•(F+,K)×HomH•(Sj ∧ F+,K)→ HomH•(Sj ∧ F+,K)

obtained as in the previous diagram using λr ◦ ∧• ◦ − (respectively P λr ◦ −) instead

of ∧• ◦ − in the last step.

We define the graded group

K∗(F ) := ⊕n≥0Kn(F )

where the Kn(F ) are K0(F )-modules using the pairings of the previous Remark.

Consider the maps λrn : πn(λr) : Kn(F ) → Kn(F ) for r, n ≥ 0 and r > 0 if n ≥ 1.

Notice that for n ≥ 1 these maps are group homomorphisms. Henceforth, it is
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possible to give to K∗(F ) the structure of pre-λ-ring (K∗(F ), ·) as in Example 5.1.3

(i.e. axioms 1-3 of the definition of λ ring are satisfied) and we call the lambda

operations we have λr∗. We want to check that this is indeed a lambda ring.

Proposition 5.1.21. For any simplicial presheaf F , the ring (K∗(F ), ·, λr∗) is a

λ-ring.

Proof. We have to check that the axioms 4) and 5) of Definition 5.1.1 are satisfied.

For elements in K0(F ) this has already been done. Then we notice that because of

the definitions we made in 5.1.3, we only need to verify that for any n ≥ 1, the groups

Kn(F ) are K0(F )-λ-algebras. Since we already know that they are pre-K0(F )-λ-

algebras this really amounts to check axioms 4) and 5) for elements x ∈ Kn(F ) and

y ∈ K0(F ) using the notation of Definition 5.1.1 (see also the proof ot Theorems

7.1 and 8.18 in [HKT17] for more details about why it suffices to check this). We

start with axiom 5). Using our dictionary, x ∈ Kn(F ) is a map in [Sn ∧ F+,K]H• .

Now the verification of the axiom can be done in two steps. As a first step one

has from the fact that K is a λ-ring that λr ◦ λs : K → K and P λr,s : K → K in

H• given from the polynomial Pr,s using the techniques of the previous Section are

equal. As a second step one see that the left hand side of the equality prescribed

by axiom 5) equals the map obtained from [Sn ∧F+,K]H• by postcomposition with

the pointed map λr ◦ λs with r, s ≥ 1. Then using Remark 5.1.19 one sees that the

polynomilal maps (P λr,s)n : Kn(X)→ Kn(X) involved in the right hand side defined

using (K∗(F ), ·, λr∗) equals the ones obtained from [Sn∧F+,K]H• by postcomposition

with the map P λr,s : K → K in H•. So axiom 5) is verified. Notice, because of our

definitions, that since n ≥ 1, many of the products on the RHS are equal so that it

will be really a multiple of λrs(x) as noted in the proof of Theorem 8.18 in [HKT17].

The verification of axiom 4) can be done in a similar way using Remark 5.1.20.

Remark 5.1.22. Suppose that C is a point with the chaotic topology and that we

consider only the Jardine injective model structure on sPre(C). Then the homotopy

category we obtain is the classical homotopy category of topological spaces Ho(Top).

This means, as a corollary of the previous definition, that if we have a lambda ring X

in Ho(Top) satisfying the above properties, then to the direct sum of its homotopy

groups π∗(X) := ⊕n≥0πn(X) can be given a structure of special λ-ring reasoning as

above.

5.1.4 Lambda operations on higher K-theory groups

In this subsection we shall assume that our base scheme S satisfies the assumptions

of Theorem 3.1.15, i.e. that it is regular (remind we assume that regular schemes
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are also divisorial, unless otherwise stated) quasi-projective (hence of finite type)

over a noetherian ring R. We still denote as SchS the category of divisorial schemes

of finite type over S as in 0.1. To have a simple example in mind, the reader could

think as S being a regular noetherian affine scheme using Theorem 3.1.6 in place of

Theorem 3.1.15 throughout this subsection. Using Theorem 3.1.15, we can define

structures on K as an object of HSchS
Zar and we can define operations on the higher

K-theory groups for any scheme qcqs of finite type over S admitting an ample

family of line bundles. The construction is the same than the one in [Rio10] 2.3

and uses Appendix A.5. The point is to use 3.1.15 together with the results of 3

to lift operations defined on K0 to operations on K in HSchS
Zar . As an example we

consider the structure of special λ-ring. Accordingly, in this section we will discuss

how one can use the operations defined on K0 to define lambda operations on the

higher K-theory groups of a scheme. We will study thiese operations also on the

homotopy categories considered so far. Recall that by [SGA71] VI, 3.2 we have a

special lambda ring structure on K0(X) for every quasi-compact scheme given by a

family of unary operators (λn : K0(X)→ K0(X))n∈N.

Theorem 5.1.23. Let S be a regular quasi-projective scheme over a noetherian ring

R and SchS the category of schemes of finite type over S admitting an ample family

of line bundles. Then there exists a unique structure of special lambda ring on K

in HSchS
Zar such that for every X ∈ SchS, the induced structure of special lambda ring

on π0(K)(X) ∼= K0(X) is the usual one.

Proof. We already have an H-group structure on K given by the co-group structure

of the simplicial circle, but here we start from nothing: the group structure defined

will be the usual one. We follow the argument of Riou. First of all we have to define

a ring and a group structure on K. Before using 3.1.15 to lift the group and the

ring multiplication, one has to define 0 and 1 as two morphisms 0 : • → K and

1 : • → K (• being the terminal object S). We define those two morphisms as the

morphisms associated via the Yoneda lemma to the elements 0, 1 ∈ K0(S). Then

one can apply 3.1.15 to define the group and the ring structure on K and also to

check that the group structure coming from this process is actually the canonical

H-group structure we have on K. Hence we have obtained a commutative ring

(K,+,×, 0, 1). Note the multiplication map is pointed. Passing to others operations,

one first notice that the lambda operations defining the lambda ring structures on

K0(X) are stable under base change, i.e. they are compatible with the morphisms

f∗ : K0(Y ) → K0(X) induced by morphisms f : X → Y for any X,Y ∈ SchS .

This means that as a presheaf of sets, K0(−) has a special lambda ring structure

in the category of presheaves in the sense of Definition 5.1.18. Now one combines
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3.1.15 and A.5.6 (using Remark 5.1.12) to lift (uniquely) this structure to a special

lambda ring structure on K in HSchS
Zar . This means that we obtain a family of maps

λn : K → K in HSchS
Zar (these are pointed for n ≥ 1) that satisfies the axioms of

Definition 5.1.18 by direct application of Corollary 3.1.15.

Remark 5.1.24. The same construction applies to Adams and γ-operations. This

means that we obtain, in particular, maps ψj : K → K in HSchS
Zar (pointed) by lifting

the Adams operations we have on K0. We remind that for any lambda ring, we

defined the Adams operations using the Newton formulas, see Section 5.1.1. Now,

in virtue of Corollary 3.1.15 this allows us to see that the for K seen as an element

of HSchS
Zar , the Newton formulas that comes from the lambda ring structure of K

in HSchS
Zar that we have defined in the previous theorem lift the Newton formulas

we have for K0 in the category of presheaves of sets. This means that the Adams

operations on K defined using the Newton formulas in HSchS
Zar or obtained lifting the

Adams operations on K0 with 3.1.15 coincide, then there is no ambiguity in our

definitions.

Corollary 5.1.25. The endomorphisms ψk : K → K given by the previous theorem

by lifting the Adams operations are ring morphisms for every k ≥ 1. Moreover for

every m,n ≥ 1 we have ψmψn = ψnm = ψnψm.

Proof. One simply verifies the analogous statement on the level of K0.

We now turn to the problem of defining operations on higher K-theory.

From now on we will assume that the hypothesis of Theorem 5.1.23 hold. We define

operations on Kn(X ) for every simplicial presheaf X ∈ sPre(SchS). We start by

setting (recall that K, being a loopspace, is naturally pointed by 0 and an H-space

as remarked in the proof of the previous theorem this group structure agrees with

with the group structure induced by 3.1.15)

Kn(X ) := [Sn ∧ X+,K]HSchS
Zar ,•

where we have denoted with Sn the simplicial n-sphere as customary. Explicitly note

that in the particular case where X = X ∈ SchS is a scheme (seen as a simplicial

presheaf), these groups agree with the ordinary Quillen’s higher algebraic K-theory

groups of vector bundles because all our schemes are assumed to be divisorial (notice

that in this case Quillen’s and Thomason’s K-theories agree) and K-theory satisfies

Zariski descent (see also Appendix B). The operations we define on K ∈ HSchS
Zar ,• give

us operations on Kn(X ). But now operations on K ∈ HSchS
Zar ,• come from pointed

maps of presheaves of sets for n > 0 because of 3.1.15 so we have to be careful. In
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favourable case such as lambda, Adams or γ-operations, we can then use Corollary

3.1.15 to lift these natural operations from the unpointed case to the pointed case.

In general we have

Theorem 5.1.26. Unary unpointed operations τ : K0(−) → K0(−) such that

τX(0) = 0 for every X ∈ SchS (so that they become pointed) induce maps τ̃ : K → K

in HSchS
Zar ,• that are uniquely determined by maps τ̃ : K → K in HSchS

Zar lifting τ . As

a consequence such maps induce endomorphisms πnτ̃ : Kn(X ) → Kn(X ) for every

X ∈ sPre(SchS).

Proof. One uses A.3.12 to see these operations as pointed operations and so lifting

them to K ∈ HSchS
Zar ,• using 3.1.15 (or Lemma A.3.10).

As a consequence we give the following

Definition 5.1.27. For every simplicial presheaf X ∈ sPre(SchS) we define the

lambda and the Adams operations λrn, ψ
j
n : Kn(X ) → Kn(X ) by postcomposition

with the maps λr, ψj : K → K defined in Theorem 5.1.23, i.e. as the maps

λr, ψj ◦ − : [Sn ∧ X+,K]HSchS
Zar ,•

→ [Sn ∧ X+,K]HSchS
Zar ,•

f 7→ λr, ψj ◦ f

We have then the following theorem.

Theorem 5.1.28. Lambda, Adams and γ-operations K0(−) → K0(−) naturally

induce maps on Kn(X ) for every X ∈ sPre(SchS) and the relations that hold at level

of K0 such as the Newton’s formulas are true even in this setting. In particular this

is true for the usual higher K-theory groups Kn(X) for every X ∈ SchS. Moreover

the multiplication law − × − : K ×K → K induces a graded ring structure on the

graded K0(X)-module

K∗(X) :=
⊕
n∈N

Kn(X)

for any scheme X ∈ SchS. Denote this ring together with its multiplication as

(K∗(X),∪). The same holds true replacing X ∈ SchS with X ∈ sPre(SchS) every-

where.

Proof. The first part of the statement follows immediately from the previous theo-

rem. For the second part, we simplify the notation and we set C = HSchS
Zar , •. Now,

as we said before, the multiplication of K is actually a map × : K ×K → K in C.
Using the argument contained in [Rio06] pag.96 or directly using 3.1.15 and Lemme

III.33 of [Rio06] we get that there is an injective map α : HomC(K ∧ K,K) →
HomC(K ×K,K) induced by K ×K → K ∧K such that × ∈ HomC(K ×K,K) is
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the image under α of a map ×• ∈ HomC(K ∧K,K). In particular, ×• is the unique

morphism which makes the following diagram to commute

K ×K
��

×
''

K ∧K ×•
// K

Because of this, the fact that × is symmetric implies that ×• is symmetric

too, i.e. we have ×• = ×• ◦ τ where τ is the usual switch map of ∧. Now if we

denote as ∆X : Si+j ∧ X+ → (Si ∧ X+) ∧ (Sj ∧ X+) the map in C induced by the

diagonal map X → X ×X for any scheme X ∈ SchS we get a multiplication

− ∪− : Ki(X)×Kj(X)→ Ki+j(X)

induced by the map

HomC(Si ∧X+,K)×HomC(Sj ∧X+,K)

∧
��

HomC((Si ∧X+) ∧ (Sj ∧X+),K∧2)

×•◦−◦∆X

��

HomC(Si+j ∧X+,K)

This multiplication induces the desired graded ring structure and the natu-

rality is clear. Replacing XSchS with X ∈ sPre(SchS) we can proceed verbatim to

prove the last statement.

We now want to discuss the structure we can put on K∗(X) for every scheme

X ∈ SchS . This abelian group in principle can have two multiplicative structure as

a K0(X)-algebra. The first one is the one given in Example 5.1.3, where the product

of two homogeneous elements of positive degree is set to be 0. We will refer to this

ring simply as K∗(X) or (K∗(X), ·) if confusion might arise. The second one is the

noncommutative structure induced on it by the previous Theorem. In this case, we

will denote the resulting noncommutative K0(X)-algebra as (K∗(X),∪). Theorem

5.1.28 gives us families of operations λkn : Kn(X) → Kn(X) and ψkn : Kn(X) →
Kn(X) which bundle to maps λk, ψk : K∗(X)→ K∗(X) defined as follows.

Definition 5.1.29. We define for every k ∈ N natural transformations of presheaves

of sets λk : K∗(−) → K∗(−) in Pre(SchS) using the method of Example 5.1.3 and
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for j ≥ 1 natural transformations of presheaves of groups ψk = ⊕nψkn : K∗(−),→
K∗(−).

We notice the following

Proposition 5.1.30. For every X ∈ SchS and every a ∈ Kn(X), b ∈ Km(X), we

have for every k ≥ 1 that ψk∗ (a∪ b) = ψk∗ (a)∪ψk∗ (b) where the product is induced by

the pairing defined in Theorem 5.1.28 (this is also trivially true for the product ·).

The same conclusion holds replacing X ∈ SchS with X ∈ sPre(SchS) everywhere.

Proof. One follows Riou [Rio06] page 99. In fact as a consequence of Corollary 5.1.25

we have that in HSchS
Zar , •, for every k ≥ 1, the equality ψk ◦ ×• = ×• ◦ (ψk ∧ ψk)

holds. This concludes the proof.

Remark 5.1.31. If we have a ring R which is noncommutative, then there isn’t a

well defined notion of noncommutative λ-ring. However, one notices that the notion

of ψ-ring makes perfect sense even in the noncommutative case, see Definition 5.1.7.

We believe that for noncommutative rings the notion of ψ-ring should be regarded

as the best analogue of the notion of λ-ring. See also Remark 5.1.8.

We then have the following theorem

Theorem 5.1.32. Consider X ∈ SchS. Then the datum (K∗(X), ·, λk) is a lambda

ring with associated ψ-ring (K∗(X), ·, ψk). Moreover, (K∗(X),∪, ψk) is a non-

commutative ψ-ring and the maps ψk : (K∗(X),∪)→ (K∗(X),∪) are morphisms of

noncommutative ψ-rings. These structures are functorial.

Proof. The noncommutative assertions follows simply from Proposition 5.1.30 and

Corollary 5.1.25. For the first part, to check 4) and 5) (1)-3) follow from the very

definition, see 5.1.3) we use Proposition 5.1.21 in 5.1.3. To check that the Adams

operations we defined before agree with the ones induced by λk using the Newton

formulas we notice that they are both additive so that we only need to check for

elements of the form x ∈ Kn(X) but this follows from the Newton formulas we

have for K ∈ HSchS
Zar and the definitions we have given. Indeed as a first step one

notices that the Newton formulas we have for K ∈ HSchS
Zar restrict on Kn(X) to the

usual Newton formulas for K0(X) in the case n = 0 and to ψkn = (−1)k+1kλk for

n 6= 0 in virtue of Remark 5.1.19 so they are the same formulas we get starting

from (K∗(X), ·, λk) because the product of two positive homogeneous elements are

set to be trivial. This comparison only requires the pre-λ-ring structure because

of Remark 5.1.6 in Section 5.1.1. The fact that (K∗(X), ·, ψk) is a ψ-ring follows

from this comparison or can be proved independently using 5.1.30. If K∗(X) is
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Z-torsion free, then we could use the fact that (K∗(X), ·, ψk) is a ψ-ring together

with Theorem 5.1.11 to show that (K∗(X), ·, λk) is a lambda ring.

Corollary 5.1.33. For every scheme X ∈ SchS, the ring (K∗(X)Q, ·), if (K∗(X), ·)
is Z-torsion free, admits a (unique) λ-ring structure induced from (K∗(X), ·, λk) de-

fined before. Moreover, all Kn(X) are K0(X)-λ-algebras, the product of the elements

in Kn(X) being trivial for n ≥ 1.

Proof. For the first part, one simply uses Theorem 5.1.9. The second part follows

from Theorem 5.1.32 from the very definition of K0(X)-λ-algebra.

Remark 5.1.34. One might wonder if changing our base scheme S, we change the

structures induced by the operations on Kn(X). Indeed, a scheme can be seen as

a scheme over many bases. However, Riou showed ([Rio10] Proposition 2.3.2) that

the operations we get on K-theory in H(S) do not depend on the choice of S, as

long as S is regular. Since we can reduce to the smooth schemes, we have that the

operations that we define for any divisorial scheme of finite type over our allowed

bases S are the unique we can define using this method.

Remark 5.1.35. Notice that because of Theorem 1.8.10, using as a starting point

Riou’s theorem, we can define lambda operations even if we assume our base scheme

S to be regular (remind that we assume that regular schemes are also divisorial unless

otherwise stated) and noetherian. Indeed all we need to define such operations is

that we are allowed to use 5.1.21, i.e. that the assumptions of Subsection 5.1.3 are

satisfied. This is the point of view taken in the following Subsection.

5.1.5 Lambda operations for higher K-theory groups of non divi-

sorial schemes

In this section we study the lambda ring structures that naturally arise on the

higher K-theory groups of schemes which are possibly non divisorial. We fix S a

regular noetherian base scheme. And we consider the categories Sm/S and SchS

of (smooth) noetherian schemes of finite type over S. Because of Theorems 1.10.1,

3.4.1 and 3.3.3, if we consider K as the Thomason’s K-theory simplicial presheaf,

we have that

[Kn,K]IlZar,NisSchS
∼= [Kn,K]H(S)

and that

[Kn,K]IlZar,NisSchS ,•
∼= [Kn,K]H(S)•
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so that, because of Proposition A.5.6 we can repeat verbatim almost all the consid-

erations we made in the previous Section, in particular we have

Theorem 5.1.36. Let S be a regular noetherian scheme and SchS the category of

schemes of finite type over S. Then there exists a unique structure of special lambda

ring on K in HSchS
Zar and for every X ∈ SchS, π0(K)(X) ∼= K0(X) (this is the

K-theory of perfect complexes) is a special lambda ring.

Proof. The proof uses the facts recalled before and the fact that π0 commutes with

finite products.

Also, all the facts of the previous section are true even in this settings since

we just used formal arguments and Proposition 5.1.21, hence we content ourselves

to state the results, whose proofs is mutatis mutandis the one of the analogue result

in the previous section.

Definition 5.1.37. For every simplicial presheaf X ∈ sPre(SchS) we define the

lambda and the Adams operations λrn, ψ
j
n : Kn(X ) → Kn(X ) by postcomposition

with the maps λr, ψj : K → K defined in Theorem 5.1.36, i.e. as the maps

λr, ψj ◦ − : [Sn ∧ X+,K]HSchS
Zar ,•

→ [Sn ∧ X+,K]HSchS
Zar ,•

f 7→ λr, ψj ◦ f

Theorem 5.1.38. Lambda, Adams and γ-operations K → K in H(S) naturally

induce maps on Kn(X ) for every X ∈ sPre(SchS) and the relations that hold in

H(S) such as the Newton’s formulas are true even in this setting. In particular this

is true for the usual higher K-theory groups Kn(X) for every X ∈ SchS. Moreover

the multiplication law − × − : K ×K → K induces a graded ring structure on the

graded K0(X)-module

K∗(X) :=
⊕
n∈N

Kn(X)

for any scheme X ∈ SchS. Denote this ring together with its multiplication as

(K∗(X),∪). The same holds true replacing X ∈ SchS with X ∈ sPre(SchS) every-

where.

Definition 5.1.39. We define for every k ∈ N natural transformations of presheaves

of sets λk : K∗(−) → K∗(−) in Pre(SchS) using the method of Example 5.1.3 and

for j ≥ 1 natural transformations of presheaves of groups ψk = ⊕nψkn : K∗(−),→
K∗(−).

Proposition 5.1.40. For every X ∈ SchS and every a ∈ Kn(X), b ∈ Km(X), we

have for every k ≥ 1 that ψk∗ (a∪ b) = ψk∗ (a)∪ψk∗ (b) where the product is induced by

the pairing defined in Theorem 5.1.38 (this is also trivially true for the product ·).
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Theorem 5.1.41. Consider X ∈ SchS. Then the datum (K∗(X), ·, λk) is a lambda

ring with associated ψ-ring (K∗(X), ·, ψk). Moreover, (K∗(X),∪, ψk) is a noncom-

mutative ψ-ring and the maps ψk : (K∗(X),∪) → (K∗(X),∪) are morphisms of

noncommutative ψ-rings. These structures are functorial.

Corollary 5.1.42. For every scheme X ∈ SchS, the ring (K∗(X)Q, ·), if (K∗(X), ·)
is Z-torsion free, admits a (unique) λ-ring structure induced from (K∗(X), ·, λk) de-

fined before. Moreover, all Kn(X) are K0(X)-λ-algebras, the product of the elements

in Kn(X) being trivial for n ≥ 1.

Remark 5.1.43. These operations restrict to the ones defined in the previous sec-

tion for divisorial schemes.

5.2 Comparison with the structures defined before

As done in the thesis of Riou [Rio06], we can compare the structures we have just

defined with some structures defined in literature. In places the methods we use are

a simple extension of what was done by Riou, hence we will use his results to skip

some details.

5.2.1 Comparisons between products

We fix a regular quasi-projective divisorial base scheme S over a noetherian ring R.

We remind that we have 4 relevant homotopy categories,HAff/S
Zar ,HSchS

Zar ,Haff (S) and

H(S) (see 0.1). We also have their discrete counterparts Pre(Aff/S), Pre(SchS),

Pre(SmAff/S) and Pre(Sm/S). In virtue of Theorem 3.2.16, the endomorphisms

of K and K0 respectively on all these categories are in bijections. This means

that the product we have defined by extending the product defined by Riou, agrees

at least with the ones equivalent to the one defined by Riou in the smooth case.

We then only need to say something concerning the product defined for possibly

singular schemes. The main pairings we are interested in are the ones defined by

Waldhausen ([Wal85], [Wal78]) and by Loday ([Lod76]), later generalized by May

([May80]). Comparisons between these constructions were made for K-theory of

rings in [Wei81] and in [Shi88] at the homotopical level. The construction which

more easily fits into our discussion is the one of Waldhausen. As recalled in the

references provided, for every biexact functor F : A × B → C where A, B and C
are exact categories Waldhausen defines (functorially for exact functors) a map of

pointed topological spaces

BQ(A)×BQ(B)→ BQQ(C)
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where by QQ we have denoted the bicategory construction of [Wal78] p.194. In

op.cit. it is shown that for every exact category A we have an homotopy equiva-

lence BQ(A) ' ΩBQQ(A). Notice that these pairings can be refined to pairings

ΩBQ(A) ∧ ΩBQ(B) → ΩBQ(C) that descend from maps ΩBQ(A) × ΩBQ(B) →
ΩBQ(C), the details of this can be found in [Wei13] page 362 or in a more detailed

form in [Wei81] pages 503, 504. Now one can show that the operation of taking

tensor product of vector bundles can be made functorial to give a biexact natural

transformation between presheaves of exact categories

−⊗− : Vect(−)×Vect(−)→ Vect(−)

on the categories of schemes we are considering. Applying then the Waldhausen

machinery one gets a map

−⊗− : K ×K → K

in all HAff/S
Zar , HSchS

Zar , Haff (S) and H(S) which descends to a pointed map

−⊗− : K ∧K → K

giving rise to to the Waldhausen pairings Ki ×Kj → Ki+j .

Theorem 5.2.1. The Waldhausen pairings induced by − ⊗ − on every X ∈ SchS

in higher K-theory agrees with the ones given by Theorem 5.1.28.

Proof. It is a straighforward application of Theorem 3.2.16: checking at the K0 level

reveals that the map × considered in 5.1.28 and the map induced by −⊗− are the

same.

Corollary 5.2.2. The pairings defined by Loday an Waldhausen for affine schemes

in Aff/S agrees with the one defined in Theorem 5.1.28 and the latter agrees with

the products of Soulé ([Sou85]) Quillen (in [Qui73]) and Riou for smooth schemes.

Proof. The second part follows from the fact that the products defined by Riou were

shown by him to agree with the others in [Rio06], and our products agree with the

ones of Riou when restricted to regular schemes by definition. For the first part,

one uses Theorem 5.2.1 to link our pairings with the Waldhausen’s ones and then

refers to [Wei81], [Shi88] for the remaining agreements.

Remark 5.2.3. Notice that for affine schemes other products can be defined but

they have been shown to agree with the products considered so far. See for example

[Wei81] or [Ina95] Chapter III.4 for a more extensive discussion.
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5.2.2 Comparisons between the lambda structures

In the previous subsections we have shown that for a large class of schemes, the

ring structures that we can usually put on K∗(−) agree. We shall then keep the

assumption and the notation we used in 5.1.4. We fix a base scheme S satisfying

the hypothesis of Subsection 5.1.4, i.e. we shall assume S to be regular (remind

we assume that regular schemes are also divisorial, unless otherwise stated) quasi-

projective over a noetherian ring R. In this section we are concerned about the

lambda and Adams operations that we have built. First we recall the following

Theorem by Riou

Theorem 5.2.4. The operations λkn, ψ
k
n : Kn(X) → Kn(X) for X ∈ Sm/S defined

by 5.1.26 agrees with the ones defined by Soulé for regular schemes in [Sou85] and

[GS99].

We now explain some results and constructions needed in the proof of the

previous theorem, which will allow us to extend this result to the generality of our

work. The lambda operations defined by Gillet and Soulé in [GS99] and [Sou85]

came as a generalization of the operations define by Kratzer in [Kra80] for rings.

We start by explaining the argument of Gillet and Soulé of [GS99], Section 4. We

translate their construction in our language so that further comparisons will be

easier. However notice that their language and in some cases also their arguments

are a little bit different: what follows is then our reconstruction. For every natural

number r, we can consider the Grothendieck group of linear representations of GLr,Z,

denoted RZGLr ([Wei13] Ex. II.4.2 for example). By the seminal work of Serre

[Ser68], it is a special λ-ring (with involution) where the lambda ring structure is

induced by tensor products and exterior powers of representations. It can be shown

that as a λ-ring it is isomorphic to the polynomial ring generated by exterior powers

of the identity representation idGLr,Z =: idr with the determinant representation

inverted, i.e. RZGLr ∼= Z[λ0(idr), ..., λ
r(idr), λ

r(idr)
−1] as lambda rings (see [GS99]

4.1). There are evident maps RZGLr+1 → RZGLr given by idr+1 7→ idr, which

corresponds to the standard embeddings GLr → GLr+1. We have a canonical map

ϕr : RZGLr → K0(BGLr) ∼= [BGLr,K]H ∼= [BGL+
r ,K]H (can use [GS99] Lemma 20

or [Rio06] Section II.8.3) where H can be both HSchS
Zar or H(S) and the isomorphisms

follows by the content of Section 1.8. Reasoning as in [GS99] 4.2 (or see [Sou85] page

511) we can extend this map to a map ϕr : RZGLr → [Z×BGL+
r ,Z×BGL+]. Taking

inverse limit on both sides one gets a map ϕ : RZGL→ [Z× BGL+
, Z× BGL+]H ∼=

[K,K]H so that the lambda operations we had on RZGL are mapped to operations

in [K,K]H as in [GS99] page 45 (or as in [Sou85] pages 492 and 512, [Kra80] pages
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240-241) which can be seen to act on the higher K-theory groups of schemes in SchS .

The expert reader familiar with the work of Gillet and Soulé will have noticed that

we have simplified a little their argument, and this is due to some simplifications

that are possible after our work and the work of Riou. Indeed, from [Rio06] pag.

118 we have that

lim←−
r∈N

[BGL+
r ,K]H(S)

∼= lim←−
r∈N

K0(BGLr) ∼= lim←−
r∈N

K0(Grr,∞) ∼= [Gr,K]H(S)
∼= [BGL+,K]H(S)

which implies, because of our results, that lim←−
r∈N

[BGL+
r ,K]HSchS

Zar

∼= [BGL+,K]HSchS
Zar

.

The construction in [GS99] applies to a larger class of schemes: we compare here only

their construction with the one we got in Theorem 5.1.32, leaving a more general

comparison to forthcoming work. Riou was able to show ([Rio06] III.95 and III.96),

in our notation, that if we take H = H(S) then the map ϕ is injective and maps the

lambda operations to the lambda operations we have from lifting the operations we

had at the level of K0.

Remark 5.2.5. Another proof of this can be given by looking at K0 and noticing

that the the lambda operations induced from ϕ restricts to the usual lambda oper-

ations on K0 and so they have to agree with ours. Notice also that this make the

map ϕ a λ-ring homomorphism.

Since it does not matter if we take H equal to H(S) or to HSchS
Zar we have

proved the following

Theorem 5.2.6. For every scheme X ∈ SchS, the K0(X)-λ-algebra structure in-

duced using the method of [GS99] on every Kn(X) agrees with the one defined in

Theorem 5.1.32.

Remark 5.2.7. As a consequence, our operations on Kn(A) for every ring noethe-

rian ring A of finite type over a regular ring R agree with the ones defined by all the

previous authors, for example Kratzer and Hiller ([Kra80] and [Hil81]). It would be

nice to compare with the operations defined in [HKT17] following the purely alge-

braic definition of higher K-groups based on binary bicomplexes given by Grayson

in [Gra12].

We now compare our operations with the ones defined by Levine in [Lev97].

It is stated in many places that they agree with the ones of Gillet and Soulé at least

for regular schemes and it is tacitly assumed in many others that they are indeed

the same for any scheme having an ample family of line bundles. So they agree with
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ours. However, since we do not know a reference for such comparison, we think to

make a good service to the mathematical community by giving an argument here

proving this folklore result. Let be S a regular base scheme so that Theorem 3.1.15

holds. Now, suppose G ∈ HSchS
Zar satisfies descent and that it is an H-group. Then

ϕ ∈ [G,G]HSchS
Zar

defines a map ϕ′ : G → Gf of simplicial presheaves unique up to

simplicial homotopy, where G
∼−→ Gf is a sectionwise fibrant replacement. This can

be defined by considering ϕ ∈ [G,G]HSchS
Zar

∼= π0Map(G,Gf ) and then by choosing a

representative of it in the last set of path components. Remark that if the starting

ϕ happended to be pointed, then all the maps deduced from it can be pointed as

well, so that the pointed analogue also hold. Notice that if G is sectionwise fibrant,

this map also defines a map ϕ′ : G → G in HoBK(sPre(SchS) where by the last

one is the homotopy category of simplicial presheaves over SchS having the global

projective model structure. Now, if ϕ was pointed, letting Ho(Top) =: hT , we have

that ϕ′ defines a map ϕ̃ ∈ HomPre(SchS ,hT )(G,G))which depends only on ϕ and not

on the choice of ϕ′ and such that all the presheaves of groups πn(ϕ), πn(ϕ′) and

πn(ϕ̃) are isomorphic. Now let be G = K the Quillen algebraic K-theory presheaf.

We have defined a family of maps λi ∈ [K,K]HSchS
Zar

(i ≥ 1) which give us maps λi
′

and λ̃i as before which in turn defines pointed maps λi(X) : K(X) → K(X) in

hT whose induced maps on the homotopy groups are the lambda operations λin :

Kn(X)→ Kn(X) that we considered so far. Now, since these maps are pointed, we

can further restrict the map λi
′

to maps λi : K(−)0 → K(−)0 in HoBK(sPre(SchS))

where by K(−)0 we are denoting the simplicial presheaf associating to a scheme X

the conected component of the distinguished point of K(X). This map will in turn

induce taking πn for n ≥ 1 the same maps than λi
′
. These are the maps we are

going to use for our comparison. We fix a scheme X ∈ SchS and we denote as

U = {Ui ∼= Spec(Ai)
fi−→ X}i∈I, |I|=q∈N a finite affine open cover of X. Denote by

< U > the poset of nonempty subsets of I ordered by inclusion, asRU :< U >→ Rng

the functor J 7→ Γ(∩i∈JUi,OX) and as < RU > its image (which we can regard

as a category). Now we know that for any ring R we have a canonical natural

(in R) weak (and hence homotopy) equivalence ϕR : BGL(R)+ ∼−→ ΩBQP(R)0 =

K(R)0. These maps can be used to get natural maps K(X)0
f∗i−→ K(Ui)0

ϕ−1
Ai−−→

BGL(Ai)
+ which in turn give a map ϕ<U> : K(X)0

∼−→ (holim
<U>

BGL(RU )+)0 which

can be seen to be a weak equivalence as in the proof of Theorem 5.3 in [Lev97],

for example. Now, the lambda ring structure used for higher algebraic K-theory in

op.cit. is induced from the usual lambda ring structure on K0(X) for any scheme

X and for n ≥ 1 are induced by taking the nth homotopy group of the homotopy
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limit of maps λi : BGL(RU )+ → BGL(RU )+ in HoBK(sPre(< U >op)) (given

by restriction of the pointed maps λi : K0(RU/X) × BGL(RU )+ → K0(RU/X) ×
BGL(RU )+ in HoBK(sPre(< U >)) as in op.cit. Theorem 5.3 to the connected

component of the distinguished point). Indeed, following Levine, from the previous

maps, using the functor holim
<U>

: HoBK(sPre(< U >op)) → Ho(Top) we get maps

λi<U> : (holim
<U>

BGL(RU )+)0 → (holim
<U>

BGL(RU )+)0 and using the fact that the map

ϕ<U> is an isomorphism in Ho(Top) we get maps λiX : K(X)0 → K(X)0 in Ho(Top)

by considering the following commutative diagram

K(X)0 ∼
ϕ<U>

//

∃λiX
��

(holim
<U>

BGL(RU )+)0

λi<U>

��

K(X)0 ∼
ϕ<U>

// (holim
<U>

BGL(RU )+)0

Now, the homomorpisms πn(λiX) are the ones which give the lambda structures of

Levine. We now consider the maps λi : K(−)0 → K(−)0 in HoBK(sPre(SchS))

we obtained via our method: they restrict to maps λi : K(−)0 → K(−)0 in

HoBK(sPre(< U >)) so that we get the following commutative diagram in Ho(Top)

since for all J ∈< U >, ∩i∈JUi =: UJ = Spec(AJ := Γ(UJ ,OX)) are affine because

X is divisorial (hence it has affine diagonal so we can assume that our affine cover

is semi-separating)

K(X)0

λiX
��

f∗J // K(UJ)0

λiUJ
��

ϕ−1
AJ // BGL(AJ)+

∃λiAJ
��

K(X)0

f∗J // K(UJ)0

ϕ−1
AJ // BGL(AJ)+

It follows, because of the universal property of the homotopy limits (all

the simplicial sets in our diagrams here are fibrant) that we get maps λr<U> :

(holim
<U>

BGL(RU )+)0 → (holim
<U>

BGL(RU )+)0 so that for any J ∈< U > the following

diagram commutes in Ho(Top)
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(holim
<U>

BGL(RU )+)0

pJ

��

λr<U>
// (holim
<U>

BGL(RU )+)0

pJ

��

K(X)0

λrX //

f∗J

��

ϕ<U>
∼
66

K(X)0

f∗J

��

ϕ<U>
∼
66

BGL(AJ)+
λrAJ // BGL(AJ)+

K(UJ)0
λrUJ

//

ϕ−1
AJ

∼

66

K(UJ)0

ϕ−1
AJ

∼

66

We now have, because of how Levine defines them, that the maps λrUJ and

λrAJ in the previous diagram using the construction introduced in this text and

that agree with the ones of Gillet, Soulé, Hiller and Kratzer, agree up to homotopy

with the maps inducing the lambda operations of Levine. We then see that up to

homotopy the maps λiX defined by Levine have to agree with ours and so they give

to all Kn(X), n ≥ 1, the same K0(X)-λ-algebra structure since all the pairings

K0(X) × Kn(X) → Kn(X) considered are always the Waldhausen’s ones. This

shows the agreement of the lambda operations defined by Levine with ours, in the

case they are both defined.

5.2.3 Consequence of the comparison: the γ-filtration for higher

K-theory of singular schemes

For every divisorial scheme of finite type over a regular noetherian ring R we have

defined a λ-ring K∗(X). If we denote by π0(X) the finite set of connected compo-

nents of X, we can define an augmentation ε : K∗(X)→ Zπ0(X) by setting ε(a) = 0

if a ∈ Kn(X) for n ≥ 1 and ε(a) = rank(a) otherwise. Hence (K∗(X), ε) is an

augmented λ-ring. From now one we will suppose that the schemes we consider are

of finite type over a base scheme which is a field k. Gillet and Soulé in [GS99] 5.4

prove that the hypothesis of Theorem 5.1.17 are satisfied for (K∗(X), ε) so that we

have the following

Theorem 5.2.8. Let be X a divisorial scheme of finite type over a field k of di-

mension d. Then for the ring K∗(X) provided with the λ-ring structure described in

5.1.32 and the augmentation described before it holds, for n = 2d+ 1

K∗(X)Q = ⊕ni=0K∗(X)
(i)
Q
∼= ⊕ni=0

F iK∗(X)Q/F i+1K∗(X)Q
∼= Gr(K∗(X))Q ∼= Gr(K∗(X)Q)
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In particular K∗(X)
(i)
Q
∼= F iK∗(X)Q/F i+1K∗(X)Q for every i ∈ N. This decomposition

is functorial.

Remark 5.2.9. Notice that the only novelty is that the lambda structure we are

considering can be actually built without the use of representation rings and, more

important, these decompositions are functorial (which one could have proved differ-

ently with what was already known in literature, anyway). If we had a good notion

of Chern charachter we could be able to repeat as we will do below the formal

machinery of [FL85] to prove higher Riemann-Roch theorems for general divisorial

schemes in the generality reached for K0 in op. cit.. The main obstruction was found

from the author in proving the analogue of [FL85] 3.5: without a powerful splitting

principle we can not prove that the Chern charachter is a ring homomorphism. The

author will address these points in forthcoming work.

Remark 5.2.10. The argument in [GS99] suggests that the previous theorem should

be true for every divisorial scheme of finite type over a noetherian ring R of global

dimension d, although this is not clear.

5.3 Computing group natural endomorphisms of higher

K-theory

So far we have been involved into the study of endomorphisms of K-theory as a

presheaf of sets. But K-theory is more naturally a group so it makes sense to study

endomorphisms of K-theory as presheaf of groups. This has been done by Riou

for smooth schemes and he used his result to draw some stable considerations on

algebraic K-theory, including a very general version of the Grothendieck-Riemann-

Roch theorem. The aim of this section is then to extend some results of Riou

from the smooth to the singular world. To this end, we denote as Ωi
f the right

derived functor of Ωi in the simplicial model categories we will consider (i.e. take

a fibrant replacement of the presheaf considered and then apply Ωi). Denote by

K the K-theory presheaf and assume all the Grothendieck sites we consider are

formed by divisorial schemes so that we can use equivalently both the Quillen’s

and the Thomason’s K-theory. We let S to be a regular noetherian scheme (Riou

assumes S to be also separated, but the hypothesis of having affine diagonal suffices

to prove his main theorems as pointed out in Appendix A). Riou proves in [Rio06]

Theoreme III.32 and [Rio10] 1.2.10 that

π0 : HomH(S)(K,Ω
i
fK)→ HomPre(Sm/S)(K0,Ki)
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is a bijection. He then considers the map δ : Pic→ K0 in Pre(Sm/S), given for any

scheme X ∈ Sm/S) by the assignment [L] 7→ [L] for any L line bundle on X, and

uses this map to show that the map

HomPre(Sm/S),Ab(K0,Ki)
δ∗−→ HomPre(Sm/S),Sets(Pic,Ki)

is a bijection ([Rio10] Proposition 5.1.1). We want to prove the singular case. From

now on, S will be a regular quasi-projective scheme of finite type over a noetherian

affine scheme. We start with the following Proposition

Proposition 5.3.1. All the arrows in the following diagram are isomorphisms.

[K,Ωi
fK]HSchS

Zar

//

π0

��

[K,Ωi
fK]H(S)

∼=π0

��

HomPre(SchS)(K0,Ki) res
// HomPre(Sm/S)(K0,Ki)

Moreover, the arrow induced by restriction

HomPre(SchS),Ab(K0,Ki)
res−−→ HomPre(Sm/S),Ab(K0,Ki)

is injective.

Proof. One needs again to show first that the upper horizontal arrow is an isomor-

phism and then that the arrow res is injective to conclude. The first assertion is

proved exactly as in 3.1.6, i.e. one uses 1.8.7. For the second assertion one can use

Proposition 3.1.9. The last statement in the proposition follows from the first or

follows analogously.

Now we want to replace K0 with Pic in the previous Proposition. We start

with the following lemma

Lemma 5.3.2. The map

HomPre(SchS)(Pic,Ki)
res−−→ HomPre(Sm/S)(Pic,Ki)

is injective for any i.

Proof. One chases as in Proposition 3.1.9 (or one can employ Proposition 3.1.10)

using Proposition 3.1.13. In fact if in the statement of Proposition 3.1.13 we start

with a family of line bundles E1, ..., En ∈ Pic(X) we get a smooth scheme YE over
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S and line bundles E1,YE , ..., En,YE on it such that the same conclusion holds. This

allows our usual argument to apply.

Now we remind that in both H(S) and HSchS
Zar the functor Pic is represented

by BGm Moreover, in H(S), Pic is also represented by P∞. We can then prove the

following

Theorem 5.3.3. All the arrows in the following diagram are isomorphimsms

[BGm,Ω
i
fK]HSchS

Zar

//

π0

��

[BGm,Ω
i
fK]H(S)

∼=π0

��

HomPre(SchS)(Pic,Ki) res
// HomPre(Sm/S)(Pic,Ki)

Moreover, also all the arrows in the following commutative diagram are isomor-

phisms

HomPre(SchS),Ab(K0,Ki) //
δ∗Sch //

��

β

��

HomPre(SchS)(Pic,Ki)

∼=
��

HomPre(Sm/S),Ab(K0,Ki) ∼=

δ∗Sm// HomPre(Sm/S)(Pic,Ki) ∼= lim
n
Ki(Pn) ∼= Ki(S)[[U ]]

where the maps δ∗Sm and δ∗Sch are induced from the presheaves maps δSm,Sch : Pic→
K0 and U = [O(1)]− 1 is the compatible family in lim

n
K0(Pn).

Proof. The fact that all the maps in the first commutative diagram are isomor-

phisms follows in the usual way thanks to the previous lemma. In particular the top

horizontal map is an isomorphism because of Proposition 1.8.7, and the injectivity

of the lower horizontal map closes the argument since the right vertical π0 map is

an isomorphism because of Proposition 5.1.1 in [Rio10]. For the second diagram on

has that the right vertical arrow is an isomorphism because of what we just proved.

The isomorphisms HomPre(Sm/S)(Pic,Ki) ∼= lim
n
Ki(Pn) ∼= Ki(S)[[U ]] are proved in

[Rio10] 5.1.1, who proves also that the bottom horizontal line is an isomorphism.

The arrow β is injective because of the previous lemma and so also the arrow δ∗Sch

is 1-1 by diagram chase. We are then left to prove that β is surjective. Let us study

the map

HomPre(SchS),Ab(K0,Ki) //
β
// HomPre(Sm/S),Ab(K0,Ki)

ϕ

∼=
// Ki(S)[[U ]]
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arising from the diagram. Denote as ψk : K0 → K0 the kth Adams operation. Riou

shows in [Rio10] that denoting as x · ψk ∈ HomPre(Sm/S),Ab(K0,Ki) the map given

by y 7→ x ·ψk(y) for x ∈ Ki(S), this is mapped via ϕ to x(1 +U)k in Ki(S)[[U ]] and

these elements generates the image of ϕ by [Rio06] IV.15 or [Rio10] page 10. So if

we show that all the x · ψk are in the image β, we can conclude. But this is true

because the Adams operations on K0 over smooth schemes comes, because of our

theorems, as restriction of the operations we have built on K0 for singular schemes.

Hence the theorem is fully proved.

Corollary 5.3.4. Under the assumptions of the previous theorem, we have

HomPre(SchS),Ab(K0,Ki) ∼= Ki(S)[[U ]]

for any i.

5.4 Some revisited Riemann-Roch algebra

In this Section we follow the arguments contained in [FL85] generalizing a little

the results contained in op.cit. in order to develop a formal machinery that we

utilize to prove our version of the Adams-Riemann-Roch theorem. The expert will

recognize that there is substantially nothing new here besides of the fact that we have

removed some hypothesis and introduced new terminology more convenient to our

aims. On a first reading, the reader who is familiar with the work of [FL85] or with

their methods can safely skip this section and can prove the Adams-Riemann-Roch

theorem simply by going through the proof of the Adams-Riemann-Roch theorem

for K0 as in [FL85]. Indeed we have put a functorial lambda ring structure (strong

enough to prove the Adams-Riemann-Roch theorem) on K∗(X) for any divisorial

scheme X of finite type over a regular ring R and the other ingredients that are used

in [FL85] to prove this theorem are the resolution property, the projective bundle

theorem and the projection formula (that are all true in the context of higher K-

theory of divisorial schemes). This is for example the approach taken in [K9̈8].

However, since [FL85] contains some inaccuracies, we think there is no harm to

revisit some of its machinery here.

5.4.1 Riemann-Roch formalism and abstract Adams-Riemann-Roch

Denote as A the category having as objects unital possibly noncommutative graded

rings of the form A =
⊕

i∈NAi, Ai abelian groups, such that for any such object A0

is a commutative unital ring which makes A into an A0-graded algebra and such that
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the multiplication in A satisfies ab = (−1)ijba if a ∈ Ai and b ∈ Aj . Morphisms in A
are graded ring homomorphisms, i.e. ring maps f : A =

⊕
i∈NAi → B =

⊕
i∈NBi

such that Im(f |Ai) ⊆ Bi for every i ∈ N. Note we always have 1 ∈ A0. Assume

we have a contravariant functor K : C → A with C any category. Then we denote,

given an arrow f : X → Y in C, as f∗ : K(Y ) → K(X) the map F (f). Let be

ρ : K → K a natural transformation.

Definition 5.4.1. A Riemann-Roch datum is a triple (K, ρ, g) with K and ρ as

above and g : X → Y ∈ C such that there exists a abelian graded group homomor-

phism g∗ : K(X)→ K(Y ) which satisfies the projection formula, i.e.

g∗(x · g∗(y)) = g∗(x) · y ∀x ∈ K(X), y ∈ K(Y )

Remark 5.4.2. The projection formula implies g∗(g
∗(y)) = g∗(1) · y, ∀y ∈ K(Y ).

Definition 5.4.3. We say that Riemann-Roch holds with respect to the RR datum

(K, ρ, g) if for some τg ∈ K0(X) the following diagram commutes

K(X)
τg ·ρ
//

g∗
��

K(X)

g∗
��

K(Y ) ρ
// K(Y )

i.e. ρ(g∗(x)) = g∗(τg · ρ(x)) ∀x ∈ K(X).

With this formalism, we can repeat almost verbatim [FL85] II Theorems

1.1-1.2.

Theorem 5.4.4. Assume that f : X → Y and g : Y → Z are two arrows in C such

that (K, ρ, f) and (K, ρ, g) are RR data satisfying the property that RR holds with

multipliers τf and τg, then (K, ρ, g ◦ f) is a RR datum with (g ◦ f)∗ = g∗f∗ and RR

holds for it with multiplier τg◦f = f∗(τg) · τf .

Proof. The assertion that(K, ρ, g ◦ f) is a RR datum is simple to verify. Now the

theorem follows because of the following

ρ(g∗(f∗(x))) = g∗(τg · ρ(f∗(x))) RR holds for g

= g∗(τg · f∗(τf · ρ(x))) RR holds for f

= g∗(f∗(f
∗(τg) · τf · ρ(x)))) proj. formula
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Theorem 5.4.5. If (K, ρ, g : X → Y ) is a RR datum, g∗ : K(Y ) → K(X) is

surjective and there exists τ ∈ K0(Y ) such that ρ(g∗(1)) = g∗(1)τ , then RR holds

with respect to the triple (K, ρ, g) with multiplier τg = g∗(τ).

Proof. Given any x ∈ K(X), since g∗ is surjective, choose y ∈ K(Y ) such that

x = g∗(y). Now

ρ(g∗(x)) = ρg∗g
∗(y)

= ρ(g∗(1) · y) proj. formula

= ρ(g∗(1)) · ρ(y)

= g∗(1) · τ · ρ(y) assumption

= g∗(g
∗(τ · ρ(y)) proj. formula

= g∗(g
∗(τ) · g∗(ρ(y)))

= g∗(g
∗(τ) · ρ(g∗(y)) ρ is a natural transf.

= g∗(τg · ρ(x)) x = g∗(y)

Definition 5.4.6. Given a RR datum (K, ρ, f : X → Y ), we say that f admits a

basic deformation to a morphism f ′ : X → Y ′ ∈ C if there are morphisms as in the

following diagram

Y ′ g′

**
X

f ′ 44

f
**

M
πttY

g 44

and a finite number of morphisms hv : Cv →M ∈ C with integers mv ∈ Z such that

F) There are maps g∗, π∗, g
′
∗, f
′
∗, hv∗ such that (K, ρ, {g∨π∨ g′ ∨ f ′ ∨hv}) are RR

data and they are functorial (i.e. K is a covariant functor in groups on the

above diagram)

BD1) For every x ∈ K(X) there exists z ∈ K(M) such that

f∗(x) = g∗(z) and f ′∗(x) = g′∗(z)
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BD2)

g∗(1) = g′∗(1) +
∑

mvhv∗(1) (5.2)

Note that this equality takes place in degree 0 by our assumptions.

BD3) For every z ∈ K(M) as in BD1, we have h∗v(z) = 0 for all v.

BD4) g is a section of π and π ◦ g′ ◦ f ′ = f .

What follows is almost verbatim a rewriting of [FL85] II Theorem 3.1

Theorem 5.4.7. Assume that (K, ρ, f : X → Y ) is a RR datum such that Riemann-

Roch holds for a RR datum (K, ρ, f ′) with f ′ : X → Y ′ a basic deformation of f .

Then RR holds with respect to (K, ρ, f) with multiplier τf = τf ′.

Proof. Let x ∈ K(X). Consider z ∈ K(M) given by BD1. So

g∗(ρ(f∗(x))) = g∗(ρ(g∗(z))) BD1

= g∗(g
∗(ρ(z))) naturality

= g∗(1)ρ(z) proj. formula

= g′∗(1)ρ(z) +
∑

mvhv∗(1)ρ(z) BD2

= g′∗(g
′∗(ρ(z))) +

∑
mvhv∗(h

∗
v(ρ(z))) proj. formula

= g′∗(ρ(g′∗(z))) +
∑

mvhv∗(ρ(h∗v(z))) naturality

= g′∗(ρ(g′∗(z))) BD3

= g′∗(ρ(f ′∗(x))) BD1

Now, since g is a section of π,

ρ(f∗(x)) = π∗(g∗(ρ(f∗(x))))

= π∗(g
′
∗(ρ(f ′∗(x)))) passages above

= π∗(g
′
∗(f
′
∗(τf · ρ(x)))) RR for f ′

= f∗(τf · ρ(x)) BD4
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Definition 5.4.8. A λ∗-functor is the datum (K, (λk)k∈N, (ψ
j)j≥1) of a functor

K : Cop → A, natural transformations ψj of the form ψj = ⊕i∈Nψji : ⊕i∈NKi(−)→
⊕i∈NKi(−) and λk : K → K natural transformations of presheaves of sets that sends

elements of degree 0 in elements of degree 0 with the additional property that their

restriction λk0 : K0(−)→ K0(−) define an augmented special lambda ring structure

on K0(−) with an involution and a positive structure (as in [FL85] pages 3,4) in

the category of functors Cop → Sets. Notice this simply means that our λk0 makes

K0 into a functor taking values in the category of special lambda rings (with an

involution in this case) satisfying all the hypothesis of [FL85]. We moreover assume

that ψj0 coincide with the Adams operations induced from the lambda operations

λk0.

Notice that given X ∈ C, we have ψj(ab) = ψj0(a)ψji (b) if a ∈ K0(X) and

b ∈ Ki(X). Moreover we say that u ∈ K0(X) is a line element, positive element,

etc. if it is such for the λ-ring structure on K0(X) (note that if we consider the

augmentation defined in 5.2.3 we have a different notion of positive elements and

they are more than this ones but they play no role in our discussion about K-theory).

Definition 5.4.9. A morphism f : X → Y in C is called an elementary imbed-

ding with respect to the λ∗-functor (K,λk, ψj) if f∗ : K(Y )→ K(X) is surjective,

(K,ψj , f)j∈N>0 are RR data and there is a positive element e ∈ K0(Y ) such that

f∗(1) = λ−1(e) ∈ K0(Y ) (λ−1 being defined in [FL85] as usual).

Before proving the formal Adams-Riemann-Roch theorem for regular imbed-

dings in this context, we need

Proposition 5.4.10. Given a λ∗-functor (K,λk, ψj) and a positive element e ∈
K0(Y ) for some Y ∈ C, we have that

ψj(λ−1(e)) = ψj0(λ−1(e)) = λ−1(e)θj(e) ∀j ∈ N

Where θj(e) are the bott cannibalistic classes as in [FL85] page 24.

Proof. The second inequality is the content of Proposition 6.2 in Chapter I of

[FL85] (notice the typos there), while the first equality is simply the definition

since λ−1(e) ∈ K0(Y ).

We can state and prove

Theorem 5.4.11. Given a λ∗-functor (K,λk, ψj), if f : X → Y is an elementary

imbedding with respect to it then Riemann-Roch holds with respect to the RR data

(K,ψj , f)j∈N with multiplier f∗(θj(e)).
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Proof. Since f is an elementary imbedding, there exists e ∈ K0(Y ) such that f∗(1) =

λ−1(e). Then we can apply Theorem 5.4.5 combining Proposition 5.4.10 with the

equality just stated.

We can now turn our attention to the analogue of the elementary projections.

Given a λ∗-functor (K,λk, ψj), consider the ring A = K(X) for some X ∈ C. Then

K0(X) = A0 is a special lambda ring with involution and given a positive element

e ∈ K0(X) (of finite dimension d such that λd(e) is invertible) we can define as in

[FL85] Chapter 1 Section 2 a ring extension

K0(X)e = K0(X)[T ]/(pe(T )) = K0(X)[l]

where

pe(T ) =

r+1∑
i=0

(−1)iλi(e)T r+1−i, r + 1 is the dimension of e

and l is the image of T mod pe(T ) (called canonical generator). It is possible to

show that there is a canonical A0-linear map η0,e(X) : K0(X)e → K0(X) = A0

such that K0(X)e is still a λ-ring and other interesting properties are satisfied (see

op. cit. I Proposition 2.2 for the details and the properties). Fulton and Lang call

this the functional associated with the extension K0(X)e of K0(X) (notice that l is

invertible because K0(X) is an augmented λ-ring with a positive structure). We set

Ke(X) := K(X)⊗K0(X) K0(X)e = K(X)[T ]/(pe(T ))

ηe(X) = (η0,e)K(X) : Ke(X) := K(X)⊗K0(X) K0(X)e → K(X)

where T is seen as an element of degree 0 and we will call ηe(X), or simply ηe when

no confusion is possible, the functional associated with the positive element

e. Notice that this map is K(X)-linear and that Ke(X) is a lambda ring in degree

zero.

Definition 5.4.12. Given a λ∗-functor (K,λk, ψj), we say that an arrow f : X → Y

in C is an elementary projection with respect to it if (K,ψj , f)j>0 are RR data

and the map f∗ : K(X)→ K(Y ) is isomorphic (via an isomorphism in A of K(Y )-

modules wich is a λ-homomorphism in degree zero) to the functional

ηe(Y ) : Ke(Y )→ K(Y )
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associated with some positive element e ∈ K0(Y ). In this case we will call ηe(Y )

simply fe(Y ). If from our isomorphism from f∗ to ηe(Y ) we remove the hypothesis of

being a λ-homomorphism on degree zero we will call f a weak elementary projection.

Remark 5.4.13. Notice that in the situation of the previous definition, if f is an

elementary projection we have that K(X) ∼= Ke(Y )

The following is the formal Adams-Riemann-Roch theorem for elementary

projections.

Theorem 5.4.14. Let be (K,λk, ψj) a λ∗-functor and f : X → Y an elementary

projection with respect to it (so we have by definition a distinguished positive element

e associated to it). If j ∈ N is invertible in K(Y ), then θj(el−1) is invertible in

K(X) ∼= Ke(Y ) and RR holds with respect to the datum (K,ψj , f) with multiplier

τf = jθj(el−1)−1.

Proof. The invertibility of θj(el−1) follows from [FL85] II Theorem 3.2. Because

of our assumptions it suffices now to show that the following diagram commutes,

where the top horizontal map is induced by the given isomorphism between f∗ and

fe

K(X) ∼= K(Y )⊗K0(Y ) K0(Y )e
jθj(el−1)−1ψj

//

fe(X)

��

K(Y )⊗K0(Y ) K0(Y )e

fe(X)

��

K(Y )
ψj

// K(Y )

which follows (ψj being an arrow in A) because at degree 0 level is true by [FL85]

II Theorem 3.2.

Remark 5.4.15. For weak elementary projections, we have chasing as in the proof

of the previous theorem that RR holds if and only if it holds in degree zero.

5.4.2 Remarks on some constructions in [FL85]

In this subsection we review some construction made in [FL85] showing that they fit

in the framework we are considering in this work. This could certainly be considered

folklore. From now on we assume that all our schemes are noetherian. Let f : X →
Y be a closed imbedding with I ideal sheaf defining X as subscheme of Y . We denote

as CX/Y the conormal sheaf on X (which is coherent) given by CX/Y = I/I2 (recall

the abuse of notation, see [Sta18, Section 01R1]). We recall that a closed embedding

as above is called regular (of codimension d) if every point p ∈ X ⊆ Y has an affine

neighbourhood Spec(A) in Y such that I(A) is generated by a regular sequence (of

length d).
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Proposition 5.4.16 ([FL85] IV 3.2-3.3). If f : X → Y is a regular embedding, then

CX/Y is a locally free sheaf on X. Moreover if f realizes X as the zero scheme of

a regular section of a locally free sheaf E on Y then CX/Y ∼= f∗E∨ (∨ denoting the

dual). In addition if E is a vector bundle on X, then the zero section X → P(E⊕OX)

is a regular embedding with conormal sheaf E.

We denote as BlXY the blow-up of Y along a closed subscheme X.

Proposition 5.4.17. [FL85] IV 4.3] Assume X and Y noetherian schemes. Then

a) If f : X → Y is a regular embedding then E ∼= P(CX/Y ), where E is the

exceptional divisor ϕ−1(X), ϕ : BlXY → Y standard projection.

b) If f realizes X as the zero scheme of a section of a vector bundle E on Y , then

there is a canonical embedding of BlXY into P(E∨) over Y which is a regular

embedding if f is a regular embedding.

c) If Y has an ample family of line bundles and f : X → Y is a regular embedding,

then BlXY → Y is a projective local complete intersection morphism and

BlXY has an ample family of line bundles.

Proof. The only novelty from the proof of [FL85] IV 4.3 is that we make explicit

that in c), the embedding BlXY → P(E∨) built in that proof gives us that BlXY

has an ample family of line bundles because of 2.1.9 and 2.1.10.

We now assume that f : X → Y is a regular embedding of codimension d

with conormal sheaf CX/Y =: C and we denote as f ′ : X → Y ′ = P(CX/Y ⊕OX) the

zero section embedding. We want to recall the construction of the deformation of

the normal bundle as in [FL85] IV 5, for example. We notice we have two canonical

sections s0, s∞ : Y → P1
Y = Proj(OY [T0, T1]). We denote X(∞) = s∞(f(X)) and

M = BlX(∞)P1
Y is the so called deformation of the normal cone. Let ϕ : M → P1

Y

the canonical morphism, π the composite p◦ϕ : M → Y (with p : P1
Y → Y canonical

projection), g : Y → M a section of π determined by s0 because s0(Y ) is disjoint

from s∞(Y ) which makes Y a Cartier divisor on M and h : Ỹ = BlXY → M the

regular embedding of codimension 1 exhibiting Ỹ as a Cartier divisor of M (see

op.cit. for more details). One also get a closed regular embedding F : P1
X →M and

one is able to see that P(C⊕OX) = Y ′ intersects regularly Ỹ as a Cartier divisor in

P(C). Moreover O(Y ) ∼= O(Ỹ +Y ′) where Ỹ +Y ′ = ϕ∗(Y (∞)). This is summarized

by the following deformation diagram ([FL85] page 99)
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X
f ′
//

s∞
��

Y ′ + Ỹ //

h

��

g′

��

Y

s∞
��

P1
X

F //M
ϕ
// P1
Y

X

s0

OO

f
// Y

g

OO

idY
// Y

s0

OO

where every square is a pullback and every vertical arrow is an embedding of a

Cartier divisor. + here denote the scheme theoretic union ([Sta18, Tag 0C4H] and

[Sta18, Tag 01WQ]). This diagram can be refined to a diagram

Y ′ g′

**
X

f ′ 44

f
**

M
πttY

g 44

with π ◦ g = idY and π ◦ g′ ◦ f ′ = f

Remark 5.4.18. Notice that if Y has an ample family of line bundles, then all the

schemes in the previous diagram have an ample family of line bundles beacuse of

2.1.10 and 5.4.17.

We now recall two useful facts from [FL85]. For the two following proposis-

tions if f : X → Y is a map we denote (if it is defined) as f∗, f
∗ the pullback and

the pushforward map induced at level of K0.

Proposition 5.4.19. [[FL85] V Proposition 4.4] Let A,B,C effective Cartier di-

visors on a scheme M and assume that O(A) ∼= O(B + C) and that B and C meet

regularly in M . Then letting D = B ∩ C and a, b, c, d the embeddings of A,B,C,D

in M we have that

a∗(1) = b∗(1) + c∗(1)− d∗(1) in K0(M) (5.3)

Proposition 5.4.20. [[FL85] V Proposition 4.5] Assume that F : P → M is a

regular embedding and that ϕ : Y → M is a morphism. Then we can draw the

pullback diagram

X
f
//

ψ
��

Y

ϕ

��

P
F
//M
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If ϕ is a regular embedding and P, Y meet regularly in M then

ϕ∗F∗ = f∗ψ
∗

and if Z is a subscheme of Y disjoint from f(X) and h : Z → M is the morphism

induced by ϕ, then

h∗F∗ = 0

The previous result can be generalized using the work of Thomason.

Proposition 5.4.21. Proposition 5.4.20 holds if we consider the pullback and the

pushforward maps in the higher K-groups Ki for any i.

Proof. This follows (and the 5.4.20 too) from [TT90] 3.18.

5.4.3 On the connected hypothesis

In section 5.5 we will assume that our schemes were connected, so that we could use

the results of [FL85] in our theorems and the definition of special lambda ring given

there. As noted in [FL85] Appendix to Chapter V, this hypothesis can be removed as

far as our schemes are noetherian. In fact the connected components of a noetherian

scheme are open (see the beginning of Section 2.1.1) so that we can write any such

scheme as disjoint union of its connected components and reason componentwise

(K-theory is in fact additive). The main difference will be in the definition of

the augmentation of the lambda ring K0(X) for X noetherian scheme. In fact

if X is connected we have the rank map ε : K0(X) → Z taking an element of the

Grothendieck group to its rank. IfX is not connected, reasoning componentwise, one

has to consider an augmentation of the form ε : K0(X) → Zπ0(X) in the definition

of special lambda ring, and the rank function is adequate even in this case (it is

a locally constant function in fact) as discussed in Section 5.1.1. Therefore by

simply modifying the definition of the augmentation in the definition of special

lamba ring we can consider noetherian schemes which are non-connected and not

only connected. This is in fact the point of view of Riou in [Rio10] and [Rio06].

5.5 Higher Adams-Riemann Roch

In this section we prove the Adams-Riemann-Roch theorem for divisorial schemes

of finite type over a regular noetherian affine scheme R and a particular class of

morphisms. We will use the machinery available from [FL85] and recalled in Section

5.4. We let C = SchS be the category of schemes of finite type over a regular
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noetherian base scheme S = Spec(R) having an ample family of line bundles (over

this category 3.1.3 and 5.1.28 apply). For simplicity, we also assume that our schemes

are connected but all the facts contained in this section are valid even if X is

not connected, with the same proof provided one gives the correct definition of

augmented λ-ring, as discussed before in Section 5.1.1. See also [FL85] Chapter V

Appendix concerning this point. Our construction of lambda and Adams operations

gives trivially the following

Corollary 5.5.1. The contravariant functor K∗ : SchS → A where for any scheme

X ∈ SchS K∗(X) equals (K∗, ·) or (K∗,∪) (see the following Remark) and A is the

category described in Appendix 5.4 describes a λ∗-functor (K∗, λ
k, ψj)

Proof. This follows from Theorem 5.1.32, the functorialities requested coming from

the construction of the operations.

Remark 5.5.2. One can consider both the ring structures on K∗(X), i.e. the

anticommutative one induced by Theorem 5.1.28 and the one where the product of

two homogeneous elements of positive degree is set to be zero. It is simple to verify

that this defines a λ∗-functor (K∗,∪, λk, ψj) as in the previous Corollary. From

now on we will not distinguish between (K∗, ·) and (K∗,∪) since they both define

λ∗-functors and the projection formula and all the constructions we will use can

be performed in both cases. Moreover, composing K∗ with the functor A → Rng

taking every element of A to its zero degree part and every morphism to its 0 degree

part, we see that K∗ becomes the usual K0 functor taking values in the category of

λ-rings.

We now use the terminology introduced in the beforementioned sections to

see that with our machinery available, the formal arguments used in [FL85] to prove

the Adams-Riemann-Roch theorems apply even in this setting. We follow then their

argument. We start with the analogue of [FL85] V 6.1.

Remark 5.5.3. Because of [TT90] 3.16, if a map f is of the form [TT90] 3.16.4-

3.16.7, we have that pushforwards are well defined and we have the projection for-

mula and all the functorialities requested ([TT90] 3.16 and Proposition 3.17 for the

projection formula) so that (K∗, ψ
j , f) is in fact a RR datum.

Lemma 5.5.4. Let f : X → Y be a regular embedding in SchS (which is part of

a RR datum (K∗, ψ
j , f)), Y ′ = P(CX/Y ⊕ OX) and f ′ : X → Y ′ the zero section

embedding. Then using the deformation of the normal bundle revised in Section

5.4.2 we have that f ′ is a basic deformation with respect to f .

118



Proof. First of all notice that all the schemes involved in the deformation are in

SchS as remarked in 5.4.18. We have to verify that the axioms of Definition 5.4.6

are satisfied. Because of Remark 5.5.3, since all the maps considered are of the form

[TT90] 3.16.4-3.16.7, we have that pushforwards are well defined and we have all the

conditions requested by axiom F). BD1-BD4 now follow in the same way of [FL85]

V 6.1, we recall their argument here briefly. BD4 is valid by the construction of the

deformation, see Section 5.4.2, and BD2 follows from Proposition 5.4.19 and (5.3)

in that Proposition. Now for BD1 and BD3 for a given homogeneous x ∈ K∗(X)

we define x̃ = pr∗(x) ∈ K∗(P1
X) with pr : P1

X → X the standard projection and

now we consider z = F∗(x̃) where F : P1
X → M is defined in Section 5.4.2. With

this definitions, BD1 follows from the construction of the deformation together with

Proposition 5.4.21 and BD3 follows from Proposition 5.4.21.

We can now mimick [FL85] V 6.2.

Lemma 5.5.5. Let E be a vector bundle over a scheme X ∈ SchS and consider the

zero section embedding f : X → P(E ⊕ OX). Then f is an elementary imbedding

with respect to the λ∗-functor (K∗, λ
k, ψj)(see Definition 5.4.9).

Proof. If H is the universal hyperplane sheaf of P(E ⊕ OX) (see [FL85] IV Section

1) and q = [H] ∈ K0(P(E ⊕ OX)), then f∗(1) = λ−1(q) because of [FL85] V 6.2.

The fact that (K∗, ψ
j , f) are RR data for every j follows from Remark 5.5.3 and the

surjectivity of f∗ comes from the fact that f is a section.

We can now state our version of the Adams-Riemann-Roch theorem for reg-

ular embeddings.

Theorem 5.5.6. Assume f : X → Y is a regular embedding in SchS. Then RR

holds with respect to the datum (K∗, ψ
j , f) for every j ∈ N with multiplier θj(CX/Y )

where θj denotes the Bott cannibalistic class and CX/Y is the conormal bundle (see

Section 5.4.2). This means that for any j the following diagram commutes

K∗(X)
θj(CX/Y )·ψj

//

f∗
��

K∗(X)

f∗
��

K∗(Y )
ψj

// K∗(Y )

Proof. The proof goes in the same way as the one of [FL85] V 6.3. In fact f admits a

basic deformation to an arrow f ′ provided by 5.5.4. This means (because of Theorem

5.4.6) we only have to prove that RR holds with respect of the datum (K∗, ψ
j , f ′)
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where f ′ is the zero section embedding provided by 5.5.4. But then Lemma 5.5.5

shows that f ′ is an elementary embedding in the sense of Definition 5.4.9 so the

hypotheses of Theorem 5.4.11 are satisfied and we can conclude.

Corollary 5.5.7. Assume f : X → Y is a regular embedding in SchS. Then for

every i, j ∈ N the following commutes

Ki(X)
θj(CX/Y )·ψj

//

f∗
��

Ki(X)

f∗
��

Ki(Y )
ψj

// Ki(Y )

Proof. This follows from the previous theorem by considering only the graded part

i of K∗(X) and K∗(Y ).

Remark 5.5.8. For i = 0 the previous corollary takes the form of the usual Adams-

Riemann-Roch theorem as stated in [FL85] for regular embeddings. Notice however

that we do not assume our schemes to be quasi-projective as in op.cit.. In fact it

seems that their assumption was inserted only to make sure all the schemes they are

considering satisfy what they call property (∗), i.e. that all the schemes they consider

have the resolution property. Schemes with an ample family of line bundles have

such a property (and quasi-projective schemes too, of course) so that they would

have certainly been able to state their result for the class of schemes having an

ample family of line bundles.

We now turn our attention to the elementary projections. Let us consider

X ∈ SchS and E vector bundle over it. We have a canonical projection π : P(E)→ X

(recall P(E) ∈ SchS by 2.1.9) such that, using the terminology of [FL85], the pushfor-

ward π∗ (on K0) is isomorphic to the functional π0,e : K0(P(E)) ∼= K0(X)e → K0(X)

as proved in [FL85] V Corollary 2.4 (e being the positive element [E ]). We refer to

that book for a more detailed description of that isomorphism. Moreover, we notice

that (K∗, ψ
j , π) is a Riemann-Roch datum. Indeed we can define a pushforward for

π following [Wei13] page 406 (where it is done for quasi-projective schemes) or the

same argument in [K9̈8] page 427. Now we can use the Projective Bundle Theorem

(see [Wei13] V 1.5 for the form that we are using, just notice as remarked there that

there is no need to assume X to be quasi-projective because of [TT90] 4.1), which

gives us the isomorphism

K∗(X)⊗K0(X) K0(P(E))→ K∗(P(E))
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so that if we define the functional

πe(X) : Ke(X) := K∗(X)⊗K0(X) K0(X)e → K∗(X)

as in section 5.4.1 we have that it is isomorphic to π∗ : K∗(P(E)) → K∗(X). We

have then shown the following

Proposition 5.5.9. Let us consider X ∈ SchS and E vector bundle over it. Then

the canonical projection π : P(E) → X is an elementary projection with respect to

the λ∗-functor (K∗, λ
k, ψj).

The following in then a corollary of Theorem 5.4.14 and could be seen as the

higher Adams-Riemann-Roch theorem for projections from a projective bundle.

Theorem 5.5.10. Let us consider X ∈ SchS and E vector bundle over it. Let be

π : P(E) → X the canonical projection. Then RR holds with respect to the RR

datum (Z[1/j]⊗K∗, ψj , π) with multiplier coming from Theorem 5.4.14.

We now remind that a morphism between schemes f : X → Y is called

a projective local complete intersection (l.c.i.) morphism if it factors as

f = π ◦ i : X → P(E) → Y for some vector bundle E over Y where i is a regular

embedding and π : P(E) → Y is the canonical projection. We can now state the

final form of our higher Adams-Riemann-Roch theorem.

Theorem 5.5.11. Let be f : X → Y a projective l.c.i. morphism in SchS. Then

(K∗, ·, ψj , f) ((K∗,∪, ψj , f)) is a RR datum and RR holds with respect to the datum

(Z[1/j]⊗K∗, ψj , f) for every j with multiplier τf ∈ K0(X) given by Theorem 5.4.4.

This means that the following diagram commutes

Z[1/j]⊗K∗(X)
τf ·ψj

//

f∗
��

Z[1/j]⊗K∗(X)

f∗
��

Z[1/j]⊗K∗(Y )
ψj

// Z[1/j]⊗K∗(Y )

Proof. We factor f as π ◦ i as in the definition of projective l.c.i. morphisms. Now

since (K∗, ψ
j , i) and (K∗, ψ

j , π) are RR data and the pushforward is functorial as

presheaf of groups, so also (K∗, ψ
j , f) is a RR datum. We can then use Theorem

5.4.4 together with Theorems 5.5.6 and 5.5.10 to conclude.

The following can be proved exactly in the same way than Corollary 5.5.7.
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Corollary 5.5.12. Assume f : X → Y is a projective l.c.i. morphism in SchS.

Then for every i, j ∈ N the following commutes

Z[1/j]⊗Ki(X)
τf ·ψj

//

f∗
��

Z[1/j]⊗Ki(X)

f∗
��

Z[1/j]⊗Ki(Y )
ψj

// Z[1/j]⊗Ki(Y )

with τf given by Theorem 5.5.11.

Remark 5.5.13. The degree zero part is actually the usual Adams-Riemann-Roch

theorem as stated in [FL85] Theorem 7.6, the only difference being that they assume

the schemes involved to be quasi-projective, but we have already remarked in 5.5.8

that our generalization at the zero level is not a novelty. Moreover, from [FL85]

Theorem 7.6 we can also get for free who is the misterious multiplier we have to

insert in Theorem 5.5.11: it is θj(T∨f )−1 where Tf is the tangent element in K0(X)

defined in [FL85] V Section 7.

Remark 5.5.14. After this work was completed, the author discovered the existence

of the article [K9̈8]. In that paper it is shown that an Adams Riemann Roch

theorem holds for the higher equivariant K-theory groups of a divisorial scheme,

hence implying the non equivariant case. That is done following the method of

[FL85] although not introducing our terminology. Moreover, the lambda operations

defined in op. cit. are defined using the construction of Grayson (and not the

ones we consider in this work) and the fact that they do give to higher K-theory the

structure of a λ-ring is partially left as a conjecture, although it is claimed in op. cit.

that the conjectural parts left out are only required for the Grothendieck-Riemann-

Roch theorem and not for the Adams-Riemann-Roch theorem. It is believed that at

least in the non equivariant case, the results of that paper should agree with ours.

We will address the agreement between the operations defined in this text with the

ones in [K9̈8] in the non equivariant case in future work.
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Chapter 6
Operations on Hermitian K-theory

The results contained in the thesis of Riou provided a nice unified way to build

operations on higher K-theory and we obtained a generalization of some of them

form the world of smooth schemes to the world of singular ones. One might wonder

if the same can be done for other cohomology theories, for example for Hermitian

K-theory. First one would like to obtain the exact analogue of the result of Riou

A.3.14 in the context of unstable motivic homotopy theory. Then one would like

to extend the result from smooth schemes to divisorial ones. We have seen that

the main ingredients of Riou’s argument are a representability result which would

allow us to represent our cohomology theory as a filtered colimit of representable

schemes in H(S), the property (ii) (see A.3.4), which should follow easily from the

representability result, and some explicit computations to solve a lim1 problem and

conclude the argument. It turns out that thanks to work of Schlichting and Tripathi

([ST15]) and of Panin and Walter ([PW10a]) we have representability results and

in the case of symplectic K-theory, we also have computations. We can then start

to run the Riou’s argument. We could hope in the future to lift to GW the lambda

operations which have been recently defined by Zibrowius in [Zib18] at the level of

GW0. We will study separately Hermitian (or orthogonal) K-theory and symplectic

K-theory. Section 6.6 standing as the only exception, in this chspter we will keep

the usual assumptions and notations used in this thesis and detailed in 0.1, i.e. for

a given noetherian base scheme S we shall denote as SchS the category of divisorial

schemes of finite type over S and with Sm/S its full subcategory of smooth schemes.

Also, unless otherwise indicated, we will always assume that in the base schemes S

we consider, 2 is invertible in Γ(S,OS)
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6.1 Bilinear Grassmannians and ε-symmetric spaces

In this section we introduce a common ground useful to study both symmetric and

symplectic hermitian K-theory. The material here is basically contained in [ST15],

although our presentation deviates from their (they do only consider symmetric

forms, but the generalization is straightforward as they notice). Let F be a quasi-

coherent sheaf on a scheme X. For ε = ±1, an ε-symmetric bilinear form on F
is a map ϕ : F ⊗OX F → OX of OX -modules such that ϕ ◦ τ = εϕ where τ :

F ⊗OX G ∼= G ⊗OX F is the twisting map. If 2 ∈ Γ(S,OS)∗, −1 (skew-)symmetric

forms (F , ϕ) are called symplectic and they are uniquely determined by ϕ ◦∆ = 0

where ∆ : F → F ⊗ F x 7→ x ⊗ x is the diagonal map. A form ϕ is called non-

degenerate and (F , ϕ) is called an ε-inner product space if F is a vector bundle

on X and the adjoint morphism ϕ̂ : F → F∗ = HomOX (F ,OX) : s 7→ ϕ(− ⊗ s)
is an isomorphism. The form ϕ is ε-symmetric if and only if ϕ̂ = εϕ̂∗canF where

canF : F
∼=−→ F ∗∗ is the canonical isomorphism. One can see that if g : G → F is a

map of OX -modules, we can define the restriction ϕ|G of ϕ to G using adjoint map

ϕ̂|G = g∗ ◦ ϕ̂ ◦ g : G g−→ F ϕ̂−→ F∗ g∗−→ G∗. If p : X → S is a morphism of schemes and

F is a sheaf on S, we denote FX := p∗F . Fix a base scheme S with 2 ∈ Γ(S,OS)∗.

We assume that this condition holds until the end of this chapter.

Definition 6.1.1. For an ε-symmetric form V = (F , ϕ) with F a quasi-coherent

sheaf on S we define the ε-bilinear grassmannian of non degenerate locally free

subspaces of V to be the presheaf

GrBS(V ) :(SchS)op → Sets

(p : X → S) 7→ {E ⊂ FX | E loc.free of finite rank s.t. ϕ|E is non degenerate}

on the objects, and in the case of morphisms f : X → Y in SchS , GrBS(Y ) →
GrBS(X) is induced by f∗ (remind pullback sends isomorphisms to isomorphisms

so there are no problems with non degeneratedness). We define the ε-bilinear grass-

mannian of non degenerate locally free of rank n subspaces of V to as the subpresheaf

of GrBS(V ) of the following form

GrBn,S(V ) :(SchS)op → Sets

(p : X → S) 7→ {E ⊂ FX | E loc.free of rank n s.t. ϕ|E is non degenerate}

We then have the following, which is a mere reformulation of [ST15] Lemma

2.2
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Theorem 6.1.2. Let V = (F , ϕ) be an ε-symmetric inner product space over S.

Then for every n we have that GrBn,S(V ) is representable by a scheme which is

smooth (divisorial) and affine over S (notice for ε = −1 n has to be even), so in

particular it is a sheaf. This is an open subscheme of the Grassmannian Grn,S(F)

of rank n subbundles of F . We explicitly spell out the universal property of this

scheme. For every S-scheme X and every rank n ε-inner product space B = (B, α)

which comes as a restriction along a mono B ↪→ FX there exists a unique map

f : X → GrBn,S(V ) over S such that f∗(T ⊂ FGrn,S(F)) ∼= B ⊂ FX via the

canonical isomorphism FX ∼= f∗FGrn,S(F) and B = f∗T where T = (T , ϕ|T ) is

the ε-inner product space induced by VGrBn,S(V ) on T . Here T is the restriction to

GrBn,S(V ) of the tautological rank n vector bundle on Grn,S(F).

Proof. We just remind the argument of [ST15] Lemma 2.2 which works mutatis

mutandis also in this context, as remarked in op. cit.. The proof goes by showing

that GrBn(V ) is representable by an open subscheme of the usual grassmannian

Grn(V ). To this aim one considers the universal rank n bundle T over Grn(V ).

Now, ϕ|T might be degenerate so we define GrBn(V ) as the open subscheme of

Grn(V ) where ϕ|T is non degenerate. This scheme is easily seen to to represent

our functor. One notices that denoting ϕ′ := p∗ϕ where p : X := Grn(V ) → S

is the structure morphism, we have that GrBn(V ) is the non vanishing locus Xs

of the section s = Λnϕ̂′|T ∈ Γ(X,Hom(ΛnT ,ΛnT ∗)). This also settles the problem

to determine whether GrBn(V ) is smooth. For the affineness one considers for any

X ∈ SchS the bijection

ψ : GrB(V )(X)
∼=−→ {f ∈ HomOX (FX ,FX) | f = f2, f∗ ◦ ϕ̂ = ϕ̂ ◦ f}

with ψ(i : M ⊆ FX) = i◦(ϕ̂−1
|M )◦ i∗ ◦ ϕ̂. It is a bijection because σ(f) = Im(f) ⊆ FX

defines an inverse. Iterating this for any X ∈ SchS allows us to see that GrBn(V )

is a closed subscheme of GrB(V ) which is a closed subscheme of the vector bundle

HomOS (F ,F) which is affine over S, hence, closed embeddings being affine maps,

we conclude.

Remark 6.1.3. Notice that the above theorem is true even if V = (F , ϕ) is an

ε-symmetric form with F coherent sheaf on S, but we won’t need that (in that case

it could be not smooth over S).

Definition 6.1.4. Suppose V = (F , ϕ) is an ε-symmetric form on a vector bundle

over S. We then define the split metabolic space M(F , ϕ) or M(V ) as

M(V ) = M(F , ϕ) =
(
F ⊕ F∗,

(
ϕ̂ 1
εcan 0

)
: F ⊕ F ∗ → F ∗ ⊕ F ∗∗

)
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where can is the canonical isomorphism F
∼=−→ F∗∗. For a locally free sheaf F we

define the hyperbolic space Hε(F) as M(F , 0), i.e.

Hε(F) = (F ⊕ F∗, ( 0 1
εcan 0 ))

This is an ε-inner product space. Notice Hε(OX) for a scheme X are the hyperbolic

spaces considered in the next sections.

We recall the following well known lemma (use [Knu91] page 19)

Lemma 6.1.5. Let X be any quasi-compact scheme such that 1
2 ∈ Γ(X,OX). Then

every split metabolic space of the form M(F , ϕ) is isomorphic to Hε(F).

The following is then immediate

Corollary 6.1.6. Let be X any quasi-compact scheme such that 1
2 ∈ Γ(X,OX).

Then for every rank n ε-inner product space V = (F , ϕ) we have a morphism f :

V ↪→ M(V ) ∼= Hε(F) =: H(V ) given by the inclusion (F , ϕ) ↪→ M(F , ϕ) : x 7→ ( x0 )

comes as a restriction via f .

6.2 Towards a Riou theorem for orthogonal K-theory

Let F be a quasi-coherent sheaf on a scheme X. A symmetric bilinear form is an 1-

symmetric bilinear form on F as defined in the previous section. Same terminology

for (symmetric) inner product spaces. We say that a scheme X is even if 2 ∈
Γ(X,OX)∗. From now on we fix a quasi-compact and quasi-separated even base

scheme S.

Definition 6.2.1. Let F = (F , ϕ) be a quasi-coherent module over S with a sym-

metric bilinear form ϕ : F ⊗S F → OS (that can be degenerate). We define

the Orthogonal Grassmannian of non degenerate subspaces of F as the presheaf

GrOS(F) := GrBS(F ). We have for every d ∈ N a subpresheaf GrOd(F ) ⊂ GrO(F )

given by considering only the locally free sheaves of rank d as in Definition 6.1.1.

We have the following proposition, which has been proved in [ST15] Lemma

2.2

Proposition 6.2.2. Let (V, ϕ) a symmetric inner product space of rank n over S

and d an integer 0 ≤ d ≤ n. Then GrOd(V ) is represented by a scheme smooth and

affine over S.

Proof. It follows from 6.1.2.
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For a scheme X ∈ SchS , we denote as HX the so called hyperbolic plane over

X, which is the inner product space (O2
X , ϕ1) where the form is defined by the inner

product (x, y) ·(x′, y′) = xx′−yy′. Notice this is isomorphic to H1(OX) of Definition

6.1.4. We let Hn
X :=⊥n HX to be its n-fold orthogonal sum. Explicitly note that

we have maps Hn
X → Hn+1

X induced by the standard inclusion in : O2n
X ↪→ O2n+2

X

noticing that ϕn+1|Hn
X

= ϕn. These maps define a functor FX : (N,≤)→ QCoh(X)

n 7→ O2n
X ; we can use it to define the infinite hyperbolic space H∞X := colim

n∈N
Hn
X .

This is a quasi-coherent OX -module with a symmetric bilinear form. We now define

the filtering category V having as objects the non degenerate subspaces of H∞X and

as maps the inclusions of subspaces. Giving an inclusion of two such non degenerate

inner product subspaces V ⊂ V ′, we will denote as V ′−V the orthogonal complement

of V in V ′.

Definition 6.2.3 ([ST15] Definition 2.3). We define the infinite orthogonal grass-

mannian over S as the ind-scheme

GrO• := colim
V⊂H∞X

GrO|V |(V ⊥ H∞S )

where |V | denotes the rank of V and the colimit is taken over the full subcategory

Vc ⊂ V of non degenerate subbundles of H∞X of constant rank. The transitions maps

are given, for every inclusion V ⊂ V ′ ∈ Vc by the map

GrO|V |(V ⊥ H∞X )→ GrO|V ′|(V
′ ⊥ H∞X ) E 7→ E ⊥ (V ′ − V )

Remark 6.2.4. Note that every V ∈ Vc is going to be a non degenerate subform

of some Hn
S for some n ∈ N by corollary 6.1.6. Hence the family {Hn

S | n ∈ N} is

a cofinal subset of Ob(Vc) and so in order to define GrO• is sufficient to take the

colimit over this full subcategory.

As a consequence we have the following simple lemma

Lemma 6.2.5. As an ind-scheme, GrO• ∼= colim
n∈N

GrO2n(Hn
S ⊥ Hn

S ) =: colim
n∈N

GrOn,n,

where we denote the transition maps involved in the colimit as fn : GrOn,n ↪→
GrOn+1,n+1. In particular GrO• ∈ Pre(Sm/S).

Proof. By the preceding remark,

GrO• ∼= colim
n∈N

GrO2n(Hn
S ⊥ H∞S ) ∼= colim

(a,b)∈N2
GrO2a(H

a
S ⊥ Hb

S)

since {Hn
S ⊥ Hn

S | n ∈ N} is cofinal in the last index category.
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From now on we let Sm/S be the category of smooth schemes over S having

an ample family of line bundles and such that 2 is invertible in Γ(S,OS). S is also

assumed to be regular. We have then the following fundamental theorem which has

to be regarded as the hermitian analogue of [MV99] Theorem 3.13

Theorem 6.2.6 ([ST15] Theorem 1.1). The hermitian K theory GW (say GW[0]

of [Sch17] Definition 9.1, see Appendix B.5) as an element of H(S) is representable

by Z×GrO•, as a consequence, for every X ∈ Sm/S we have

HomH(S)(X,Z×GrO•) ∼= GW0(X)

so that π0(Z×GrO•) ∼= GW0(−) as elements of Pre(Sm/S).

We now define the analogue of the system K• used to study K-theory. We

denote KOn := tni=−nGrOn,n and we define maps ρn : KOn → KOn+1 as

tni=−nGrOn,n
t2n+1fn−−−−−→ tni=−nGrOn+1,n+1 ↪→ tn+1

i=−n−1GrOn+1,n+1

So we have an inductive system KO• whose colimit is indeed Z × GrO•. The first

step into the achievement of a Riou theorem for hermitian K-theory is then the

following

Proposition 6.2.7. The presheaf Z×GrO• as an element of Pre(Sm/S) satisfies

the property (ii) (see Definition A.3.4).

Proof. In the lingo introduced in the appendix, it suffices to show that for every

U ∈ Sm/S which is affine over Z, the canonical map

τZ×ZGrO• : HomPre(Sm/S)(U,Z×GrO•)→ HomH(S)(U,Z×GrO•) ∼= GW0(U)

is surjective. To do this we can follow Riou. In particular we start with an analogue

of Assertion III.4 of [Rio06] which is spelt out in [Zib11b] page 38 or in [Zib11a]

page 477 and follows from the work [ST15]. It says that under the isomorphism of

Theorem 6.2.6, if r − d is even, the inclusion

id,n : GrOd,n ↪→ {r} ×GrOd,n ↪→ Z×GrO•

where GrOd,n := GrOd(H
d
S ⊥ Hn

S ) corresponds to the element

([Td,n] +
r − d

2
[HGrOd,n ]) ∈ GW0(GrOd,n)
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where Td,n is the universal rank d symmetric bundle over GrOd,n, whose underlying

vector bundle is the pullback of the rank d vector bundle over the appropriate

grassmannian. Now, since U is affine, every element γ ∈ GW0(U) can be written as

[P ] + r−d
2 [HU ] so that using the universal property of the orthogonal grassmannian,

we find an arrow f : U → GrOd,n such that the composite id,n ◦ f is mapped via

τZ×ZGrO• to γ in GW0(U), completing the proof.

Corollary 6.2.8. The map

π0 : [GW,GW]H(S) → HomPre(Sm/S)(GW0,GW0)

is surjective.

Proof. This follows from Theorem A.3.6 in virtue of the previous Proposition.

Now we would like to have that the tower

...→ GW1(GrOn+1,n+1)
f∗n−−→ GW1(GrOn,n)→ ...

satisfies the Mittag-Leffler property. If we did have that, we could use the system

KO• to run Riou’s argument and finally prove the following

Conjecture 6.2.9. Let S be an even regular noetherian base schemes. Then

π0 : [GWn,GW]H(S)
∼= HomPre(Sm/S)(GWn

0 ,GW0)

and the pointed version of this bijection is true as well. Also, GW ∈ H(S) has a

structure of λ-ring and this structure gives a lambda ring structure on ⊕n∈NGWn(X )

for every X ∈ sPre(SchS).

Remark 6.2.10. Using corollary 6.2.8 one can lift the operations defined by Zibrow-

ius in [Zib18] (note that in op. cit. all the schemes are assumed to be over a field of

characteristic not two), but then one could not verify the axioms of λ-ring inH(S) for

GW. This means that we can define maps λr : GW → GW in H(S)• getting maps

λrn : GWn(X )→ GWn(X ) for any siplicial presheaf X ∈ sPre(Sm/S). However we

cannot use Proposition 5.1.21 to put a lambda ring structure on ⊕n∈NGWn(X ). It

seems that Marcus Zibrowius (private communication) has a way to overcome this

problem for the GWn(X) of every X ∈ Sm/S, but it is still unknown if we can

go further. In addition, the author has ongoing work that will use the results of

[Zib15] and [Elh00] in order to build the lambda operations on hermitian K-theory

for any reasonable (noetherian and of finite type over some nice base) following the
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construction of [GS99]. After work of Alexander Efimov [Efi17], the author in joint

work with Dylan Madden, Heng Xie and Marco Schlichting has computed some of

the Grothendieck-Witt groups of the standard Grassmannians. One could hope to

do the same for the orthogonal ones to prove the conjecture above, although this

seems much more complicated and will be subject of further work.

6.3 A Riou theorem for symplectic K-theory

In the context of Symplectic K-theory, thanks to the computations made by Panin

and Walter, we can go further than in the previous section. The first step is to

repeat all the arguments in the previous section to obtain the analogue results. To

this aim, we will simply introduce the objects involved stating the results we need

providing references for them. We fix a regular noetherian base scheme S such that

2 is invertible in Γ(S,OS). We denote by KSp ∈ H(S) the object in the unstable

motivic homotopy category representing symplectic K-theory, aka GW[2] of [Sch17]

Section 9 (see Appendix B.5). Such object is also known as GW−. We now introduce

the quaternionic or symplectic grassmannians. Let F be a quasi-coherent sheaf on a

scheme X. A symplectic bilinear form is a -1-symmetric bilinear form as defined in

the previous Section 6.1. Same terminology for (symplectic) inner product spaces.

Definition 6.3.1. If we consider (Fn, ϕn) = (O2n
S ,
(

0 1
−1 0

)
)⊥

n
=: Hn ∼= (H−1(OX))⊥n

we define as GrHd,n the presheaf of GrB2d(Hn+d) (see Definition 6.1.1) parametrizing

non-degenerate subbundles of rank 2d. These will be called symplectic or quater-

nionic grassmannians.

Lemma 6.3.2. For all the integers d, n, the symplectic grassmannians GrHd,n are

representable by a smooth and affine scheme over S. This scheme is an open sub-

scheme of Gr2d(O
2(n+d)
S ).

The proof is the same than the one of Lemma 2.2 in [ST15] and it follows

by Theorem 6.1.2. We notice ([PW10a] page 22) that there are closed immersions

GrHd,n ↪→ GrHd,n+1 and GrHd,n ↪→ GrHd+1,n classified by the inclusions Td,n ⊕ 0 ⊂
Hn+d ⊕ H and H ⊕ Td,n ⊂ H ⊕ Hn+d where Td,n is the restriction of the universal

symplectic bundle on GrHd,n induced by Hn+d
S on the restriction of the universal

rank 2d bundle on Gr2d(O
2(n+d)
S ). As before we can form a system KSp• indexed

by N having KSpn := t2n+1GrHn,n having colimit Z×GrH where we have denoted

GrH := colim
d,n

GrHd,n. Hence we have the following representability result (remind

Z×GrH is an H-group pointed by (0,GrH0,0))
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Theorem 6.3.3 ([PW10a] or Theorem 8.2. [ST15]). We have Z×GrH ' KSp in

H(S). In particular for any X ∈ Sm/S we have

HomH(S)(X,Z×GrH) ∼= KSp0(X)

so that π0(Z×GrH) ∼= KSp0(−) as elements of Pre(Sm/S).

To go on with the theorem of Riou, we need as in the proof of 6.2.7 to know

the analogue of Assertion III.4 of [Rio06] which is the following fact contained in

[PW10a]. If r − d is even, the inclusion

id,n : GrHd,n ↪→ {r} ×GrHd,n ↪→ Z×GrH

is mapped to the element ([Td,n] + r−d
2 [HGrHd,n ]) ∈ KSp0(GrHd,n) by the isomor-

phism in Theorem 6.3.3 (see [Ana15] Theorem 6.3). Using this we obtain as in the

case of orthogonal grassmannian the following result, whose proof goes as the one

of Proposition 6.2.7 mutatis mutandis.

Proposition 6.3.4. The presheaf Z ×GrH as element of Pre(Sm/S) satisfies the

property (ii).

Now to end up with a Riou like theorem for symplectic K-theory we shall

need to study further the system KSp•, in particular we have to show that

R1 lim←−
n∈N

KSp1(KSpn) = 0

which follows as in the case of K-theory using the explicit calculations of [PW10b]

Theorem 11.4 (see indeed [PW10a] Theorems 9.4, 9.5) to show that the involved

tower satisfies the Mittag-Leffler property. Indeed from the computations contained

in op.cit. we have that for any i, the object Ωi
fKSp satisfies the property (K) (see

Definition A.3.7) with respect to the system KSp•, the maps KSpi+1(KSpn+1) →
KSpi+1(KSpn) being surjective. As a consequence we have the following result

Theorem 6.3.5. If S is a regular scheme such that 2 is invertible in Γ(S,OS), then

for every natural number n one has the following isomorphisms

[KSp,Ωi
fKSp]H(S)

∼= HomH(S)(Z×GrH,Ωi
f (Z×GrH)) ∼= HomPre(Sm/S)(KSp0(−),KSpi(−)) ∼= KSpi(S)[[b1, b2, ...]]

[KSpn,Ωi
fKSp]H(S)

∼= HomH(S)(Z×GrHn,Ωi
f (Z×GrH)) ∼= HomPre(Sm/S)(KSp

n
0 (−),KSpi(−))

[KSpn,Ωi
fKSp]H•(S)

∼= HomH•(S)(Z×GrHn,Ωi
f (Z×GrH)) ∼= HomPre(Sm/S)•(KSp

n
0 (−),KSpi(−))

the bi being the Borel classes described in [PW10b].

Proof. We only notice that the case with n factors follows by considering the system

KSpn• . Indeed the computations of [PW10a] Theorems 9.4, 9.5 allow us to conclude
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the argument even in this case since they allow us to handle the products of the

symplectic grassmannians involved.

We can extend further the previous result to smooth affine schemes

Theorem 6.3.6. Let S be a noetherian regular base scheme such that 2 is invertible

in Γ(S,OS), Sm/S the category of divisorial smooth schemes over S and SmAff/S

its full subcategory of affine smooth schemes. Then all the arrows in the following

diagram are isomorphisms

[KSpn,KSp]H(S)
//

π0

��

[KSpn,KSp]Haff (S)

��

HomPre(Sm/S)(KSp
n
0 ,KSp0)

i∗ // HomPre(SmAff/S)(KSp
n
0 ,KSp0)

Proof. This is obtained as Theorem 3.2.7 so one can look at its proof. Indeed the

top map can be seen to be an isomorphism using Theorem 3.3.2 in [AHW17], for

example, and the fact that the lower horizontal map is an isomorphism too can

be deduced from Corollary 3.2.6 taking into account that KSp0 is A1-invariant on

regular schemes.

Remark 6.3.7. Notice that in general we have H(S) ' Haff (S) for all the possible

choices of the category Sm/S, i.e. we can take our smooth schemes to be separated,

divisorial or only smooth, as long as our base scheme is noetherian. Indeed this can

be seen using Theorem 3.3.2 in [AHW17] together with Lemma 5.1.2 [AHW17].

6.4 Going to divisorial schemes

In the case where we have obtained a Riou like theorem, we can wonder whether we

can obtain an extension to divisorial schemes, which can be singular in principle. We

remind that we can argue as for K-theory to prove the following (this is Theorem

1.8.11)

Theorem 6.4.1. [KSpn,KSp]HSchS
Zar

∼= [(Z×BSp)n,KSp]IlNisSm/S
∼= [KSpn,KSp]H(S)

for every n ∈ N.

We are then able to draw the following diagram as in Section 3.1
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[KSpn,KSp]HSchS
Zar

∼=
//

��

π0

��

[KSpn,KSp]H(S)

π0∼=
��

HomPre(SchS)(KSp
n
0 (−),K0(−))

res // // HomPre(Sm/S)(KSp
n
0 (−),K0(−))

To show that all the maps in the previous diagram are isomorphisms we are then

left to show that

Theorem 6.4.2. For every n ∈ N, the restriction map

HomPre(SchS)(KSp
n
0 (−),KSp0(−))� HomPre(Sm/S)(KSp

n
0 (−),KSp0(−))

is injective.

We are going to do this in such a way to have a similar result also for

orthogonal K-theory.

6.4.1 Pulling back forms via bilinear grassmannnian

In this section all rings and schemes we will consider are supposed to be even, i.e.

2 is invertible in them. We are then in the position to prove the following

Theorem 6.4.3. Assume X is a divisorial scheme of finite type over a scheme S

which is quasi-projective over a noetherian affine scheme R where 2 is invertible.

Let be V = (F , ϕ) an ε-inner product space over X where F is a vector bundle.

Then there exists a divisorial smooth scheme YV over S, an ε-inner product space

EV = (EV , ϕV ) over YV and a map f : X → YV over S such that f∗(EV ) ∼= V . If

X and S are affine schemes, then we can take YV to be affine.

Proof. We first assume that X is connected so that F is a vector bundle of rank n.

We can use 3.1.11 and 3.2.14 to find a scheme W which is divisorial and smooth over

S together with a vector bundle E on it and a map g : X →W such that g∗(E) ∼= F .

If X and S are affine, we remark that we may choose W to be affine. Now, we

can consider the bilinear Grassmannian GrBn,W (Hε(E)). This is a divisorial smooth

scheme affine over W . In particular, if W is affine, then it is affine in the absolute

sense. Now the universal property of the bilinear grassmannians 6.1.2 together with

Corollary 6.1.6 give us a map f : X → GrBn,W (Hε(E)) =: YV over W and then

over S and an ε-inner product space EV over YV such that f∗(EV ) ∼= V , as wanted.

Now if X is not connected we can reason componentwise and then glue together the

resulting schemes to get the assert, as in the proof of Proposition 2.5.3.
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As a corollary we have the following “many variables” version of the previous

Theorem which extends it to a finite family of ε-inner product spaces, and whose

proof is identical mutatis mutandis to the one of Proposition 3.1.13

Proposition 6.4.4. Let X be a divisorial scheme of finite type over S quasi-

projective over a noetherian affine scheme R where 2 is invertible. Then given

a finite number of ε-inner product spaces over X, V1 = (E1, ϕ1), ..., Vn = (En, ϕn),

there is a smooth scheme YV over S and ε-inner product spaces V1,YV , ..., Vn,YV over

it together with a morphism ψV : X → YV such that ψ∗V (Vi,YV ) ∼= Vi for every

i = 1, ..., n. If X and S are affine schemes, then we can take YV to be affine.

Proof. We just observe that we do not require all our inner product spaces to have

the same value of ε.

With this result is now easy to prove the following using Proposition 3.1.10

Theorem 6.4.5. The natural restriction maps

HomPre(SchS)(GW0(−)n,GW0(−))→ HomPre(Sm/S)(GW0(−)n,GW0(−))

HomPre(SchS)(KSp0(−)n,KSp0(−))→ HomPre(Sm/S)(KSp0(−)n,KSp0(−))

are injective if S is a quasi-projective (affine if we consider the categories of affine

schemes) noetherian finite type over a noetherian affine scheme R where 2 is invert-

ible. The following maps

HomPre(Aff/S)(GW0(−)n,GW0(−))→ HomPre(SmAff/S)(GW0(−)n,GW0(−))

HomPre(Aff/S)(KSp0(−)n,KSp0(−))→ HomPre(SmAff/S)(KSp0(−)n,KSp0(−))

are injective as well if in addition to the previous hypothesis, S is affine.

6.4.2 The end of the story

Going back to symplectic hermitian K-theory, using Theorem 6.4.5 we have the

following
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Theorem 6.4.6. Fix S which is a regular quasi-projective noetherian scheme of

finite type over a noetherian affine scheme R where 2 is invertible. Then all the

arrows in the following diagram are isomorphisms.

[KSpn,KSp]HSchS
Zar

∼=
//

��

π0

��

[KSpn,KSp]H(S)

π0∼=
��

HomPre(SchS)(KSp
n
0 (−),KSp0(−))

res // // HomPre(Sm/S)(KSp
n
0 (−),KSp0(−))

Proof. It follows from Theorems 6.4.5 and and what we already knew.

Finally, we have

Theorem 6.4.7. Fix S an affine regular noetherian base scheme with 1
2 ∈ Γ(S,OS).

Then all the arrows in the following commutative cube are isomorphisms for every

n ∈ N

[KSpn,KSp]HAff/S
Zar

π0

��

// [KSpn,KSp]Haff (S)

π0

��

[KSpn,KSp]HSchS
Zar

//

π0

��

33

[KSpn,KSp]H(S)

π0

��

33

[KSpn0 ,KSp0]Pre(Aff/S)
// [KSpn0 ,KSp0]Pre(SmAff/S)

[KSpn0 ,KSp0]Pre(SchS)
//

22

[KSpn0 ,KSp0]Pre(Sm/S)

22

The pointed version of this theorem also holds.

Proof. This puts together Theorems 6.4.6, 6.3.6 and 6.4.5 and it is shown as Theorem

3.2.16.

6.5 Separated schemes

We can repeat also for symplectic hermitian K-theory the same considerations that

we made in Section 3.3. All the arguments go mutatis mutandis so we content

ourselves to state the resulting theorem

Theorem 6.5.1. Let S be an affine regular noetherian base scheme with 1
2 ∈

Γ(S,OS) and consider Sm/Ssep ⊆ SchS the category of separated (in the absolute

sense) smooth schemes seen as a full subcategory of the category of divisorial schemes

over S and KSp the Schliching’s GW[2]. Then all the arrows in the following com-

mutative cube are isomorphisms for every n ∈ N
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[KSpn,KSp]HAff/S
Zar

π0

��

// [KSpn,KSp]Haff (S)

π0

��

[KSpn,KSp]HSchS
Zar

//

π0

��

33

[KSpn,KSp]H(S)sep

π0

��

22

[KSpn0 ,KSp0]Pre(Aff/S)
// [KSpn0 ,KSp0]Pre(SmAff/S)

[KSpn0 ,KSp0]Pre(SchS)
//

22

[KSpn0 ,KSp0]Pre(Sm/Ssep)

22

The pointed version of this theorem also holds.

Proof. The proof as the one of Theorem 3.2.16 mutatis mutandis.

6.6 Non-divisorial schemes

We remark that if we assume our even base scheme to be regular (and possibly non

divisorial) as in Section 3.4 and we allow all the schemes in SchS and Sm/S to be

possibly non divisorial, then defining hermitian K-theory using the construction of

Schlichting recalled in the appendix ad using perfect complexes instead of vector

bundles, we still have a cohomology theory satisfying Zariski and Nisnevich descent

and which is homotopy invariant on Sm/S. So we can extend the results on the cube

drawn in Theorem 6.4.7 obtaining a result exactly analogue to the one obtained

in Section 3.4 and we can repeat the same considerations. If one wants to have

homotopy invariance for non regular schemes, then one could define and employ

an homotopy invariant hermitian K-theory, but so far such theory has not been

discussed in literature and we refrain from any further comment on this matter.
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Appendix A
Some results of Riou

In this appendix we present a sketch of the proof of one of the main results contained

in the thesis of Joel Riou [Rio06] together with a recollection of some facts concerning

algebraic geometry and homotopy theory that we need in the thesis. We provide

here some details that are somewhat abridged or available only in French in the

works of Riou ([Rio10],[Rio06]) while we will usually omit or sketch the proofs

whose details can be found elsewhere. In places, we deviate from the exposition and

the arguments found in literature, but all the material here which is not explicitly

contained in [Rio10] or [Rio06] should be considered known to the experts or deriving

from Riou’s work.

Remark A.0.1. We deviate a bit from the exposition of Riou in the sense that for us

Sm/S will be from now on (unless otherwise stated) the category of divisorial smooth

schemes over a regular base scheme S as assumed at the beginning of this thesis

(see our Assumption 0.1), while Riou uses separated schemes instead of the divisorial

ones. This will make little difference since the Riou’s argument run through even in

this setting as the reader can check reading the details of what follows. The reader

interested only in separated schemes can consider all the schemes to be separated

(see also 3.3 to see that this is not an issue for the main theorems contained in the

thesis).

A.1 Towers and Milnor’s exact sequence in motivic ge-

ometry

Given A abelian category with enough injectives and I a small category, then AI

has enough injectives too and the projective limit functor lim←−
i∈I
AI → A is left exact so
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that we can define its right derived functors. If A satisfies in addition the condition

(AB4*) as in [Wei94] 3.5 (i.e. A is complete and the left exact functor
∏

: AI → A is

exact for every discrete I) we know that when I is Nop (in this case the elements X•

of ANop are called towers, and the arrows between the Xn transition morphisms),

these derived functors have a special form (R0lim←−
Nop

X• = lim←−
Nop

X•, Rnlim←−
Nop

X• = 0 for

n ≥ 2 and R1lim←−
Nop

X• = lim←−
Nop

1X•) as detailed in [Wei94] 3.5 for example. R1 lim←− will

be particularly important to our aims.

Definition A.1.1. A tower X• satisfies the Mittag-Leffler condition if for every k

there exists j ≥ k such that im(Xj → Xk) = im(Xi → Xk) ∀i ≥ j.

We remark that in the case of A = Ab, if all the transition maps of a tower

X• are onto, then X• satisfies the Mittag-Leffler condition. The following is standard

(see [Wei94])

Proposition A.1.2. Consider A an abelian category with enough injectives and

satisfying (AB4*). Then if a tower X• satisfies the Mittag-Leffler condition, it

holds R1 lim←−X• = 0.

Since we will not be interested only in the cases where Nop is our index

category, we will need the notion of cofinal functor.

Definition A.1.3. Let I be a directed ordered set and let (xn)n∈N be an increasing

sequence of elements in I. (xn)n∈N is called cofinal if for every y ∈ I, there exists

n ∈ N such that xn ≥ y. This is equivalent to give a cofinal functor x : N → I

(i.e. for every functor ϕ : I → C, the natural transformation lim−→
N
ϕ ◦ x → lim−→

I

ϕ is

an isomorphism). For a discussion of the equivalence between this two notions, see

[SGA72] I 8.1.1-8.1.3 (see also [Mac71] page 217).

The following is standard, see [Rio06] Proposition II.5

Proposition A.1.4. Let I be a directed ordered set, x : N → I a cofinal functor

and A as above. Denote x∗ : AIop → ANop the functor obtained by composition from

x. Hence ∀X• ∈ AI
op

and for any integer n we have Rnlim←−
Iop

X• ∼= Rnlim←−
Nop

x∗X•

With this proposition, we will be in the position to use the Mittag-Leffler

condition to calculate the first derived functor of the inverse limit also in the case

of directed ordered sets admiting a cofinal sequence. We turn now to some model

category theory. We denote by Tow(S)• = SNop• the category of pointed towers

of simplicial sets. This category can be endowed with an injective model category
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structure (weak equivalences and cofibrations sectionwise, see [GJ09] for the details).

In this context one can then build the total right derived functor of the functor lim←−,

R lim←− : Ho(Tow(S)•) → Ho(S•) and use it to define the homotopy limit of a tower

of simplicial set (given such a tower X•, holimX• = lim←−(X•f ) where X•f is a fibrant

replacement of our tower, and a tower is fibrant if X0 is fibrant and all the transition

morphisms are fibrations). We now remind what an H-group is in general

Definition A.1.5. If C is a model category with a zero object, then an object X is

called H-group if it is a group object in Ho(C). If C has no zero object, then X will

be called H-group if it is an H-group in C•.

We are now in the position to quote the Milnor’s exact sequence

Theorem A.1.6. Let X• be an H-group in Tow(S)• and denote X = holimX•.

Then for every i ∈ N there is an exact sequence (of groups)

∗ → R1 lim←−
n∈Nop

πi+1(Xn)→ πiX → lim←−
n∈Nop

πi(Xn)→ ∗

The proof of this theorem is given in [GJ09]VI Prop.2.15 in the case i 6= 0 for

groups and i = 0 for sets. The version given here results from the structure of H-

group specified in the assumptions. We apply the previous theorem to a case relevant

to us. Let S be a noetherian scheme and consider the standard unstable motivic

homotopy categories H•(S) and H(S) (here the schemes can be allowed to be also

non divisorial). Consider E fibrant H-group and Y• = (Yi)i∈N directed system of

schemes in Sm/S (hence in sShv(Sm/S) and inH(S)). Let Yi+ be their pointed egos.

We then obtain, using the simplicial structure on simplicial presheaves, a projective

system of pointed simplicial sets X• = MapH•(S)(Y•+, E), MapH•(S)(−,−) being

the simplicial mapping space of H•(S). Since for any i, MapH•(S)(Yi+, E) is an

H-group, then X• is an H-group in Tow(S)• and in particular it is pointed. Now

we can can compute, denoting Y = lim−→
N
Y•

Rlim←−
Nop

MapH•(S)(Y•+, E) = holim
Nop

MapH•(S)(Y•+, E)

'MapH•(S)(hocolim
N

Y•+, E)

'MapH•(S)(lim−→
N
Y•+, E)

= MapH•(S)(Y+, E)
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Moreover we have that π0MapH•(S)(Y+, E) = [Y+, E]H•(S) = HomH(S)(Y,E) and,

since the Yi are representable, MapH•(S)(Yi+, E) ∼= E(Yi). This equalities, together

with Milnor’s exact sequences, yield in the case i = 0 the following exact sequence

∗ → R1 lim←−
i∈Nop

π1E(Yi)→ HomH(S)(Y,E)→ lim←−
i∈Nop

π0E(Yi)→ ∗

Finally, if we change the index set, i.e. if Y• = (Yi)i∈I with I direct filtered set

admitting a cofinal sequence x : N→ I, using the previous notation and the previous

proposition, we obtain immediately

Proposition A.1.7. If S is a noetherian scheme and Y• and E are as above, we

get an exact sequence

∗ → R1 lim←−
i∈Iop

π1E(Yi)→ HomH(S)(Y,E)→ lim←−
i∈Iop

π0E(Yi)→ ∗

which coincides with the one written above

Under the same assumptions, we easily get the following chain of isomor-

phisms (use also [GJ09] II Lemma 2.3)

π1E(Yi) ∼= π1MapH•(S)(Yi+, E) ∼= π0Ω MapH•(S)(Yi+, E) ∼= π0MapH•(S)(Yi+, E)(S1,∗)

∼= π0MapS•((S
1, ∗),MapH•(S)(Yi+, E)) ∼= π0MapH•(S)(S1 ∧ Yi+, E)

∼= HomH•(S)(S1 ∧ Yi+, E)

where by S1 we denote the standard simplicial 1-sphere.

A.2 Grassmannians, K-theory and Jouanolou’s trick

Definition A.2.1. If X is a scheme, we denote as K0(X) the Grothendieck group

of the exact category of vector bundles over X. Fix now a base scheme S and

let (d, r) ∈ N2 (from now on N2 will be always considered with its natural order,

i.e. (d, r) ≤ (d′, r′) if d ≤ d′ and r ≤ r′). Denote as Grd,r,S : SchS → Sets the

representable Grassmannian functor (usually we omit the subscript S) defined by

Grd,r(X) = {F ⊆ Od+r
X | Od+r

X /F locally free of rank r} on the objects and which

is defined by pullback on the arrows. If (d, r) ≤ (d′, r′) we get a closed immersion

f(d,r)(d′,r′) : Grd,r ↪→ Grd′,r′ defined, for any X ∈ SchS as F ⊆ Od+r
X ∈ Grd,r(X) 7→

F ⊕ Od′−dX ⊕ {0}r′−r ⊆ Od′+r′X ∈ Grd′,r′(X). Notice this convention is dual to the

one of Grothendieck in [GD71] and Morel in [Mor06].
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We remark that (n, n)n∈N is a cofinal sequence in N2. Denote Gr := colim
N2

Grd,r,

Grd,∞ := colim
r∈N

Grd,r, where the colimits are calculated in Pre(Sm/S) (so that

infinite grassmannians are what is sometimes called ind-objects). We have that

Gr ∼= colim
d∈N

Grd,∞. Riou shows that we can build a directed system having a cofinal

sequence whose colimit is Z × Gr. We let this system to be K• = (Kd,r)(d,r)∈N2 ,

with K(d,r) =
⊔

2d+1 Grd,r. Notice that this system can be seen to be equivalent

to the system described in [Rio06] page 84 by considering 2d + 1 as the subset

{−d, · · · , 0, 1, · · · , d} of Z. Hence colimN2K• ∼= Z × Gr. Since N2 has a cofinal

sequence i : N → N2, n 7→ (n, n), we can denote as P• := K• ◦ i. Notice this

cofinal sequence is the same than the one of [Rio06] Remarque III.2. We have

colimP• ∼= Z×Gr as well. We point Z×Gr by the inclusion {0}×Gr0,0 ↪→ Z×Gr.

Morel and Voevodsky proved in [MV99] the following theorem (here one can consider

as Sm/S the category of possibly non divisorial smooth schemes over S)

Theorem A.2.2. Let S be a regular scheme and allow Sm/S to be the category of

possibly non divisorial smooth schemes over S. Then we have an H-group structure

on Z×Gr such that we have canonical functorial isomorphisms

HomH•(S)(Sn ∧X+,Z×Gr) ∼= Kn(X)

where n is any integer and Kn denotes the Quillen’s higher K-theory if X ∈ Sm/S

is divisorial and the higher thomason’s K-theory of perfect complexes otherwise. In

particular, for n = 0 one has

HomH(S)(X,Z×Gr) ∼= K0(X)

where, again, K0(X) has to be interpreted in the sense of perfect complexes or in the

one of vector bundles if X is divisorial or not. Moreover K ∼= Z×Gr ∼= Z×BGL+ ∼=
Z× BGL in H(S).

The previous theorem provide an explicit geometric model of algebraic K-

theory in the motivic setting. We also explicitly remind that smooth schemes over

a regular separated base can be non-divisorial (see Remark 2.1.7). Indeed being

smooth is a local property, so that they have to be regular, but being separated

or having affine diagonal (i.e. being semi-separated over some base in the lingo of

[TT90]) is not a local property so that a priori Lemma 2.1.5 does not apply and

therefore such schemes might not have an ample family of line bundles or might not

satisfy the so called resolution property. We will also need the following technical

fact, known in literature as Jouanolou’s trick ([Wei89], [Jou73]).
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A.2.1 Jouanolou’s trick

We start with a scheme S together with a locally free sheaf E ∈ Vect(S). To this vec-

tor bundle we can associate a scheme Spec(Sym(E)) over S as customary. We want

to give to this scheme the structure of algebraic S-group scheme. In order to do this

we need to give a functorial group structure to all the sets HomS(Y,Spec(Sym(E)))

of S-scheme morphisms between a scheme h : Y → S over S and Spec(Sym(E)). We

remind ([GW10] 11.1.5 and Proposition 11.1) that we have functorial bijections

HomS(Y,Spec(Sym(E))) ∼= HomOS−algebras(Sym(E), h∗Y ) ∼= HomOS−modules(E , h∗Y )

and the latter has a canonical group structure. We notice that on trivializing open

subsets of S for E , Spec(Sym(E)) as a group is isomorphic to Gn
a,S (i.e. to AnS , see

[DG11] I 4.3.1). This suffices to give an S-group structure on Spec(Sym(E)). We

now remind the definition of torsor.

Definition A.2.3. ([Sta18, Tag 0497] 38.11) Let S be some base scheme, π : X → S

a scheme over S, G an algebraic group S-scheme which acts on X via σ : G×SX →
X. X is called a principal homogeneous space or G-torsor if

1) The induced morphism of schemes (σ × id) : G ×S X → X ×S X is an iso-

morphism. Equivalently for every S-scheme Y , the group G(Y ) acts simply

transitively on X(Y ) or X(Y ) is empty.

2) There exists a Zariski covering {γi : Ui → S}i∈I of S such that X(Ui) 6= ∅ for

all i ∈ I.

A G-torsor X is called trivial if X(S) 6= ∅

Remark A.2.4. One can prove that a G-torsor is trivial if and only if it is isomor-

phic to G. This can be shown to be equivalent to having a section of the structure

map π : X → S. Hence condition 2) of the definition is equivalent to ask that

there exists a Zariski covering {γi : Ui → S}i∈I of S such that the GUi-torsors

πi : γ−1
i (X) → Ui are trivial, which means that all the maps γ−1

i (X) → Si have a

section, i.e. γ−1
i (X) ∼= γ−1

i (G) for all i ∈ I. Notice that π is always surjective and

it is smooth, étale, flat, affine, etc. if and only if G is such (see [Mil80] Proposition

III 4.2).

Definition A.2.5. [Wei89] An affine vector bundle torsor over a scheme X is an

affine (over Spec(Z)) scheme W together with an affine map π : W → X making

W a G-torsor where G = Spec(Sym(E)) for some vector bundle E over X. This
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means that Spec(Sym(E)) acts on W and that W is locally isomorphic to it, but

the patching maps need not to be linear.

We can then state the Jouanaolou’s trick.

Proposition A.2.6 (Jouanolou’s Trick, [Wei89] Proposition 4.4). Let X be a scheme

admitting an ample family of line bundles. Then there exists an affine (over Z) tor-

sor T → X under a vector bundle E.

A.3 Functor ϕ and properties (ii) and (K). The theorem

of Riou

All schemes in this section are supposed to be divisorial. The material presented

here can be found in [Rio06] III.2.

Definition A.3.1. Let S be noetherian scheme and X ∈ H(S). Define a presheaf

ϕX : (Sm/S)op → Sets as

ϕX(U) := HomH(S)(U,X)

Remark A.3.2. From A.2.2 we have that if S is a regular scheme, we have an

isomorphism ϕ(Z×Gr) ∼= K0(−) in Pre(Sm/S). In some parts of the text we used

the notation π0(X) instead of ϕX as in [Rio10]. However here we prefer to stick to

the notation introduced in [Rio06].

Definition A.3.3. Every element X ∈ Pre(Sm/S) can be seen as element in H(S)

and one can apply to it ϕ to obtain a presheaf of sets ϕX. We define a morphism

τX : X → ϕX in Pre(Sm/S) in such a way that for every U ∈ Sm/S,

τX,U : X(U)→ ϕ(X)(U)

associate to x ∈ X(U) the element in ϕ(X)(U) obtained first by looking at x as

an arrow U → X via the Yoneda lemma and then making this arrow simplicial

(trivially) to obtain an arrow in H(S).

Definition A.3.4. (Property (ii)) Let S be a regular scheme and X ∈ Pre(Sm/S).

We say that X satisfies the property (ii) if for every U ∈ Sm/S affine (over Spec(Z)),

the arrow τX,U defined above is surjective.

This means that in this case every morphism U → X in H(S) with U affine

comes from a genuine morphism of presheaves. Moreover, we explicitly note that if

two presheaves satisfy the property (ii), then also their product does.
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Proposition A.3.5 ([Rio06] Proposition III.10). Let S be a regular scheme, and

X ∈ Pre(Sm/S) satisfying the property (ii). Let E be an object in H(S). Then the

application

τ∗X : HomPre(Sm/S)(ϕX,ϕE)→ HomPre(Sm/S)(X,ϕE)

is injective.

Proof. Suppose we have two morphisms f, f ′ : ϕX ⇒ ϕE such that f ◦τX = f ′ ◦τX .

We want to show that for every U ∈ Sm/S, the maps fU , f
′
U : ϕX(U)⇒ ϕE(U) are

equal. Thanks to the fact that X satisfies the property (ii), if U ∈ Sm/S is affine

over Z, the arrow τX,U is an epi and then fU = f ′U . Let U ∈ Sm/S, then using

the Jouanolou’s trick one gets an affine vector bundle torsor π : T → U so that the

following diagram commutes

ϕX(T )
f ′T

//

fT //
ϕE(T )

ϕX(U)

π∗

OO

f ′U

//

fU //
ϕE(U)

π∗

OO

Arguing as above, since T is affine, one has that fT = f ′T . Hence π∗ ◦ fU = π∗ ◦ f ′U ,

so if π∗ is at least an injection (i.e. a mono), it will follow that fU = f ′U . But since

π : T → U is an affine vector bundle torsor, by [MV99] 3.2.3 π∗ : T ∼=A1
U and so

π∗ is an isomorphism.

The main use of the property (ii) is the following

Theorem A.3.6. [[Rio06] Theorem III.16] Let S be a regular scheme and X• =

(Xi)i∈I an inductive system in Sm/S indexed by a directed ordered set I having a

cofinal sequence. Set X = colimX• and suppose that X satisfy the (ii) property.

Then for every H-group E we can form the diagram

HomH(S)(X,E)
α //

γ
))

HomPre(Sm/S)(ϕX,ϕE)

β

��

HomPre(Sm/S)(X,ϕE)
∼= // lim←−

i∈Iop
(ϕE)(Xi)
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where the maps α and γ are surjective and β is bijective. Moreover Ker γ =

Ker α ∼= R1 lim←−
i∈Iop

HomH•(S)(S1 ∧Xi+, E)

Proof. α is induced by ϕ and β is the arrow τ∗X considered before. γ is their com-

position. Since X satisfies the property (ii), then β is injective by the previous

proposition. Moreover the Yoneda lemma gives us

HomPre(Sm/S)(colim
i∈I

Xi, ϕE) ∼= lim←−
i∈Iop

HomPre(Sm/S)(Xi, ϕE) ∼= lim←−
i∈Iop

(ϕE)(Xi)

In addition, after taking a fibrant replacement E → Ef

π0E(Xi) = π0Map(Xi, Ef ) = [Xi, E]H(S) = (ϕE)(Xi)

and so the arrow Λ : HomH(S)(X,E) → lim←−
i∈Iop

(ϕE)(Xi) is the one invoked by the

Milnor’s theorem A.1.6. Hence we can conclude that it is surjective, so β is also

surjective and γ has the same property too. Invoking again A.1.7 and the calculation

made at the end of Subsection A.1, one gets that Ker γ = Ker α is exactly of the

desired form.

The pointed variant of the previous theorem also holds, see [Rio06] Theorem

III.18.

Definition A.3.7. [Rio06] III.25] Let S be a regular scheme and X• = (Xi)i∈I

an inductive system in Sm/S indexed by a directed ordered set I having a cofinal

sequence such that X = colimX• satisfies the property (ii). Let E be an H-group in

H•(S). We say that E satisfies the property (K) with respect to the system X• if the

arrow α as in the previous theorem is bijective, i.e. R1 lim←−
i∈Iop

HomH•(S)(S1∧Xi+, E) =

0.

Remark A.3.8. It is possible to show, using explicit calculations detailed in [Rio06]

Proposition III.14, that Z×Gr colimit of the system K satisfies the property (ii).

Proposition A.3.9. Let S be a regular scheme. If E is an H-group in H•(S) and

for every (d, r) ≤ (d′, r′) the arrow

f∗(d,r)(d′,r′) : HomH(S)(Grd′,r′ , RΩE)→ HomH(S)(Grd,r, RΩE)

is surjective, then E satisfies the property (K) with respect to the system K.

Proof. We said in the remark before that Z×Gr satisfies the property (ii) and so by

the previous theorem, we just need to prove that R1 lim←−
i∈(N2)op

HomH•(S)(S1∧Ki+, E) =
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0. Since N2 has a cofinal sequence, we can simply calculate R1 lim←−
n∈Nop

HomH•(S)(S1 ∧

Kn+, E) = 0 where Kn =
⊔

2n+1 Grn,n. We just need to show that the tower

(HomH•(S)(S1 ∧ Kn+, E)) satisfies Mittag-Leffler (this is a tower in Ab since the

fundamental group of an H-space is abelian). Now, in Ab

HomH•(S)(S1 ∧ Kn+, E) ∼= HomH(S)(Kn, RΩE)

= HomH(S)(
⊔

2n+1

Grn,n, RΩE)

=
∏

2n+1

HomH(S)(Grn,n, RΩE)

The ”dual” transition morphisms fn :
⊔

2n+1 Grn,n →
⊔

2(n+1)+1 Grn+1,n+1

are given by

i ◦ (tf(n,n)(n+1,n+1)) :
⊔

2n+1

Grn,n →
⊔

2n+1

Grn+1,n+1 ↪→
⊔

2(n+1)+1

Grn+1,n+1

and so the transition morphisms

f∗n :
∏

2(n+1)+1

HomH(S)(Grn+1,n+1, RΩE)→
∏

2n+1

HomH(S)(Grn,n, RΩE)

are given by

(
∏

f∗(n,n)(n+1,n+1)) ◦ i
∗ :

∏
2(n+1)+1

HomH(S)(Grn+1,n+1, RΩE)�

�
∏

2n+1

HomH(S)(Grn+1,n+1, RΩE)→
∏

2n+1

HomH(S)(Grn,n, RΩE)

But in Ab products of surjective maps are surjective, so
∏
f∗(n,n)(n+1,n+1) is surjective

and hence the f∗n are all surjective. It follows that our tower satisfies the Mittag-

Leffler condition.

Lemma A.3.10. Let be E an H-group in H•(S) or in I lZarSchS •. Then for every

object X of H•(S) (or of Ho(I lZarSchS •) the evident morphism

HomH•(S)(X,E)→ {f ∈ HomH(S)(X,E), f?(•) = • ∈ HomH(S)(S,E)}

is a bijection (same for Ho(I lZarSchS •)), where with f? we have denoted the com-

position with f .
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Proof. This is Lemme III.19 of [Rio06], the case of I lZarSchS • being the same. We

translate here the argument of Riou from the French for the reader’s convenience.

First one notices that we can assume E to be fibrant. Now denoting as C the model

categories I lZarSchS or I lNisSm/S localised at the A1-weak equivalences, we have a

cofiber sequence

S+ → X+ → X

in both C and C•, obtained as the pushout of the two maps S+ → X+ and S+ → ∗
(remark that all the objects involved are cofibrant and that S+ → X+ is a cofibration

so this pushout is actually an homotopy pushout). We can then apply to this cofiber

sequence the pointed mapping space MapC•(−, E) to get a fibration sequence

MapC•(X,E)→MapC•(X+, E)→MapC•(S+, E)

which induces a long exact sequence on the homotopy groups. Now, since E is an

H-group, we have that the π0 terms of this sequence are groups, so that, using the

fact that the map S+ → X+ has a retract induced by the terminal map X → S we

can split the long exact sequence of the homotopy groups in short exact sequences,

obtaining for the π0 terms the following exact sequence

1→ HomHo(C•)(X,E)→ HomHo(C)(X,E)→ HomHo(C)(S,E)→ 1

that allows us to conclude the proof.

Remark A.3.11. The proof of the above lemma shows that the same result holds

replacing H(S) with any model category coming from any simplicial model category

C where every object is cofibrant, X with an element of C• so that its distinguished

point is given by a cofibration and E with a fibrant H-group having the same

property of X.

Remark A.3.12. Notice that if C = Pre(SchS)(Pre(Sm/S)) then, S being final,

if we take F,G ∈ C pointed by a ∈ F (S) and b ∈ G(S) then f ∈ HomC(G,F ) is

pointed if and only if f(S)(b) = a in F (S).

From A.3.9 and the previous lemma, we can draw the following

Theorem A.3.13. Let be S a regular scheme and E ∈ H(S) satisfying the property

(K) with respect to the system K•. Then one has the following bijections

HomH(S)(Z×Gr, E)→̃HomPre(Sm/S)(K0(−), ϕE)
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HomH•(S)(Z×Gr, E)→̃HomPre(Sm/S)•(K0(−), ϕE)

We can state and sketch the proof of the main theorem contained in [Rio06]

and [Rio10].

Theorem A.3.14 (Riou [Rio06] III.31). If S is a regular scheme, then one has the

following isomorphisms

[K,K]H(S)
∼= EndH(S)(Z×Gr) ∼= EndPre(Sm/S)(K0(−))

[K,K]H•(S)
∼= EndH•(S)(Z×Gr) ∼= EndPre(Sm/S)•(K0(−))

Proof. We sketch the proof of the unpointed case only, the pointed case being the

same because of A.3.10. All we need to show is that Z × Gr satisfies the property

(K) with respect to the system K•. We want to use A.3.9. Hence all we need to

show is that for every (d, r) ≤ (d′, r′), the arrow

f∗(r,d)(r′,d′) : K1(Grd′,r′) ∼= HomH(S)(S1 ∧Grd′,r′+,Z×Gr)→

→ HomH(S)(S1 ∧Grd,r+,Z×Gr) ∼= K1(Grd,r)

is surjective. From the explicit calculations given in [SGA71], it is possible to show

that for every (d, r) ≤ (d′, r′), the arrow f∗(r,d)(r′,d′) : K0(Grd′,r′) → K0(Grd,r) is

surjective. But now one can note that the Grassmannians admit a cellular decom-

position (i.e. there is a sequence of closed subschemes ∅ = Z0 ⊂ Z1 ⊂ ... ⊂ Zn = X

such that for every 1 ≤ i ≤ n, Zi − Zi−1
∼= an affine space Ad over S) and for such

schemes the natural maps K0(X) ⊗K0(S) K1(S) → K1(X) are bijections. Hence

the surjectivity at the level of K1 follows from the surjectivity at the level of K0

and we conclude. Alternatively, one might use the semi-orthogonal decomposition

of the Grasmannians to show that indeed f∗(r,d)(r′,d′) : Kn(Grd′,r′) → Kn(Grd,r) is

surjective for any natural number n.

To define operations on higher K-theory, however, we need to strengthen the

former theorem a little, in order to consider morphisms from Kn to K. The result is

the following, which is obtained with minor modifications from the above reasoning.

Theorem A.3.15 (Riou). If S is a regular scheme, then one has the following

isomorphisms

[Kn,K]H(S)
∼= HomH(S)((Z×Gr)n,Z×Gr) ∼= HomPre(Sm/S)(K0(−)n,K0(−))

[Kn,K]H•(S)
∼= HomH•(S)((Z×Gr)n,Z×Gr) ∼= HomPre(Sm/S)•(K0(−)n,K0(−))
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A.4 Recollections on generalizing the (ii) and the (K)

properties

In this section we recall that the (ii) property and the (K) property defined by Riou

in [Rio06] make sense in a wider context, which we need. Concerning the property

(ii) this has been studied in Appendix B of the Riou’s thesis [Rio06]. To ease the

terminology and proving some simple lemmas we will need we prefer however to

recollect here some easy to prove facts, deviating from op. cit., for future use. Even

if this discussion does not appear explicitly in the works of Riou, it is certainly

contained there in a different form. We fix some base scheme S and we let SchS to

be the category of schemes over S. We let C to be some Grothendieck site having

underlying category some full subcategory of SchS . We assume that sPre(C) comes

endowed with a simplicial model category structure which comes as a left Bousfield

localization of the Jardine injective local model structure on sPre(C). We denote as

H the homotopy category of sPre(C) with this model structure. We can then give

the following definition

Definition A.4.1. Assume we have X ∈ H. Define a presheaf ϕX : (C)op → Sets

as

ϕX(U) := HomH(U,X)

If X ∈ Pre(C), we define a morphism τX : X → ϕX in Pre(C) using the Yoneda

lemma as usual.

We now come to the generalised version of the property (ii).

Definition A.4.2. Let X ∈ Pre(C). Assume we have a full subcategory A of C
such that for every B ∈ C we have an element A ∈ A and an arrow A → B in C
which induces an isomorphism in H. Then we say that X satisfies the property (ii)

relative to A if for every U ∈ A, the arrow τX,U defined above is surjective.

Remark A.4.3. If C = Sm/S is the category of smooth divisorial schemes, A =

SmAff/S, S is regular noetherian and we consider the A1-localised Nisnevich injec-

tive local model structures over sPre(C), then we are in the situation described in

Appendix A.3, i.e. we have the usual property (ii). Note also that if two presheaves

satisfy the property (ii) then also their product does.

For the rest of this section we will assume that we are in the situation de-

scribed in the previous definition. It follows that the following Proposition can be

proved exactly as its counterpart in Appendix A.3.
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Proposition A.4.4. Let X ∈ Pre(C) and E be an object in H. Assume that X

satisfies the property (ii) relative to A. Then the application

τ∗X : HomPre(C)(ϕX,ϕE)→ HomPre(C)(X,ϕE)

is injective.

As a corollary we have the following theorem, whose proof is again the same

of its counterpart in Appendix A.3.

Theorem A.4.5. Let X• = (Xi)i∈I an inductive system in C indexed by a directed

ordered set I having a cofinal sequence. Set X = colimX• and suppose that X satisfy

the (ii) property relative to A. Then for every H-group E we can form the diagram

HomH(X,E)
α //

γ
((

HomPre(C)(ϕX,ϕE)

β

��

HomPre(C)(X,ϕE)
∼= // lim←−

i∈Iop
(ϕE)(Xi)

where the maps α and γ are surjective and β is bijective. Moreover Ker γ =

Ker α ∼= R1 lim←−
i∈Iop

HomH•(S1 ∧Xi+, E)

We now conclude with the generalized version of the property (K).

Definition A.4.6. Let X• = (Xi)i∈I an inductive system in C indexed by a directed

ordered set I having a cofinal sequence such that X = colimX• satisfies the property

(ii) relative to A. Let E be an H-group in H. We say that E satisfies the property

(K) with respect to the system X• if the arrow α as in the previous theorem is

bijective, i.e. R1 lim←−
i∈Iop

HomH•(S1 ∧Xi+, E) = 0.

A.5 Recollections on algebraic structures

In this section we recollect some material from [Rio10] that we need in order to

define operations on higher K-theory. What follows is contained in 2.1 and 2.2 of

op. cit. although we deviate a little from the discussion found there (compare also

with the discussion in [Bor94] Section 3.2 page 125).

Definition A.5.1. A language L is the datum of a family of operators (li, ni)i∈I of

arity ni ∈ N, called abstract operators
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Note that the previous definition is not the usual definition one can find in

logic, for example in the context of first order logics, where a language consists of

more than this datum, see for example [Men15] or [EFT94].

Definition A.5.2. Given a finite set of variables (xj)j∈J and a language L =

(li, ni)i∈I we call formula an expression built inductively from the following passages:

• every variable xj is a formula, called atomic formula;

• given any i ∈ I and F1, ..., Fni formulas, then li(F1, ..., Fni) is a formula.

Moreover we define an algebraic structure as the datum of a language L = (li, ni)i∈I ,

a finite set of variables (xj)j∈J and a family of pairs of non atomic formulas in the

above variables (Ar, Br)r∈R, called relations and denoted as (Ar = Br).

Note that this is non standard too since if we try to formalize the above in

the context of first order logics, we have to be careful because symbols as = are usu-

ally contained in the alphabet of a first order logic while = is treated as an abstract

operator in our sense, so that in the definitions usually found in literature, a relation

is still a formula. Here we want to stick to Riou’s notation since it is specific for

the algebraic structure we want to consider, but the more scrupulous reader should

take these definitions cum grano salis.

Definition A.5.3. Given a language L = (li, ni)i∈I and a category C we say that

an L-object is an object X of the category C such that all finite products of it exist

and for every i ∈ I we have a family of morphisms Xni → X, denoted lXi .

Zero-arity operators (consider them as constants) are considered as maps

T → X where T := X0 is the empty product (if there is any, i.e. the terminal

object) or a distinguished object we choose. L-objects form a category, arrows

X → Y being maps F : X → Y in C such that ∀i ∈ I, the following diagram

commutes

Xni
lXi //

F×···×F
��

X

F
��

Y ni
lYi

// Y
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Notice that if X is an L-object, one can define an arrow FX : XαF → X for

any non atomic formula F , αF being the sum of the atomic formulas involved in the

inductive definition of the formula F .

Definition A.5.4. Let S = ((li, ni)i∈I , (Ar = Br)r∈R, (xj)j∈J) be an abstract al-

gebraic structure. We say that an L-object in the category C is equipped with an

S-structure if for every r ∈ R the morphisms AXr and BX
r in C are equal. In this

case we say that X is an S-object. We define the category of S-objects as the full

subcategory of L-objects consisting of the S-objects.

Remark A.5.5. When we interpret the language usually see the variables as ele-

ments of HomC(A,X) with A ∈ C and in this case we interpret the other formulas

via the Yoneda embedding.

Proposition A.5.6. [[Rio10] Proposition 2.2.3] Fix an abstract algebraic structure

S and let F : C → D be a functor between categories such that finite products exist

in C and F commutes with these products. Then if X is a S-object, F (X) inherits

a natural structure of S-object from F .

On the other side, if for any natural n the natural map HomC(X
n, X)→ HomD(F (Xn), F (X))

is a bijection for some X ∈ Ob(C), then any S-structure on X uniquely arises from

a S-structure on F (X).

Now, fixed X,Y S-objects in C such that HomC(X
n, Y ) ∼= HomD(F (Xn), F (Y )), we

have that f : X → Y is a morphism of S-objects if and only if F (f) is such.

Remark A.5.7. We apply this in the main part of the thesis with C = H(S),

I lZarSchS , D = Pre(SchS ,Sm/S) and F = π0 (which commutes with finite prod-

ucts).
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Appendix B
On the categories Sm/S, SchS,H(S)

and descent

We are going to be a little bit more precise about the hypothesis we need to work

with. In particular we obtained our results avoiding the separated hypothesis and

we obtained our embedding 2.0.1 of a divisorial scheme into a smooth one in such a

way that the smooth scheme we obtain as a target of our embedding might be not

separated. Many authors such as [MV99],[Mor06],[Mor04],[Rio06] and [Rio10] work

in the framework of separated smooth schemes over a regular noetherian scheme S

of finite dimension. Sometimes it is not explicitly pointed out in literature if the

theorems we are using still hold if we remove the separation hypothesis even if that

is the case, so some remarks concerning this issue are worthy, although everything

that appears in this appendix is well known and can be found in literature, if one

reads it correctly. For any scheme S (supposed to be noetherian of finite dimension

unless otherwise stated) we denote as SZar the small Zariski site over S (which

objects are open embeddings U ⊆ S and we consider the Zariski topology), as et|S

the étale site over S (objects being étale separated maps Y → S and we give to it

the étale topology) and as (et|S)Nis the site having same category of et|S but the

Nisnevich topology. For any scheme S we denote with SchS the category of schemes

of finite type over S and with Sm/S its full subcategory of smooth schemes over S.

Remark that the definition of étale and smooth morphisms a priori does not come

with any separated hypothesis, i.e. we agree with EGA terminology, see Section

2.1.1 for detailed references.
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B.1 BG property and descent

A good reference for this subsection is [Jar15] or [AHW17]. Everything contained

here is well known, besides the exposition.

Definition B.1.1. Let C any Grothendieck site and let X be a simplicial presheaf.

We say thatX satisfies descent if for some (and hence for any) I l-fibrant replacement

i : X → Xf , i is a sectionwise weak equivalence.

Suppose to have a pullback square of schemes

T //

��

U

f
��

V
j
//W

If j, f are open embeddings and W = U ∪ V then we denote such square as

�Zar and we call it a Zariski square. If j is an open embedding, f is an étale mor-

phism and the induced morphism of closed subschemes (with the reduced induced

structure) f−1(W−V )→W−V is an isomorphism, we denote such a square as �Nis
and we call it Nisnevich square. Squares of this form are often called elementary

distinguished squares.

Definition B.1.2. Consider a full subcategory C ⊆ SchS considered as a site with

the choice of the Zariski (or the Nisnevich) topology (which has then to be well

defined), which for any object S in it contains also all the elements of SZar (or et|S).

We say that X ∈ sPre(C) has the BG property if X(∅) is contractible and X(�Zar)

(or X(�Nis)) is homotopy cartesian for any elementary distinguished square con-

tained in C.

The main theorem is then the following, due to Brown and Gersten [BG73]

in the Zariski case and to Morel and Voevodsky [MV99] for the Nisnevich topology

Theorem B.1.3. Let S be a noetherian scheme of finite dimension. Then if F ∈
sPre(SZar) (F ∈ sPre((et|S)Nis) has the BG property, then it satisfies Zariski or

Nisnevich descent. Moreover any I lZar (I lNis)-fibrant simplicial presheaf has the BG

property.

Proof. This is proved in [Jar15], Theorems 5.33 and 5.39.

Corollary B.1.4. Consider a full subcategory C ⊆ SchS considered as a site with the

choice of the Zariski (or the Nisnevich) topology as in B.1.2 and let be F ∈ sPre(C).
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If F has the BG property then it satisfies descent. Moreover any I lZar (I lNis)-fibrant

simplicial presheaf has the BG property.

Proof. It follows from the previous theorem by restricting the big site to the cor-

responding small site for any object of C and using Corollary 5.24 of [Jar15] (that

we can use because of [SGA72] Proposition III.1.3 and Proposition I.5.2). One

might also use [AHW17] Theorem 3.2.5 (due to Voevodsky), see the refernces in op.

cit..

Remark B.1.5. The proof of all the above theorems really relies on the hypothesis

of being noetherian of finite dimension: separatedness or smoothness are never used.

In the main text we also use the projective local model structure on simplicial

presheaves. In this case, the BG property gives us more. The details are discussed

in [DHI04].

Theorem B.1.6. Let S be a noetherian scheme of finite dimension and (C, τ) be

(SchS , Zar) or (SchS , Nis). Assume F is a simplicial presheaf over one of those

sites. If F satisfies descent and it is sectionwise fibrant then F is P l-fibrant.

Proof. This is a rewriting of Corollary 6.3[DI04].

Remark B.1.7. Suppose to have a P-fibrant presheaf X such that there exist

a presheaf X ′ which is P l-fibrant, a map between them and such that for every

U ∈ Ob(SchS), X(U) is homotopy equivalent to X ′(U). Then because of the weak

homotopy invariance of homotopy pullbacks, the presheaf X has the BG-property

too and hence it is P l-fibrant.

Remark B.1.8. We explicitly note that for the categories of affine schemes, one

has to modify a little the definition of Zariski and Nisnevich distinguished squares

(in order to be coherent with the affine Zariski and Nisnevich topologies) to get a

cd structure generating a topology equivalent to the Zariski or the Nisnevich one

and to prove the analogue of Theorem B.1.3. However this can be accomplished

as explained in [AHW17] so the above results will hold also for the Zariski and

Nisnevich sites Aff/S and SmAff/S, provided one modified the definition of BG

property as in op. cit. as long as S is noetherian.

B.2 Thomason definition of K-theory

We recall briefly the definition of the Waldhausen S•-construction.
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Definition B.2.1. Suppose a natural number n is given. We define the arrow

category Ar[n] := FunCat([1], [n]). Explicitly, its objects are couples of natural

numbers (a, b) with 0 ≤ a ≤ b ≤ n and we have an arrow (a, b) → (a′, b′) if and

only if a ≤ a′ and b ≤ b′. One see that the assignment [n] 7→ Ar[n] give rise to a

cosimplicial category Ar : ∆→ Cat.

If A : Ar[n]→ C is any functor, we shall use the notation Ap,q for the element

A((b, q)) ∈ C.

Definition B.2.2. Assume that E is an exact category. We can define, for every

n ∈ N, the category SnE ⊂ FunCat(Ar[n], E) as the full subcategory of functors

A : Ar[n]→ E such that for every 0 ≤ a ≤ b ≤ c ≤ n the sequence

Aa,b� Aa,c � Ab,c

is an admissible exact sequence in E and Ad,d = 0 for all d.

SnE has an exact structure which is given by declaring a sequence A→ B →
C to be exact if for every 0 ≤ a ≤ b ≤ n the sequence Aa,b � Ba,b � Ca,b is exact

in E . The weak equivalences in such a category are defined sectionwise. If we have

an exact category with weak equivalences (E , ω). We write as ωE for the category

having as objects the same objects of E and as arrows the weak equivalences. We

then get a simplicial category

ωS•E : ∆op → Cat [n] 7→ ωSnE

Taking the nerve in each degree makes ωS•E into a bisimplicial set that can be

realised ([TT90] 1.5.2). Hence we have the following

Definition B.2.3. Let be (E , ω) an exact category with weak equivalences. We

define

KW (E , ω) := Ω|N•ωS•E|

where we have used the geometric realization of a simplicial category.

This is considered to be one of the most useful definition of K theory, because

of its nice properties. It can be shown that it gives the right definition of K-theory

Theorem B.2.4 ([Wal85] Appendix 1.9). If (E , i) is an exact category with weak

equivalences where the weak equivalences are the subcategory of isomorphisms in E,

then we have an homotopy equivalence |QE| ' |N•iS•E|.
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The space |iS•E| is the zeroth space of a spectrum because of [Wal85] 1.3.3

and 1.5.3. This spectrum is the one used in the work of Thomason on higher alge-

braic K-theory [TT90]. Indeed Thomason defined for every scheme quasi-compact

and quasi-separated X the K-theory space as Ω|N•ωS•Perf(X)| ([TT90] 3.1) where

Perf(X) denotes the exact category of perfect complexes of globally finite Tor-

amplitude ([TT90] 2.2.11) and the weak equivalences are the quasi-isomorphism.

He noticed that this presheaf of pointed topological space arises as the zeroth

space of a presheaf of spectra on the category of quasi-compact and quasi-separated

schemes. Applying the singular functor gives us a simplicial presheaf KT . Now,

if our schemes are divisorial, Thomason is able to prove that there is a sectionwise

weak equivalence KQ → KT where K is the Quillen’s K-theory presheaf built start-

ing from the presheaf Vect(−) and then defining KQ(−) := Sing(Ω|NQVect(−)|) '
ΩEx∞(NQVect(−)). This follows by [TT90] Corollary 3.9 and then Proposition

3.10.

B.3 Ties with Thomason descent and K-theory

We formulated the notion of descent and BG property using the modern language of

model categories but we have in mind applications to K-theory. For those applica-

tions the paper [TT90] is particularly relevant but it doesn’t make use of the former

methods so that since we want to use the results contained in that seminal paper,

a brief discussion is due. In particular, we have to make explicit the link between

fibrant replacement and hypercohomology. Given any presheaf of spectra E (for

presheaves of spectra see[Jar15] for example) on any site C = (C, τ) with enough

points we can define the hypercohomology presheaf HC(−, E) using the Godement

resolution (see [Mit97] for an explanation and the relevant references). This way we

always get a map HE : E → HC(−, E). Moreover the following holds

Proposition B.3.1. Let C = (C, τ) be a site with enough points, E a presheaf of

simplicial spectra and HE : E → HC(−, E) the natural map mentioned above. Then

HC(−, E) is I l-fibrant and if cdCE < ∞ (cdCE being the cohomological dimension)

dimension, HE is a local weak equivalence.

For a proof see [Mit97] 3.20. As a simple corollary we have

Corollary B.3.2. In the hypothesis of the previous proposition, E satisfies descent if

and only if HE is a sectionwise weak equivalence. If E satisfies descent, the resulting

simplicial presheaf we get after taking the 0th space of E (i.e after taking RΩ∞)

satisfies descent.
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We can then use the previous result to translate descent results as in [TT90]

in the language of model categories, so that they become available in the framework

of (un)stable motivic homotopy theory. We state the descent results we need for

our study of K-theory using [TT90]. It is a deep theorem of [TT90] (Theorem 7.6)

that for schemes quasi-compact and quasi-separated having an ample family of line

bundles, the Quillen’s K-theory spectrum is weakly equivalent to the Thomason

Trubaugh K-theory spectrum (see [TT90] Proposition 3.10 for a proof and op.cit.

for the precise definitions). Moreover, by B.1.7, if the Thomason Trubaugh K-theory

has the BG property, then also the Quillen’s one has that property. Hence under the

above hypothesis on our category of schemes we can use the descent results proved

in [TT90] for our K-theory presheaf.

Remark B.3.3. One might wonder if considering divisorial schemes we actually

obtain well behaved Grotendieck topologies. Since all our schemes are noetherian,

open embeddings are quasi-compact and then defining Zariski covers as families of

open embeddings jointly surjective gives us a well defined Grothendieck topology on

the category of divisorial schemes since quasi-compact open subscheme of divisorial

schemes are divisorial. We restrict now to the category Sm/S of smooth divisorial

schemes over a regular divisorial scheme S as in the main text and we ask if the

Nisnevich topolgy is well defined. We have that the pullback of an étale map f :

X → Y in Sm/S along any map in Sm/S is divisorial because the resulting scheme

is smooth over S (smoothness is stable under base change), hence regular, and has

affine diagonal so that the result follows from Corollary 2.1.5 (remind that all the

divisorial schemes have affine diagonal). Indeed if we have morphisms f : X → Y

and g : Y → Z so that g and g ◦ f have affine diagonal, then also f has affine

diagonal because we can mimick the proof of [Sta18, Tag 01KV] using the fact

that every affine morphism is separated ([Sta18, Tag 01S7] ) and Remark 9.11 of

[GW10], page 230 (or [Sta18, Tag 01SG]). This implies that any morphism between

schemes having affine diagonal has affine diagonal. We remark that instead of the

notion of having affine diagonal, one can use the equivalent notion of semi-separated

schemes and morphisms detailed in [TT90] Appendix B.7 that we find less explicit,

although equivalent. in op. cit. one can find observations similar to the ones we just

made on the schemes and the morphisms having affine diagonal in terms of semi-

separatedness. Since étale maps are smooth maps, the Nisnevich topology is well

defined over Sm/S (notice that the proof of [MV99] Proposition 1.4 page 96 goes

through and that the hypothesis of Theorem 3.2.5 in [AHW17] are met) and the

inclusion of Sm/S into the bigger category of possibly non divisorial smooth schemes

over S, call it S̃m/S induces a functor sPre(S̃m/S) → sPre(Sm/S) which sends
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Nisnevich locally fibrant objects to Nisnevich fibrant objects and weak equivalences

between them to weak equivalences.

Theorem B.3.4. Let SchS be the category of quasi-compact and quasi-separated

schemes admitting an ample family of line bundles and of finite type over a Noethe-

rian base scheme S of finite dimension. Then the simplicial presheaf K satisfies

Zariski descent and Nisnevich descent when restricted to smooth schemes.

Proof. This follows by deep work of [TT90], in particular [TT90] Theorem 8.1 shows

that we have the Zariski BG property, and so Zariski descent (which is also explicitly

stated in [TT90] 10.3), and Theorem 10.8 of [TT90] gives the Nisnevich descent.

As a consequence, we can use the Thomason’s presheaf KT or the Quillen’s

indifferently since we are in presence of ample families of line bundles in order to

representK-theory in Ho(HSchS
Zar ) or in Ho(I lNisSm/S), i.e. for any schemeX ∈ SchS ,

[Sn ∧X+,K]IlZarSchS ,•
∼= Kn(X)

and the same holds if X is divisorial smooth and we consider the Nisnevich topology.

Considering from now on only divisorial schemes, recall once more that there exists a

local Zariski-weak equivalence K ' Z×BGL+ in the homotopy category of simplicial

presheaves over the Zariski site SchS for any S noetherian (see [GS99] or [ST15]).

Moreover, we assume S to be a regular noetherian of finite Krull dimension and that

we consider the category Sm/S. If we Bousfield localize I lNisSm/S at the collection

of maps of the form A1×SX → X getting H(S), we get that the K-theory presheaf

is A1-local because of [TT90] Proposition 6.8, therefore its I l-fibrant replacement is

A1-local too and hence fibrant in this model structure so that we also have

[X+ ∧ Sn,K]H•(S)
∼= Kn(X)

meaning that actually K represents the usual K-theory. Moreover, we have a map

of simplicial presheaves Z×Gr→ K over the category Sm/S, and its construction

does not require any separated hypothesis, see [ST15]. It is proved in op. cit. that

it is a Nisnevich A1-weak-equivalence. We have then all the ingredients necessary

to prove Theorem A.3.14 without the assumption of separatedness.

B.4 On the functoriality of the K-theory functor

Consider SchS , the category of schemes of finite type over a noetherian base scheme

S. The assignment X 7→ Vect(X) strictly speaking does not define a functor but
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only a pseudo functor (since (f ◦ g)∗ 6= f∗g∗ in general, we only have an isomor-

phism). Then in order to define K-theory as a simplicial presheaf using the Quillen’s

Q-construction we need to strictify this assignment in order to get a functor. This

issue has been solved in several ways in literature by consctucting categories P(X)

equivalent to Vect(X) for any X ∈ SchS such that it is possible to define an as-

signment X 7→ P(X) which defines a functor. One can then apply the sectionwise

the Quillen’s Q-construction (i.e consider the assignment X 7→ ΩEx∞(NQP(X)))

in order to get a simplicial presheaf representing K-theory, for example. Whenever

we consider the functor Vect through this work we then assume that it has been

rectified with one of these methods so that it is really a functor. We now briefly

recall the method used in [FS02] Appendix C.4, i.e we recall briefly what the big

vector bundles are and how to use them to build a functor P : SchS → Cat with the

properties stated before.

Definition B.4.1. Given the category SchS , a big vector bundle on X ∈ SchS

is a family (PY ∈ Vect(Y ))Y ∈Sch/X of vector bundles together with a datum of

isomorphisms (f∗PZ → PY )Sch/X3f :Y→Z such that P : Sch/X → Ab is an O-

module. We denote as P(Sch/X) the category of big vector bundles over X (seen

as a full subcategory of O-modules).

It is possible to check that the functor P(Sch/X)→ Vect(X), (PY )Y ∈Sch/X 7→
PX is an equivalence of categories, see [FS02] C.4 and [Gra95]. Given any map

f : Y → X, the pullback induces a restriction functor P(Sch/X) → P(Sch/Y ) so

that the assignment X 7→ P(Sch/X) defines a functor P which is equivalent to the

pseudo-functor Vect and so has the properties desired.

B.5 Recollections on Hermitian K-theory

We introduce briefly some fundamental tools we need into the thesis

Definition B.5.1. An exact category with weak equivalences and duality is the

datum (E , ω, ∗, can) of an exact category E , a set of weak equivalences ω (which

we can see as a subcategory of E closed under retracts, push-out along inflations,

pullbacks along deflations, containing all the isomorphisms and whose arrows satisfy

the 2/3 property), ∗ : Eop → E an exact functor with the property that ∗(ω) ⊆ ω
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and can : idE
'−→ ∗∗op a natural transformation such that for every object A of E ,

canA ∈ ω and (canopA )∗ ◦ canA∗ = idA∗ i.e. the following diagram commutes

A∗

canA∗
��

idA∗ // A∗

A∗∗∗
(canopA )∗

<<

Example B.5.2. 1) For any scheme X and any line bundle L, the quadru-

ple (Vect(X), iso,HomOX (−,L), can) where iso is the subcategory of isomor-

phisms and can is the canonical natural isomorphism associated with HomOX (−,L)

is an exact category with weak equivalences and duality.

2) For any scheme X, any line bundle L and any integer n, the quadruple

(ChbVect(X), quis,Hom•OX (−,L[n]), can) where ChbVect(X) is the exact cat-

egory of bounded chain complexes of vector bundles, quis are the quasi-

isomorphisms, L[n] denotes the line bundle L seen as a chain complex con-

centrated in degree −n, Hom•OX (−,L[n]) is the internal hom complex and can

is the appropriate duality is an exact category with weak equivalences and

duality. One can do the same by replacing ChbVect(X) with Perf(X), the

exact category of perfect complexes on X.

One can have a more general notion of dg category with weak equivalences

and duality as in [Sch17] but we do not need it. For any exact category with weak

equivalences and duality (E , ω, ∗, can) it is possible to define an H-group

GW(E , ω, ∗, can)

whose homotopy groups are the Grothendieck-Witt groups defined classically, see

[Sch17] or [Sch10] Definition 3, for example. This construction is functorial in cate-

gories with weak equivalences and duality. Moreover, it can be shown that for the

category of divisorial schemes over some base S, the assignment

X 7→ (ChbVect(X), quis,Hom•OX (−,L[n]), can)

can be made functorial.
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Definition B.5.3. Let be SchS the category of divisorial schemes of finite type over

some regular base scheme S and L a line bundle over S. We define the simplicial

presheaf GW[n](L) ∈ sPre(SchS) by the assignment

p : X → S 7→ GW(ChbVect(X), quis,Hom•OX (−, p∗L[n]), can) =: GW[n](X,L)

We define the n-shifted Grothendieck-Witt groups of X ∈ SchS as πi(GW[n](X,L)).

If L = OS we will denote this simplicial presheaf simply as GW[n].

Remark B.5.4. The restriction of GW[n] to smooth schemes gives a pointed simpli-

cial presheaf inH(S). Moreover, GW[n] is an H-group in all the homotopy categories

we considered in the text. If n = 0 we get GW that we considered in Section 6.2,

i.e. symmetric hermitian K-theory, while if we take n = 2 we get the symplectic

hermitian K-theory we considered in Section 6.3.

We also have the same descent results we have for K-theory. In particular

Theorem B.5.5 ([Sch17] Theorems 9.7-9.8). Consider the category of divisorial

schemes SchS finite dimensional and of fine type over a regular base scheme S with
1
2 ∈ Γ(S,OS). Then for any n ∈ Z, GW[n] satisfies Zariski and Nisnevich descent

and it is A1-invariant over regular schemes.

Proof. See op. cit. and notice that the assumption of separatedness is used in

Theorem 9.8 there to make Theorem 3.4 of [Bal01] work. However, we can replace

the hypothesis of being separated with the hypothesis of having an affine diagonal in

the proof of this last theorem (just start with a semi-separated affine open covering,

i.e. with an open covering consisting of affine schemes such that their intersection

is still affine) and the proof goes through as well.
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[SGA71] Théorie des intersections et théorème de Riemann-Roch. Lecture Notes in

Mathematics, Vol. 225. Springer-Verlag, Berlin-New York, 1971. Séminaire
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