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This review concerns the computation of curvature-dependent interface mo-
tion governed by geometric partial differential equations. The canonical prob-
lem of mean curvature flow is that of finding a surface which evolves so that, at
every point on the surface, the normal velocity is given by the mean curvature.
In recent years the interest in geometric PDEs involving curvature has bur-
geoned. Example of applications are, amongst others, the motion of grain
boundaries in alloys, phase transitions and image processing. The methods
of analysis, discretization and numerical analysis depend on how the surface
is represented. The simplest approach is when the surface is a graph over
a base domain. This is an example of a sharp interface approach which, in
the general parametric approach, involves seeking a parametrization of the
surface over a base surface, such as a sphere. On the other hand an interface
can be represented implicitly as a level surface of a function, and this idea
gives rise to the so-called level set method. Another implicit approach is the
phase field method , which approximates the interface by a zero level set of a
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phase field satisfying a PDE depending on a new parameter. Each approach
has its own advantages and disadvantages. In the article we describe the
mathematical formulations of these approaches and their discretizations. Al-
gorithms are set out for each approach, convergence results are given and are
supported by computational results and numerous graphical figures. Besides
mean curvature flow, the topics of anisotropy and the higher order geometric
PDEs for Willmore flow and surface diffusion are covered.
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1. Introduction

A geometric evolution equation defines the motion of a hypersurface by
prescribing the normal velocity of the surface in terms of geometric quantit-
ies. As well as being of striking mathematical interest, geometric evolution
problems occur in a wide variety of scientific and technological applications.
A traditional source of problems is materials science, where the understand-
ing of the strength and properties of materials requires the mathematical
modelling of the morphology of microstructure. Evolving surfaces might
be grain boundaries, which separate differing orientations of the same crys-
talline phase, or solid–liquid interfaces exhibiting dendritic structures in
under-cooled solidification. On the other hand newer applications are as-
sociated with image processing. For example, in order to identify a dark
shape in a light background in a two-dimensional image a so-called snake
contour is evolved so that it wraps around the shape.

In this article we survey numerical methods for the evolution of surfaces
whose normal velocity is strongly dependent on the mean curvature of the
surface. The objective is to find a family {Γ(t)}t∈[0,T ] of closed compact and
orientable hypersurfaces in R

n+1 whose evolution is defined by specifying the
velocity V of in the normal direction ν. An example of a general geometric
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evolution equation is

V = f(x, ν, H) on Γ(t), (1.1)

where f depends on the application and the x dependence might arise from
evaluating on the surface Γ(t) field variables which satisfy their own system
of nonlinear partial differential equations in R

n+1 away from the surface. It
is important to note that, in order to specify the evolution of the surface, it
is sufficient to define the normal velocity.

The prototype problem is motion by mean curvature, for which

V = −H on Γ(t), (1.2)

where H is the sum of the n principal curvatures of Γ(t). We call H the mean
curvature rather than the arithmetic mean of the principal curvatures. Our
sign convention is that H is positive for spheres, with ν being the outward
normal. It is well known that, starting from an initial surface Γ0, this
equation is a gradient flow for the area functional,

E(Γ) =
∫

Γ
1 dA. (1.3)

In applications the area functional is an interfacial energy with a constant
energy density 1. Equation (1.2) may be viewed as an analogue for surfaces
of the parabolic heat equation

ut − ∆u = 0.

On the other hand, another geometric equation is

V = ∆Γ(t)H on Γ(t), (1.4)

where ∆Γ(t) is the Laplace–Beltrami or surface Laplacian operator on Γ(t).
This can be viewed as an analogue of the spatially fourth order parabolic
equation

ut + ∆2u = 0.

1.1. Approaches

In order to solve a surface evolution equation analytically or numerically,
we need a description of Γ(t). Each choice of description leads to a partic-
ular nonlinear partial differential equation defining the evolution. Thus the
computational method depends strongly on the way we choose to describe
the surface. For this article we shall focus on four possible approaches.

Parametric approach. The hypersurfaces Γ(t) are given as

Γ(t) = X(·, t)(M),

where M is a suitable reference manifold (fixing the topological type of Γ(t))
and X : M×[0, T ) → R

n+1 has to be determined. Here X(p, t), for p ∈ M , is
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Figure 1.1. A dumbbell-shaped two-dimensional surface
parametrized over the unit sphere.

Figure 1.2. A lemniscate, parametrized over the unit circle.

the position vector at time t of a point on Γ(t). If we are interested in closed
curves in the plane then M can be the unit circle S1, whereas if Γ(t) is a
two-dimensional surface then M could be the unit sphere S2 (see Figures 1.1
and 1.2). Geometrical quantities are easily expressed as derivatives of the
parametrization so that evolution laws such as (1.2) may be translated into
nonlinear parabolic systems of PDEs for the vector X. With this approach
there is no notion of the surface being the boundary of an open set and
having an inside and outside, so self-intersection is perfectly natural for
smooth parametrizations and is not necessarily associated with singularities.
For example in the plane a figure of eight curve can be smoothly mapped
onto the unit circle one to one (Figure 1.2). At the crossing point the curve
has two smoothly evaluated normals and curvatures which depend on the
parametrization. A parametrized curve evolving by mean curvature can
evolve smoothly from this configuration.

Graphs. We assume that Γ(t) can be written in the form

Γ(t) = {(x, u(x, t)) | x ∈ Ω},

where Ω ⊂ R
n and the height function u : Ω × [0, T ) → R has to be

found. We shall see that the law (1.2) leads to a nonlinear parabolic PDE
for u. Clearly, the assumption that Γ(t) is a graph is rather restrictive;
however, techniques developed for this case have turned out to be very useful
in understanding more general situations. Since the height is a smooth
function we can view Γ(t) as dividing Ω × R into two sets, namely the
regions above and below the graph.
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Figure 1.3. Level lines of a level set function (right) for the
figure of eight curve (left).

Figure 1.4. Graph of a level set function for the figure of
eight curve, cut at the zero level. Negative part left and
positive part (graphically enlarged) right.

Level set method. We look for Γ(t) as the zero level set of an auxiliary
function u : R

n+1 × [0,∞) → R, that is,

Γ(t) = {x ∈ R
n+1 | u(x, t) = 0}.

The law (1.2) now translates into a nonlinear, degenerate and singular PDE
for u. Clearly intrinsic to this approach is the notion of Γ(t) being a dividing
surface between the two regions where the level set function is positive and
negative. Thus we have the notion of inside and outside. In order to describe
a figure of eight by a level set function it is necessary to have the level set
function positive and negative, as shown in Figures 1.3 and 1.4.

Phase field approach. The phase field approach is based on an approxima-
tion of the sharp interface by a diffuse interface

Γε(t) = {x ∈ R
n+1 | −1 + Cε ≤ uε(x, t) ≤ 1 − Cε}

of width O(ε), across which the phase field function uε has a transition
from approximately one bulk negative value −1 to approximately a second
positive bulk value +1. The zero level set of the phase field function ap-
proximates the surface. Just as in the level set method there is the notion
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of a material interface separating an inside and outside and in the basic im-
plementation interface self-intersection and topological change are handled
automatically. The bulk values of the phase field function correspond to
the minima of a homogeneous energy function with two equal double wells.
Interfacial energy is assigned to the diffuse interface via the gradient of the
phase field function. For motion by mean curvature the evolution is defined
as a semilinear parabolic equation of reaction–diffusion or Ginzburg–Landau
type. Frequently in applications mathematical models are derived which,
from the beginning, involve diffuse interfaces and phase field functions.

Comments
Conceptually the graph formulation is the simplest and most efficient. It
involves solving a scalar nonlinear parabolic equation in n space dimensions
and directly computes the surface. However, there are many circumstances
where the surface is not a graph. Furthermore, even if the initial surface is a
graph it is possible that over the course of the evolution that property might
be lost, despite the surface evolving smoothly. This would lead to gradient
blow-up of the solution of the graph equation. There is the possibility that
the solution of a numerical discretization exists globally and appears to be
stable even though there is no solution to the continuous equation.

The parametric approach is also direct. It is conceptually more advanced
than the graph approach and one has to solve in n space dimensions a
system of n + 1 parabolic equations. If the surface is a graph then the
parametric approach is less efficient than solving for the height of the sur-
face. On the other hand it is more widely applicable. In the case of a closed
curve one can use periodic boundary conditions on the unit interval in order
to solve over the circle. A closed two-dimensional surface can be approx-
imated by a polyhedral surface. A parametrized surface does not ‘see’ an
inside or outside. From the point of view of differential geometry this may
not be an issue. However, when the surface separates two phases, or two
materials, or two colours, there are significant issues. For example, consider
using two colours in Figure 1.2 in order to define the curve as the interface
between the coloured regions. Black may be used to colour the inside of
both loops and white to colour the the rest of the plane, but if black is
used inside just one loop then the other loop is lost. Thus, in order to use
the parametric approach with this initial condition, one either thinks of a
parametrization which traverses the curve without a crossing, but with a
single self-intersection, or regards them as being two separate closed curves
which touch at one point. These choices lead to differing evolutions for
mean curvature flow.

Contrary to the parametric approach, the level set method has the capab-
ility of tracking topological changes (like pinching-off or merging) of Γ(t) in
an automatic way. In the basic implementation of the method topological
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change is nothing special and is observed in post-processing the computa-
tional output. This is because, in principle, zero level sets of continuous
functions can exhibit these features. However, from the mathematical point
of view there are issues of existence of solutions of the degenerate partial
differential equations that the level set approach generates. In the case of
motion by mean curvature there is the notion of a viscosity solution which
yields a unique evolution from any continuous function. The example of the
lemniscate discussed in the context of the parametric approach introduces
a new idea in the level set approach of fattening of the interface. The level
set for this example develops an interior whose boundary yields both of the
described solutions. Self-intersection, merger and pinch-off can all be simu-
lated by this approach. This advantage, however, needs to be offset against
the fact that the problem now becomes (n + 1)-dimensional in space.

The phase field approach can also handle topological change, self-inter-
section, merger and pinch-off without doing anything special. It is the one
approach which in its conception involves an approximation. The fact that
it involves a new parameter ε is both an advantage and a disadvantage. The
parabolic equations are in principle easy to solve but possess a certain com-
putational stiffness due to the thickness of the diffuse interface. However,
in many applications phase field models arise naturally and the ε parameter
allows us to resolve singularities in a way which may be viewed as being
physically motivated. From both the mathematical and physical points of
view it is widely applicable in a rational way, whereas the use of the level
set method is frequently ad hoc.

In general, the choice of one or the other approach will depend on whether
one expects topological changes in the flow.

1.2. Applications

In what follows we list some problems in which a law of the form (1.1) or
generalizations of it arise.

Grain boundary motion
Grain boundaries in alloys are interfaces which separate bulk crystalline
regions of the same phase but with differing orientations. Associated with
the grain boundary is a surface energy which gives rise to a thermodynamic
restoring force. For a constant surface energy density this is simply the
surface tension force proportional to the mean curvature and the resulting
evolution law is just (1.2). Frequently there is also a driving force causing
motion of the grain boundary.

Surface growth
The growth of thin films on substrates is technologically important. For
example, epitaxy is a method for growing single crystals by the deposition
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of atoms and molecules on to a growing film surface. There are numerous
physical mechanisms operating at differing time and length scales which
affect the growth process. A simple model would have a driving force rep-
resenting the deposition flux of atoms onto the surface which might be in
the normal direction or in a fixed vertical direction parallel to a beam of
arriving atoms.

Image processing
One of the most important problems in image processing is to automatically
detect contours of objects. We essentially follow the exposition of Aubert
and Kornprobst (2002). Suppose that M ⊂ R

n+1 (n = 1 or 2) is a given
object and let I(x) = χΩ\M (x) be the characteristic function of Ω\M . The
function

g(x) =
1

1 + |∇Iσ(x)|2 ,

where Iσ is a mollification of I, will be small near the contour of M . It is
therefore natural to look for minimizers of the functional

J(Γ) =
∫

Γ
g(x) dA

where Γ is a curve in R
2 or a surface in R

3. The corresponding L2-gradient
flow leads to the following evolution law: find curves/surfaces (moving
‘snakes’) Γ(t) such that

V = −∇ · (g ν) = −g H −∇g · ν on Γ(t).

Here, t plays the role of an artificial time; clearly this law fits into the
framework (1.1).

Stefan problem for undercooled solidification
Consider a container Ω ⊂ R

n+1 (n = 1 or 2) filled with an undercooled
liquid. Solidification of the liquid follows the nucleation of initial solid seed
with characteristic diameter larger than the critical radius. The seed will
then grow into the liquid. A mathematical model for this situation is the
Stefan problem with kinetic undercooling, in which the solid–liquid interface
is described by a curve/surface Γ(t) and has to be determined together
with the temperature distribution. Here the interior of Γ(t) is the solid
region ΩS(t) and the exterior is the liquid region ΩL(t). Using a suitable
non-dimensionalization the problem then reads: for a given initial phase
boundary Γ0 and initial temperature distribution Θ0 = Θ0(x) (x ∈ Ω), find
the non-dimensional temperature Θ = Θ(x, t) and the phase boundary Γ(t)
(t > 0), such that the heat equation is satisfied in the bulk, that is,

Θt − ∆Θ = 0 in Ω \ Γ(t),
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together with the initial value Θ(·, 0) = Θ0 in Ω. On the moving boundary
the following two conditions are satisfied:

V = − 1
εl

[
∂Θ
∂ν

]
on Γ(t), (1.5)

Θ + εV β(ν)V + σHγ = 0 on Γ(t). (1.6)

Here, [∂Θ/∂ν] denotes the jump in the normal derivative of the temper-
ature field across the interface and εl is the constant measuring the latent
heat of solidification. Equation (1.6) is the Gibbs–Thomson law; εV , σ are
non-dimensional positive constants measuring the strength of the kinetic
undercooling and surface tension which depress the temperature on the
solid–liquid interface from the scaled equilibrium zero melting temperat-
ure. Furthermore, Hγ is an anisotropic mean curvature associated with a
surface energy density, γ(ν), depending on the orientation of the normal.
There may also be anisotropy, β(ν), in the kinetic undercooling. Note that
(1.6) can be rewritten as

εV

σ
β(ν)V = −Hγ − 1

σ
Θ on Γ(t).

If we consider Θ as being given, this equation again fits into our general
framework (1.1) provided we allow for a coefficient in front of V and a
generalized notion of mean curvature.

Figure 1.5 from Schmidt (1996) shows a simulation in which the free
boundary was described by the parametric approach resulting in a sharp
interface model. One can see the free boundary forming a dendrite. For

Figure 1.5. Evolution of a dendrite with sixfold anisotropy.
Time-steps of the free boundary (left) and adapted grid for
the temperature at one time-step (right).
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results concerning three-dimensional dendrites and more information about
the algorithm we refer to Schmidt (1996).

Figure 1.6 from Fried (1999) illustrates a possible effect of using a level
set method for the free boundary in this problem. Dendrites may seem to
merge. But if a smaller time-step is used the dendrites stay apart. For
more information about a level set algorithm for dendritic growth we refer
to Fried (1999, 2004).

Surface diffusion and Willmore flow
The following laws do not fit into (1.1), but we list them as examples of im-
portant geometric evolution equations in which the normal velocity depends
on higher derivatives of mean curvature.

The surface diffusion equation

V = ∆ΓH (1.7)

models the diffusion of mass within the bounding surface of a solid body.
At the atomistic level atoms on the surface move along the surface owing to
a driving force consisting of a chemical potential difference. For a surface
with constant surface energy density the appropriate chemical potential in
this setting is the mean curvature H. This leads to the flux law

ρV = −divΓj,

where ρ is the mass density and j is the mass flux in the surface, with the
constitutive flux law (Herring 1951, Mullins 1957)

j = −D∇ΓH.

Here, D is the diffusion constant. From these equations we obtain the law
(1.7) after an appropriate non-dimensionalization. In order to model the

Figure 1.6. A possible effect of the use of a level set method.
Growing dendrites: merging (left) for large time-step size
and staying apart (right) for smaller time-step size.
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underlying structure of the solid body bounded by Γ, anisotropic surface
diffusion is important, that is,

V = ∆ΓHγ , (1.8)

with Hγ denoting the anisotropic mean curvature of the surface Γ as it is
introduced in (8.15).

A similar evolution law is Willmore flow,

V = ∆ΓH + H|∇Γν|2 − 1
2
H3 on Γ(t), (1.9)

which arises as the L2-gradient flow for the classical bending energy E(Γ) =
1
2

∫
Γ H2 dA. Apart from applications in mechanics and membrane physics

this flow has recently been used for surface restoration and inpainting.

1.3. Outline of article

This article is organized as follows. In Section 2 we present some useful
geometric analysis, in particular the notion of mean curvature. The basic
mean curvature flow is defined in Section 3 and some elementary properties
are described. The next four sections consider in turn basic approaches for
numerical approximation. In Section 4 we consider the parametric approach.
We start with the classical curve shortening flow and present a semidiscrete
numerical scheme as well as error estimates. Next, we show how to apply
the above ideas to the approximation of higher-dimensional surfaces. A
crucial point is to construct numerical schemes which reflect the intrinsic
nature of the flow. Section 5 is concerned with graphs. We prove an error
bound for a semidiscrete finite element scheme thereby showing the virtue
of working with geometric quantities. A fully discrete scheme along with
stability issues is discussed afterwards. In Section 6 we introduce the level
set equation as a way of handling topological changes. We briefly discuss the
framework of viscosity solutions which allows a satisfactory existence and
uniqueness theory. For numerical purposes it is convenient to regularize the
level set equation. We collect some properties of the regularized problem
and clarify its formal similarity to the graph setting. The approximation of
mean curvature flow by phase field methods is considered in Section 7. Even
before numerical discretization there is the notion of approximation of a
sharp interface by a diffuse interface of width O(ε). The phase field approach
depends on the notion of a diffuse interfacial energy composed of quadratic
gradient and homogeneous free energy terms involving a phase field function.
The choice of double well energy potential is discussed. We recall some
analytical results as well as a convergence analysis for a discretization in
space by linear finite elements. We finish this section by discussing the
discretization in time together with the question of stability. In Section 8
we introduce the concept of the anisotropy γ together with its relevant
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properties and subsequently generalize the ideas of the previous sections to
this setting. Finally, Section 9 is concerned with fourth order flows: we
present discretization techniques for both surface diffusion and Willmore
flow.

For the convenience of the reader we have included a long list of references,
which are related to the subject of these notes, but not all of which are cited
in the text.

2. Some geometric analysis

The aim of this section is to collect some useful definitions and results from
differential geometry. We refer to Gilbarg and Trudinger (1998) and Giga
(2002) for a more detailed exposition of this material.

2.1. Hypersurfaces

A subset Γ ⊂ R
n+1 is called a C2-hypersurface if for each point x0 ∈ Γ there

exists an open set U ⊂ R
n+1 containing x0 and a function u ∈ C2(U) such

that

U ∩ Γ = {x ∈ U | u(x) = 0}, and ∇u(x) �= 0 for all x ∈ U ∩ Γ. (2.1)

The tangent space TxΓ is then the n-dimensional linear subspace of R
n+1

that is orthogonal to ∇u(x). It is independent of the particular choice of
function u which is used to describe Γ. A C2-hypersurface Γ ⊂ R

n+1 is
called orientable if there exists a vectorfield ν ∈ C1(Γ, Rn+1) (i.e., ν ∈ C1

in an open neighbourhood of Γ) such that ν(x)⊥TxΓ and |ν(x)| = 1 for
all x ∈ Γ. In what follows, we shall assume that Γ ⊂ R

n+1 is an oriented
C2-hypersurface.

We define the tangential gradient of a function f , which is differentiable
in an open neighbourhood of Γ by

∇Γf(x) = ∇f(x) −∇f(x) · ν(x) ν(x), x ∈ Γ.

Here ∇ denotes the usual gradient in R
n+1. Note also that ∇Γf(x) is the

orthogonal projection of ∇f(x) onto TxΓ. It is straightforward to show that
∇Γf only depends on the values of f on Γ. We use the notation

∇Γf(x) = (D1f(x), . . . , Dn+1f(x)) (2.2)

for the n + 1 components of the tangential gradient. Obviously

∇Γf(x) · ν(x) = 0, x ∈ Γ.

If f is twice differentiable in an open neighbourhood of Γ, then we define
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the Laplace–Beltrami operator of f as

∆Γf(x) = ∇Γ · ∇Γf(x) =
n+1∑
i=1

DiDif(x), x ∈ Γ. (2.3)

2.2. Oriented distance function

A useful level set representation of a hypersurface can be obtained with the
help of the distance function. Let Γ be as above and assume in addition that
Γ is compact. The Jordan–Brouwer decomposition theorem then implies
that there exists an open bounded set Ω ⊂ R

n+1 such that Γ = ∂Ω. We
assume that the unit normal field to Γ points away from Ω and define the
oriented (signed) distance function d by

d(x) =




dist(x,Γ), x ∈ R
n+1 \ Ω̄

0, x ∈ Γ
−dist(x,Γ), x ∈ Ω.

It is well known that d is globally Lipschitz-continuous and that there exists
δ > 0 such that

d ∈ C2(Γδ), where Γδ = {x ∈ R
n+1 | |d(x)| < δ}. (2.4)

Every point x ∈ Γδ can be uniquely written as

x = a(x) + d(x)ν(a(x)), x ∈ Γδ, (2.5)

where a(x) ∈ Γ. Furthermore, ∇d(x) = ν(a(x)), x ∈ Γδ, which implies in
particular that

|∇d(x)| ≡ 1 in Γδ. (2.6)

Figure 2.1. Graph (right) of the oriented distance function
for the curve (left).
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2.3. Mean curvature

Let us next turn to the notion of mean curvature. By assumption, ν is C1

in a neighbourhood of Γ so that we may introduce the matrix

Hjk(x) = Djνk(x), j, k = 1, . . . , n + 1, x ∈ Γ. (2.7)

It is not difficult to show that (Hjk(x)) is symmetric. Furthermore,

n+1∑
k=1

Hjk(x)νk(x) =
n+1∑
k=1

Djνk(x)νk(x) =
1
2
Dj |ν|2(x) = 0,

since |ν| = 1 on Γ. Thus, (Hjk(x)) has one eigenvalue which is equal to
zero with corresponding eigenvector ν(x). The remaining n eigenvalues
κ1(x), . . . , κn(x) are called the principal curvatures of Γ at the point x. We
now define the mean curvature of Γ at x as the trace of the matrix (Hjk(x)),
that is,

H(x) =
n+1∑
j=1

Hjj(x) =
n∑

j=1

κj(x). (2.8)

Note that (2.8) differs from the more common definition H = 1
n

∑n+1
j=1 Hjj .

From (2.7) we derive the following expression for mean curvature,

H(x) = ∇Γ · ν(x), x ∈ Γ, (2.9)

where ∇Γ ·f =
∑n+1

j=1 Djfj denotes the tangential divergence of a vectorfield
f . In particular we see that H > 0 if Γ = Sn and the unit normal field is
chosen to point away from Sn, i.e., ν(x) = x.

While the sign of H depends on the choice of the normal ν, the mean
curvature vector Hν is an invariant. A useful formula for this quantity can
be obtained by choosing f(x) = xj , j ∈ {1, . . . , n+1} in (2.3) and observing
that Dixj = δij − νjνi. We then deduce with the help of (2.9) that

∆Γxj = −
n+1∑
i=1

Di(νjνi) = −(∇Γ · ν)νj −∇Γνj · ν = −Hνj ,

so that
−∆Γx = Hν on Γ. (2.10)

Let us next fix a point x̄ ∈ Γ and calculate H(x̄) for various representa-
tions of the surface Γ near x̄.

Level set representation. Suppose that Γ is given as in (2.1) near x̄. Clearly,
we then have

ν(x) = ± ∇u(x)
|∇u(x)|
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for x ∈ U ∩ Γ. If the plus sign applies we obtain

H = ∇Γ · ∇u

|∇u| = ∇ · ∇u

|∇u| =
1

|∇u|

n+1∑
i,j=1

(
δij −

uxiuxj

|∇u|2
)

uxixj . (2.11)

In the special case that u(x) = d(x), where d is the oriented distance func-
tion to Γ, we obtain in view of (2.6)

H(x) = ∆d(x), x ∈ Γ. (2.12)

Graph representation. Suppose that

U ∩ Γ = {(x, v(x)) | x ∈ Ω},

where Ω ⊂ R
n is open, x = (x1, . . . , xn) and v ∈ C2(Ω). Defining u(x, xn+1)

= v(x) − xn+1 we see that U ∩ Γ is the zero level set of u and the above
considerations imply that

H(x, v(x)) = ∇ ·
(

∇v(x)√
1 + |∇v(x)|2

)
, (x, v(x)) ∈ U ∩ Γ, (2.13)

where ∇ is the gradient in R
n and the unit normal is chosen as ν = (∇v,−1)√

1+|∇v|2
.

Parametric representation Suppose that there exists an open set V ⊂ R
n

and a mapping X ∈ C2(V, Rn+1) such that

U ∩ Γ = X(V ), rankDX(θ) = n for all θ ∈ V.

The vectors ∂X
∂θ1

(θ), . . . , ∂X
∂θn

(θ) then form a basis of TxΓ at x = X(θ). We
define the metric on Γ by

gij(θ) =
∂X

∂θi
(θ) · ∂X

∂θj
(θ), i, j = 1, . . . , n

and let gij be the components of the inverse matrix of (gij). We then have
the following formulae for the tangential gradient of a function f (defined
in a neighbourhood of Γ) and the mean curvature vector Hν:

∇Γf =
n∑

i,j=1

gij ∂(f ◦ X)
∂θj

∂X

∂θi
, (2.14)

Hν = − 1
√

g

n∑
i,j=1

∂

∂θi

(
gij√g

∂X

∂θj

)
(2.15)

where g = det(gij).
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2.4. Integration by parts

Let us assume in this section that Γ is in addition compact. The formula
for integration by parts on Γ is (cf. Gilbarg and Trudinger (1998))∫

Γ
Dif dA =

∫
Γ

fHνi dA i = 1, . . . , n + 1, (2.16)

where dA denotes the area element on Γ and f is continuously differentiable
in a neighbourhood of Γ. Applying (2.16) with h = fDig, summing from
i = 1, . . . , n+1 and taking into account that ∇Γνi ·ν = 0, we obtain Green’s
formula, ∫

Γ
∇Γf · ∇Γg dA = −

∫
Γ

f∆Γg dA. (2.17)

In particular, we deduce from (2.10)∫
Γ

Hν · φ dA =
∫

Γ
∇Γx · ∇Γφ dA, (2.18)

where φ is continuously differentiable in a neighbourhood of Γ with values
in R

n+1 and ∇Γx · ∇Γφ =
∑n+1

i=1 ∇Γxi · ∇Γφi. This relation will be very
important for the numerical treatment of mean curvature flow. The above
formulae can be generalized to surfaces with boundaries by including an
appropriate integral over ∂Γ.

2.5. Moving surfaces

In this section we shall be concerned with surfaces that evolve in time. A
family (Γ(t))t∈(0,T ) is called a C2,1-family of hypersurfaces if, for each point
(x0, t0) ∈ R

n+1 × (0, T ) with x0 ∈ Γ(t0), there exists an open set U ⊂ R
n+1,

δ > 0 and a function u ∈ C2,1(U × (t0 − δ, t0 + δ)) such that

U ∩Γ(t) = {x ∈ U | u(x, t) = 0} and ∇u(x, t) �= 0, x ∈ U ∩Γ(t). (2.19)

Suppose in addition that each Γ(t) is oriented by a unit normal field ν(·, t) ∈
C1(Γ(t), Rn+1) and that ν ∈ C0(

⋃
0<t<T Γ(t) × {t}, Rn+1). The normal

velocity at a point (x0, t0) (x0 ∈ Γ(t0)) is then defined as

V (x0, t0) = φ′(t0) · ν(x0, t0),

where φ ∈ C1((t0 − ε, t0 + ε), Rn+1) satisfies φ(t0) = x0 and φ(t) ∈ Γ(t) for
|t− t0| < ε. It can be shown that V (x0, t0) is independent of the particular
choice of φ. Let us calculate V (x0, t0) for various representations of Γ(t).

Level set representation. Let u be as in (2.19); as above we then have ν =
± ∇u

|∇u| . If the plus sign applies and φ ∈ C1((t0 − ε, t0 + ε), Rn+1) satisfies
φ(t0) = x0 as well as φ(t) ∈ Γ(t) for |t − t0| < ε, we have

0 =
d
dt

u(φ(t), t) = ∇u(φ(t), t) · φ′(t) + ut(φ(t), t),
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and hence

V (x0, t0) = − ut(x0, t0)
|∇u(x0, t0)|

. (2.20)

Graph representation. Suppose that

U ∩ Γ(t) = {(x, v(x, t)) | x ∈ Ω},
where Ω ⊂ R

n is open and v ∈ C2,1(Ω × (t0 − δ, t0 + δ)). Applying the
formula for the level set case to u(x, xn+1, t) = v(x, t) − xn+1, we obtain

V = − vt√
1 + |∇v|2

(2.21)

for the unit normal field ν = (∇v,−1)√
1+|∇v|2

.

2.6. Transport theorem for integrals

Consider a family (Γ(t))t∈(0,T ) of evolving hypersurfaces which satisfies the
assumptions made above and suppose in addition that each surface Γ(t) is
compact. We are interested in the time derivative of certain volume and
area integrals.

Lemma 2.1. Let g ∈ C1(Q), where Q is an open set containing⋃
0<t<T

Γ(t) × {t}.

Suppose in addition that each surface Γ(t) is the boundary of an open
bounded subset Ω(t) ∈ R

n+1. Then

d
dt

∫
Ω(t)

g dx =
∫

Ω(t)

∂g

∂t
dx +

∫
Γ(t)

gV dA, (2.22)

d
dt

∫
Γ(t)

g dA =
∫

Γ(t)

∂g

∂t
dA +

∫
Γ(t)

gV H dA +
∫

Γ(t)

∂g

∂ν
V dA. (2.23)

Proof. See the Appendix.

3. Definition and elementary properties of
mean curvature flow

The purpose of this section is to introduce motion by mean curvature and to
describe some basic features of this flow. Consider a C2,1-family of hyper-
surfaces (Γ(t))t∈[0,T ] ⊂ R

n+1 together with a choice ν of a unit normal.

Definition 1. We say that (Γ(t))t∈[0,T ] moves by mean curvature if

V = −H on Γ(t). (3.1)
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Here, V denotes the velocity of Γ(t) in the direction of ν and H is mean
curvature.

As we shall see later, the above equation gives rise to a parabolic equation,
or a parabolic system, for the function(s) describing the surfaces Γ(t), to
which an initial condition

Γ(0) = Γ0 (3.2)

has to be added. If Γ(t) has a boundary, then also suitable boundary con-
ditions need to be specified.

In order to give a first idea of this flow we look at the well-known example
of the shrinking sphere. Let Γ(t) = ∂Br(t)(x0) ⊂ R

n+1, oriented by the unit
outer normal ν(x) = x−x0

r(t) . Then, V = r′(t), H = n
r(t) on Γ(t), so that Γ(t)

moves by mean curvature provided that r′(t) = − n
r(t) . The solution of this

ODE is given by r(t) =
√

r2
0 − 2nt, 0 ≤ t <

r2
0

2n , where Γ0 = ∂Br0(x0). Note

that Γ(t) shrinks to a point as t ↗ r2
0

2n .
The main feature of mean curvature flow is its area-decreasing property,

which is a consequence of the following result.

Lemma 3.1. Let Γ(t) be a family of evolving hypersurfaces satisfying
V = −H on Γ(t) and assume that each Γ(t) is compact. Then∫

Γ(t)
V 2 dA +

d
dt

|Γ(t)| = 0,

where |Γ| is the area of Γ.

Proof. This follows immediately from choosing g ≡ 1 in (2.23) and the
evolution law (3.1).

Since the law (3.1) gives rise to a second order parabolic problem we
expect existence of a smooth solution locally in time for a smooth initial
hypersurface Γ0. Furthermore, maximum and comparison principles are
available which can be used to show that two smooth compact solutions
which are initially disjoint will stay disjoint (see, e.g., Ecker (2002)). Using
the shrinking sphere as a comparison solution, it follows in particular that
if Γ(t), 0 ≤ t < T is a smooth solution with Γ0 ⊂ Br0(x0), then Γ(t) ⊂
B√

r2
0−2nt

(x0) for 0 ≤ t < min(T,
r2
0

2n). In general, solutions will develop
singularities in finite time before they disappear, but there are certain initial
configurations for which they stay smooth until they shrink to a point.

Theorem 3.2. Let n ≥ 2 and assume that Γ0 ⊂ R
n+1 is a smooth,

compact and uniformly convex hypersurface. Then (3.1) and (3.2) have
a smooth solution on a finite time interval [0, T ) and the Γ(t) converge to a
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point as t ↗ T . If one rescales the surfaces in such a way that the enclosed
volume remains fixed, one has convergence against a sphere as t ↗ T .

Proof. See Huisken (1984).

The case n = 1 is usually referred to as curve shortening flow.

Theorem 3.3. Assume that Γ0 ⊂ R
2 is a smooth embedded closed curve.

Then (3.1) and (3.2) have a smooth embedded solution on a finite time
interval [0, T ), which shrinks to a ‘round’ point as t ↗ T .

Proof. Gage and Hamilton (1986) proved this result for convex Γ0; sub-
sequently Grayson (1987) showed that a smooth embedded closed curve
remains smooth and embedded and becomes convex in finite time.

If the initial curve is not embedded, cusp-like singularities may develop
(see Figures 4.2 and 4.3). The papers of Angenent (1991), Altschuler and
Grayson (1992) and Deckelnick (1997) propose various methods of how to
continue the solution past such a singularity. The analogue of Theorem 3.3
for surfaces does not hold, as can be seen by choosing a suitable dumbbell-
shaped initial surface which develops a pinch-off singularity before it shrinks
to a point (see Figure 4.5 and Grayson (1989)). This pinch-off leads to a
change of the topological type of Γ(t), so that the parametric approach
– in which the topological type is fixed – will develop a singularity that
is difficult to handle. Thus the question arises whether it is possible to
introduce a notion of solution that is capable of following the flow through
a singularity. Several such notions have been proposed and analysed starting
with the pioneering work of Brakke (1978) on varifold solutions, which uses
tools from geometric measure theory. In this context we also mention the
surface evolver program of Brakke (1992). Level set and phase field methods
constitute two completely different approaches which take an Eulerian point
of view. We shall discuss these in more detail in Sections 6 and 7.

4. Parametric mean curvature flow

As is mentioned above, in the parametric approach one chooses a suitable
reference manifold M ⊂ R

n+1 (of the topological type of the evolving hyper-
surfaces Γ(t)) and then looks for maps X(·, t) : M → R

n+1 (0 ≤ t < T ) such
that Γ(t) = X(·, t)(M). To fix ideas, let us assume that M is a compact
hypersurface without boundary. If we can find X in such a way that

∂X

∂t
(p, t) = −H(X(p, t))ν(X(p, t)) (p, t) ∈ M × (0, T ), (4.1)

then V = −H on Γ(t) follows by taking the dot product with the normal ν.
In order to understand (4.1) let F : Ω → R

n+1 be a local parametrization
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of M defined on an open set Ω ⊂ R
n and set

X̂(θ, t) = X(F (θ), t), (θ, t) ∈ Ω × (0, T ).

Recalling (2.15), the equation (4.1) then turns into

∂X̂

∂t
(θ, t) − 1√

ĝ

n∑
i,j=1

∂

∂θi

(
ĝij

√
ĝ

∂X̂

∂θj

)
= 0 (4.2)

where ĝij(θ, t) = ∂X̂
∂θi

· ∂X̂
∂θj

and ĝij , ĝ are as above. Thus (4.2), and hence (4.1),
is a nonlinear parabolic system, which is not defined at points (θ, t) where
ĝ(θ, t) = 0. In order to close this system, an initial condition X(p, 0) =
X0(p), p ∈ M needs to be prescribed, where X0 : M → R

n+1 is a paramet-
rization of the initial surface Γ0.

4.1. Curve shortening flow

Mean curvature evolution in the one-dimensional case is usually referred to
as curve shortening flow. In the case of closed curves, a convenient choice
of a reference manifold is M = S1, which can be parametrized globally
by F (θ) = (cos θ, sin θ), θ ∈ [0, 2π]. In the following, for simplicity, let us
identify X̂(θ, t) and X((cos θ, sin θ), t). Thus, (4.2) becomes

Xt −
1

|Xθ|

(
Xθ

|Xθ|

)
θ

= 0 in I × (0, T ), (4.3)

X(·, 0) = X0 in I, (4.4)

where I = [0, 2π]. In addition, X has to satisfy the periodicity condition

X(θ, t) = X(θ + 2π, t) 0 ≤ t < T, θ ∈ R. (4.5)

Suppose that X : R × [0, T ] → R
2 is a smooth solution of (4.3)–(4.5), in

particular |Xθ| > 0 in I × [0, T ]. If we multiply (4.3) by |Xθ|, take the dot
product with a test function ϕ ∈ H1

per(I; R2) = {ϕ ∈ H1(I; R2) | ϕ(0) =
ϕ(2π)} and integrate over I, we obtain∫

I
Xt · ϕ |Xθ| +

∫
I

Xθ · ϕθ

|Xθ|
= 0 for all ϕ ∈ H1

per(I; R2). (4.6)

We use (4.6) in order to discretize in space. For simplicity let θj = jh
(j = 0, . . . , N) be a uniform grid with grid size h = 2π/N and let

Sh =
{

ϕh ∈ C0(I; R2) | ϕh|[θj−1,θj ] ∈ P 2
1 , j = 1, . . . , N ; ϕh(0) = ϕh(2π)

}
be the space of piecewise linear continuous functions with values in R

2. The
spatial discretization of (4.3) is then given by∫

I
Xht · ϕh|Xhθ| +

∫
I

Xhθ · ϕhθ

|Xhθ|
= 0 for all ϕh ∈ Sh. (4.7)
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Denoting the common (scalar) nodal basis by {φ1, . . . , φN}, we can expand
Xh(θ, t) =

∑N
j=1 Xj(t)φj(θ) with vectors Xj(t) ∈ R

2. This one-dimensional
finite element formulation can be rewritten as a difference scheme. To see
this, insert ϕh = φje

k, (k = 1, 2; j = 1, . . . , N) into (4.7) and calculate∫
I
Xht · ϕh|Xhθ|dθ =

1
6
|Xj − Xj−1|Ẋj−1 · ek

+
1
3
(|Xj − Xj−1| + |Xj+1 − Xj |)Ẋj · ek +

1
6
|Xj+1 − Xj |Ẋj+1 · ek

as well as ∫
I

Xhθ · ϕhθ

|Xhθ|
dθ =

(
−Xj+1 − Xj

qj+1
+

Xj − Xj−1

qj

)
· ek.

Here, qj = |Xj −Xj−1| and the dot stands for the time derivative. Thus,
(4.7) can be written as

1
6
qjẊj−1 +

1
3
(qj + qj+1)Ẋj +

1
6
qj+1Ẋj+1 =

Xj+1 − Xj

qj+1
− Xj − Xj−1

qj
(4.8)

(j = 1, . . . , N). If we use mass lumping in (4.8) we get the difference scheme

1
2
(qj + qj+1)Ẋj =

Xj+1 − Xj

qj+1
− Xj − Xj−1

qj
. (4.9)

As initial values for Xj we choose

Xj(0) = X0(θj), j = 0, . . . , N, (4.10)

so that Xh(·, 0) is the linear interpolant of X0. Furthermore we require the
periodicity condition

Xj = Xj+N , j = −1, 0, 1. (4.11)

The following proposition shows that the lumped scheme reflects the curve
shortening property of the exact solution.

Proposition 4.1. Consider solutions X of (4.3) and Xh =
∑N

j=1 Xj(t)φj(θ)
of (4.9) respectively. Then we have for t ∈ [0, T ]

|Xθ(·, t)|t = −|Xt(·, t)|2|Xθ(·, t)| in I

q̇j = −1
4
(qj−1 + qj)|Ẋj−1|2 −

1
4
(qj + qj+1)|Ẋj |2, j = 1, . . . , N

as long as qj > 0, j = 1, . . . , N . Thus, the faces of the polygon with vertices
X1, . . . , XN decrease in length during time evolution.

Proof. For the proof of the first assertion we differentiate | Xθ
|Xθ| | ≡ 1 twice

with respect to θ and get

Xθ

|Xθ|
·
(

Xθ

|Xθ|

)
θ

= 0,
∣∣∣( Xθ

|Xθ|

)
θ

∣∣∣2 = − Xθ

|Xθ|
·
(

Xθ

|Xθ|

)
θθ

in I,
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which combined with (4.3) gives

|Xθ|t =
Xθ

|Xθ|
· Xθt =

Xθ

|Xθ|
· 1
|Xθ|

(
Xθ

|Xθ|

)
θθ

= − 1
|Xθ|

∣∣∣( Xθ

|Xθ|

)
θ

∣∣∣2 = −|Xt|2|Xθ|.

For the discrete solution we observe that by (4.9) with the unit vectors
Tj = Xj−Xj−1

qj
we have

q̇j = Tj · (Ẋj − Ẋj−1)

= Tj ·
(

2
qj + qj+1

(Tj+1 − Tj) −
2

qj−1 + qj
(Tj − Tj−1)

)

= − 2
qj + qj+1

(1 − Tj · Tj+1) −
2

qj−1 + qj
(1 − Tj−1 · Tj)

= − 1
qj + qj+1

|Tj − Tj+1|2 −
1

qj−1 + qj
(|Tj−1 − Tj |2

= −1
4
(qj−1 + qj)|Ẋj−1|2 −

1
4
(qj + qj+1)|Ẋj |2.

For this we have used the discrete equation (4.9) twice.

Under the assumption that a smooth and regular solution of the curve
shortening flow (4.3)–(4.5) exists, one obtains the following convergence res-
ult together with error estimates for the position vector X and the velocity
vector Xt, which by (4.1) is equal to the curvature vector. The proof follows
from Dziuk (1994) and is a special case of Theorem 8.4.

Theorem 4.2. Let X : I × [0, T ] → R
2 be a periodic smooth solution of

the curve shortening flow (4.3)–(4.5) with |Xθ| ≥ c0 > 0 in I × [0, T ]. Then
there exists an h0 > 0 depending on X and T such that for every 0 < h ≤ h0

there exists a unique solution Xh(θ, t) =
∑N

j=1 Xj(t)φj(θ) of the difference
scheme (4.9), (4.10) and

max
[0,T ]

‖X − Xh‖L2(I) +
(∫ T

0
‖Xθ − Xhθ‖2

L2(I) dt

)1/2

≤ ch, (4.12)

max
[0,T ]

‖Xt − Xht‖L2(I) +
(∫ T

0
‖Xtθ − Xhtθ‖2

L2(I) dt

)1/2

≤ ch, (4.13)

where c depends on X and T .

This algorithm can be generalized without changes to curves evolving in
higher codimension, i.e., X : I × [0, T ] → R

m and m > 2. The curve solving
(4.3) has a velocity only in the normal direction. It is also possible to use
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the parametric equation

Xt =
Xθθ

|Xθ|2

instead, which defines the same curve evolving in the normal direction with a
normal velocity being given by the curvature. However, the parametrization
is different, with the points on the curve now having a tangential velocity.
A finite element error analysis for the motion of a closed curve is given in
Deckelnick and Dziuk (1994), while error bounds for the evolution of a curve
attached to a fixed boundary with a normal contact condition are proved in
Deckelnick and Elliott (1998).

In order to obtain a practical method we still have to discretize in time.
Choose a time-step τ > 0 and let tm = mτ, m = 0, . . . , M, M ≤ [T

τ ]. We
let Xm

h ∈ Sh denote the approximation to X(·, tm). On the basis of (4.7)
we suggest the following scheme:

1
τ

∫
I
(Xm+1

h −Xm
h ) · ϕh|Xm

hθ|+
∫

I

Xm+1
hθ · ϕhθ

|Xm
hθ|

= 0 for all ϕh ∈ Sh. (4.14)

Calculations similar to those above yield a time discrete analogue of (4.9),
which we formulate as the following algorithm.

Algorithm 1. (Curve shortening flow)

(1) Let X0
j = X0(θj) (j = 0, . . . , N).

(2) Compute Xm+1
j (j = 0, . . . , N) from the tridiagonal systems

1
2τ

(qm
j +qm

j+1)(X
m+1
j −Xm

j )−
(

Xm+1
j+1 − Xm+1

j

qm
j+1

−
Xm+1

j − Xm+1
j−1

qm
j

)
= 0.

(3) If minj=1,...,N+1 qm+1
j > 0 then replace m by m + 1 and goto 2.

Thus, in each time-step a positive definite and symmetric linear system
has to be solved for each component of Xm+1

h . Each of these linear systems
is of tridiagonal form with two additional entries reflecting the periodicity
condition. The system decouples with respect to the dimension of the space
in which the curve moves. For practical purposes a redistribution of nodes
according to arc length on the curve is sometimes convenient.

Let us go back to the more precise notation X̂(θ, t) = X((cos θ, sin θ), t).
For later purposes it is convenient to look at (4.14) from a slightly different
angle. We introduce the polygon Γm

h = X̂m
h (I) along with the space

Sm
h = {φh : Γm

h → R
2 | φh is affine on each face of Γm

h }. (4.15)

Thus, if φh ∈ Sm
h , then φh is the restriction of an affine function on R

2 on
each face of the polygon and therefore

ϕh(θ) = φh(X̂m
h (θ)), θ ∈ I,
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Figure 4.1. Curve shortening flow applied to a star-shaped
curve. Time-steps 0, 100, 200, 300, 500, 700, 5000, 7000
(time-step size = 8.5586 × 10−5), 480 nodes.

Figure 4.2. Curve shortening flow applied to a curve with a
self-intersection. A singularity (cusp) appears. The effect
is that the algorithm jumps across the singularity. See
Figure 4.3 for a magnified image. Time-steps 0, 1000, 2000,
2500, 3000, 5000, 6000, 7000 (time-step size = 8.5586 × 10−5),
480 nodes.

Figure 4.3. Close-up of Figure 4.2. Time-steps 3498 and 3499
and 3505. The parametric theory breaks down.
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belongs to Ŝh. Recalling (2.14) we have

∇Γm
h

φh =
1

|X̂m
hθ|

ϕhθ ⊗
X̂m

hθ

|X̂m
hθ|

, p = X̂m
h (θ),

where (u ⊗ v)ij = uivj (u, v ∈ R
2) and ∇Γm

h
φh is given piecewise on each

face of Γm
h . If we define Xm+1

h ∈ Sm
h by Xm+1

h (p) = X̂m+1
h (θ), p = X̂m

h (θ).
Observing that

∇Γm
h

Xm+1
h · ∇Γm

h
φh |X̂m

hθ| =
X̂m+1

hθ · ϕhθ

|X̂m
hθ|

for all ϕh ∈ Ŝh

we can rewrite (4.14) as

1
τ

∫
Γm

h

(Xm+1
h −id)·φh dA+

∫
Γm

h

∇Γm
h

Xm+1
h ·∇Γm

h
φh dA = 0 for all φh ∈ Sm

h .

(4.16)
Note that the dot between the matrices ∇Γm

h
Xm+1

h and ∇Γm
h

φh is the stand-
ard scalar product in R

4. The key point about the formulation (4.16) is
that Γm+1

h is now parametrized with the help of the polygon Γm
h from the

previous time-step, so that the reference manifold M is no longer needed.
We can interpret the second integral on the left-hand side of (4.16) as an
approximation to ∫

Γ(tm+1)
∇Γ(tm+1)x · ∇Γ(tm+1)φ dA,

which equals −
∫
Γ(tm+1) Hν · φ dA by (2.17) and (2.10). Here, H is just the

usual curvature of the curve Γ(tm+1), but of course it is now natural to also
use (4.16) for approximating surfaces evolving by mean curvature. We will
discuss this issue in the next section.

4.2. Mean curvature flow of surfaces

In this section we shall use a higher-dimensional version of (4.16) in order
to approximate parametric surfaces Γ(t) = X(M, t), which satisfy (4.1). To
begin, we need an analogue of the polygons used in the previous section.

Figure 4.4. Polyhedral surfaces: successively refined grids
approximating a half sphere. Macro triangulation (left)
and triangulation levels 1, 5 and 7.
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Figure 4.5. First row: Parametric mean curvature flow of a
dumbbell-shaped surface. Development of a singularity.
Second row: Axially symmetric level set computation of the
same flow going beyond the topological change of the surface.

Definition 2. We call a set Γ ⊂ R
n+1 a polyhedral surface if

Γ =
⋃

T∈Th

T,

where the triangulation Th consists of closed, nondegenerate, n-dimensional
simplices. The intersection of two adjacent simplices is an (n − k)-dimen-
sional subsimplex of these simplices (k ∈ {1, . . . , n}).

Our aim is to construct polyhedral surfaces Γ0
h, . . . ,ΓM

h (without bound-
ary) in such a way that Γm

h is an approximation to Γ(tm). These surfaces
are obtained with the help of the following algorithm. We start the com-
putations with an initial polyhedral Γ0

h which approximates the initial sur-
face Γ0. In practice there are several ways to construct the initial discrete
surface. One way is to map triangulations of charts onto the continuous
surface and to glue them together. A much better way is to construct a
macro triangulation, that is, a coarse approximation Γ̃0

h of Γ0 such that
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Figure 4.6. A thin two-dimensional torus shrinks under
parametric mean curvature flow to a circle.

Figure 4.7. A thick two-dimensional torus (cut open)
shrinks under parametric mean curvature flow to a sphere
developing a singularity.

Γ̃0
h ⊂ Γδ (see (2.4), (2.5)) and then to refine this triangulation in R

n+1 and
project the new nodes x orthogonally onto the smooth surface according to
x′ = x−d(x)ν(x) to obtain the new nodes x′ of the next-finer triangulation
for Γ0

h (see Figure 4.4).

Algorithm 2. (Mean curvature flow of surfaces)

Let Γ0
h be a polyhedral approximation of Γ0.

For m = 0, 1, . . . , M − 1 define

Sm
h = {φh ∈ C0(Γm

h ) | φh|T is affine for each T ⊂ Γm
h },

and find Xm+1
h ∈ Sm

h with

1
τ

∫
Γm

h

(Xm+1
h − id)φh dA+

∫
Γm

h

∇Γm
h

Xm+1
h ·∇Γm

h
φh dA = 0 for all φh ∈ Sm

h

(4.17)
Generate the new surface Γm+1

h = Xm+1
h (Γm

h ), and if it is a polyhedral
surface then goto to the next m.
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This algorithm is based on a finite element method for partial differential
equations on surfaces, developed in Dziuk (1988). Let us have a look at the
implementation of the above algorithm. Fix m ∈ {0, . . . , M −1} and denote
by a1, . . . , aN ∈ R

n+1 the nodes of the polyhedral surface Γm
h . The functions

φi : Γm
h → R, i = 1, . . . , N are uniquely defined by the requirements

φi ∈ Sm
h , φi(aj) = δij , i, j = 1, . . . , N.

It is not difficult to verify that φ1, . . . , φN actually form a basis of Sm
h . Now,

stiffness and mass matrix are defined by

Sij =
∫

Γm
h

∇Γm
h

φi · ∇Γm
h

φj dA, i, j = 1, . . . , N

Mij =
∫

Γm
h

φiφj dA, i, j = 1, . . . , N.

Expanding (Xm+1
h )k(p) =

∑N
j=1 α

(k)
j φj(p) (where (Xm+1

h )k is the kth com-
ponent of Xm+1

h ), we find that (4.17) is equivalent to the linear systems

Mα(k) + τSα(k) = b(k), k = 1, . . . , n + 1. (4.18)

Here, α(k) = (α(k)
1 , . . . , α

(k)
N ) and b(k) ∈ R

N is given by

b
(k)
j =

∫
Γm

h

xkφj dA, j = 1, . . . , N.

Since the matrix M + τS is symmetric and positive definite, the systems
(4.18) can be solved with a conjugate gradient method. The only difference
to a ‘Cartesian’ FEM is that the nodes have one more coordinate.

5. Mean curvature flow of graphs

We turn our attention to the mean curvature evolution of surfaces Γ(t),
which can be written as graphs over some base domain Ω ⊂ R

n, that is,

Γ(t) = {(x, u(x, t)) | x ∈ Ω}.

In order to find the differential equation to be satisfied by the height function
u, we recall (2.13) and (2.21) to see that the mean curvature H and the
velocity V in the direction of ν = (∇u,−1)√

1+|∇u|2
are given by

H = ∇ ·
(

∇u√
1 + |∇u|2

)
, V = − ut√

1 + |∇u|2
. (5.1)
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Thus, the evolution law V = −H on Γ(t) translates into the nonlinear
parabolic partial differential equation

ut −
√

1 + |∇u|2 ∇ ·
(

∇u√
1 + |∇u|2

)
= 0 in Ω × (0, T ), (5.2)

to which we add the following boundary and initial conditions

u = g on ∂Ω × (0, T ), (5.3)
u(·, 0) = u0 in Ω, (5.4)

where g : ∂Ω → R and u0 : Ω̄ → R are given functions. The boundary
condition (5.3) implies that the boundaries of the surfaces Γ(t) are kept
fixed during the evolution. It would also be possible to replace (5.3) by

∂u

∂n
= 0 on ∂Ω × (0, T ), (5.5)

in which case the surfaces Γ(t) would meet the boundary of the cylinder
Ω × R at a right angle.

5.1. Analytical results

The main difficulties for the mathematical analysis are due to the fact that
the operator

A(u) =
√

1 + |∇u|2 ∇ ·
(

∇u√
1 + |∇u|2

)

is not uniformly parabolic and not in divergence form. Only in one space
dimension the equation is in divergence form, since A(u) = (arctan ux)x.

Theorem 5.1. Let Ω be a bounded domain in R
n with ∂Ω ∈ C2+α and

u0 ∈ C2,α(Ω̄).

(a) Suppose that g ∈ C2,α(Ω̄) and that the compatibility conditions

u0 = g and
√

1 + |∇u0|2 ∇ ·
(

∇u0√
1 + |∇u0|2

)
= 0 on ∂Ω

are satisfied. If ∂Ω has nonnegative mean curvature, the initial-boun-
dary value problem (5.2), (5.3), (5.4) has a unique smooth solution
which converges to the solution of the minimal surface equation with
boundary data g as t → ∞.

(b) Suppose that the compatibility condition ∂u0
∂n = 0 on ∂Ω holds. Then

the initial-boundary value problem (5.2), (5.5), (5.4) has a unique
smooth solution which converges to a constant function as t → ∞.

Proof. See Lieberman (1986) and also Huisken (1989) for (a); (b) is proved
in Huisken (1989).
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The assumption that the boundary of the domain has nonnegative mean
curvature is a necessary condition. If it is dropped, the gradient of the
solution will become infinite on the boundary: see Oliker and Uraltseva
(1993). The main tool in the proof of the previous theorem is the derivation
of an evolution equation for the surface element. Our numerical algorithms
will be based on a variational formulation of (5.2), (5.3). To derive it, divide
(5.2) by

Q =
√

1 + |∇u|2, (5.6)

multiply by a test function φ ∈ H1
0 (Ω) and integrate. Integration by parts

implies ∫
Ω

utφ

Q
+

∫
Ω

∇u · ∇φ

Q
= 0, φ ∈ H1

0 (Ω), 0 < t < T. (5.7)

It is straightforward to derive from (5.7) the decrease in area.

Lemma 5.2. Suppose that u is a smooth solution of (5.2). Then∫
Ω

u2
t

Q
+

d
dt

∫
Ω

Q = 0. (5.8)

Proof. Since u(·, t) = g on ∂Ω × (0, T ) we have ut(·, t) = 0 on ∂Ω for
0 < t < T . The relation (5.8) now follows by inserting φ = ut(·, t) in (5.7)
and observing that Qt = ∇u·∇ut

Q .

Recalling that V = −ut
Q we may rewrite the relation (5.8) in the more

geometric form of Lemma 3.1.

5.2. Spatial discretization

Let Th be an admissible nondegenerate triangulation of the domain Ω with
mesh size bounded by h, simplices S and Ωh =

⋃
S∈Th

S the corresponding
discrete domain. We assume that vertices on ∂Ωh are contained in ∂Ω. The
space of finite elements of order s ∈ N is chosen to be

Xh = {vh ∈ C0(Ωh) | vh is a polynomial of order s on each S ∈ Th}. (5.9)

The subspace containing functions with zero boundary values will be de-
noted by Xh0.

We assume that for s ∈ N, p ∈ [1,∞] there exists an interpolation operator
Ih : Hs+1,p(Ω) → Xh which satisfies Ihv ∈ Xh0 for v ∈ Hs+1,p(Ω) ∩ H1

0 (Ω),
as well as

‖v − Ihv‖Lp(Ω∩Ωh) + h‖∇(v − Ihv)‖Lp(Ω∩Ωh) ≤ chs+1‖v‖Hs+1,p(Ω) (5.10)

for all v ∈ Hs+1,p(Ω). For dimensions n < p(s + 1), we can, for instance,
choose the usual Lagrange interpolation operator; in higher dimensions a
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possible choice is the Clément operator. For what follows we choose piece-
wise linear finite elements: s = 1.

We now use (5.7) in order to define a semidiscrete approximation to the
solution of (5.2)–(5.4) as follows: find uh(·, t) ∈Xh with uh(·, t)− Ihg ∈ Xh0

and uh(·, 0) = uh0 = Ihu0 such that∫
Ωh

uhtφh

Qh
+

∫
Ωh

∇uh · ∇φh

Qh
= 0, for all φh ∈ Xh0 (5.11)

and all t ∈ (0, T ). Here, we have abbreviated Qh =
√

1 + |∇uh|2. The
following lemma establishes the global existence of the discrete solution.

Lemma 5.3. The semidiscrete problem has a unique solution uh which
exists globally in time.

Proof. We denote by ai, i = 1, . . . , N the nodes of the triangulation Th and
by χi the corresponding nodal basis functions. We assume that a1, . . . , aN1

are the interior nodes, while aN1+1, . . . , aN lie on ∂Ωh. We expand uh(·.t) =∑N1
i=1 αi(t)χi +

∑N
i=N1+1 g(ai)χi and the relation (5.11) then amounts to a

nonlinear system of ODEs for α = (α1, . . . , αN1). Existence of a unique
local solution follows from standard ODE theory, while the analogue of
(5.8) implies a uniform bound on uh and therefore on α since Xh is finite-
dimensional. This allows us to continue the solution for all times.

In order to prove error estimates for the semidiscrete problem we need
to make regularity assumptions on the solution of the continuous problem.
Let us suppose that u satisfies∫ T

0
‖ut‖2

H1,∞(Ω) dt +
∫ T

0
‖ut‖2

H2(Ω) dt ≤ N (5.12)

for some N > 0 (see Deckelnick and Dziuk (1999) for sufficient conditions
which imply (5.12)). In the following we shall assume that we have a solution
of this kind until the time T . We shall formulate our error estimates in
terms of geometric quantities, more specifically in terms of the normals
ν = (∇u,−1)

Q , νh = (∇uh,−1)
Qh

and the normal velocities V = −ut
Q , Vh = −uht

Qh

reflecting the form of the a priori estimate (5.8).

Theorem 5.4. Let u be a solution of the continuous problem (5.2)–(5.4),
which satisfies (5.12). Then∫ T

0

∫
Ω∩Ωh

(V − Vh))2Qh + sup
(0,T )

∫
Ω∩Ωh

|ν − νh|2Qh ≤ ch2.

The constant c depends on N .
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Proof. Let us give the proof of this theorem for polygonal domains, Ω =
Ωh. The proof shows how important it is to work with the geometric quant-
ities. The difference of the discrete weak form (5.11) and the corresponding
continuous weak form of equation (5.2) reads∫

Ω

(
ut

Q
− uht

Qh

)
φh +

∫
Ω

(
∇u

Q
− ∇uh

Qh

)
· ∇φh = 0 (5.13)

for all discrete test functions ϕh ∈ Xh0. As a test function we choose

φh = Ihut − uht = (ut − uht) − (ut − Ihut).

We observe that(
ut

Q
− uht

Qh

)
(ut − uht) = (V − Vh)(V Q − VhQh) (5.14)

= (V − Vh)2Qh + (V − Vh)V (Q − Qh)

≥ (V − Vh)2Qh − |V − Vh||V |Q| 1
Q

− 1
Qh

|Qh

≥ 1
2
(V − Vh)2Qh − 1

2
|ut|2|ν − νh|2Qh.

Here we have used the fact that∣∣∣∣ 1
Q

− 1
Qh

∣∣∣∣ ≤ |ν − νh|. (5.15)

For the gradient term in (5.13) we exploit the fact that the last component
of the vector νQ − νhQh is zero, and get(

∇u

Q
− ∇uh

Qh

)
· (∇ut −∇uht) = (ν − νh) · (∇ut −∇uht, 0) (5.16)

= (ν − νh) · (νQ − νhQh)t.

With the elementary relation

(ν − νh) · ν = −(ν − νh) · νh =
1
2
|ν − νh|2,

the right-hand side in (5.16) can be estimated as follows:

(ν − νh) · (νQ − νhQh)t

= (ν − νh) · (νtQ − νhtQh + νQt − νhQht)

=
1
2
|ν − νh|2(Qt + Qht) + (ν − νh) · (ν − νh)tQh + (ν − νh) · νt(Q − Qh)

=
1
2
(|ν − νh|2Qh)t +

1
2
|ν − νh|2Qt + (ν − νh) · νt(Q − Qh)

≥ 1
2
(|ν − νh|2Qh)t −

1
2
|Qt||ν − νh|2 − |νt|Q |ν − νh|2Qh,
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where again we have used (5.15). With this estimate, (5.14) and (5.16) the
error relation (5.13) implies the bound

1
2

∫
Ω
(V − Vh)2Qh +

1
2

d
dt

∫
Ω
|ν − νh|2Qh

≤ 1
2
(
‖ut‖2

L∞(Ω) + 3‖∇ut‖2
L∞(Ω)

) ∫
Ω
|ν − νh|2Qh

+
∫

Ω
|V − Vh| |ut − Ihut| +

∫
Ω
|ν − νh| |∇(ut − Ihut)|.

We estimate the interpolation terms with the help of (5.10), that is,∫
Ω
|V − Vh| |ut − Ihut| +

∫
Ω
|ν − νh| |∇(ut − Ihut)|

≤ c‖ut‖H2(Ω)

(
h2

(∫
Ω
(V − Vh)2

) 1
2

+ h

(∫
Ω
|ν − νh|2

) 1
2

)

≤ δ

∫
Ω
(V − Vh)2Qh + δ

∫
Ω
|ν − νh|2Qh +

c

δ
‖ut‖2

H2(Ω)h
2

for every δ > 0, since Qh ≥ 1. After a suitable choice of δ we arrive at

1
2

∫
Ω
(V − Vh)2Qh +

d
dt

∫
Ω
|ν − νh|2Qh

≤ c
(
1 + ‖ut‖2

H1,∞(Ω)

) ∫
Ω
|ν − νh|2Qh + c‖ut‖2

H2(Ω)h
2.

A Gronwall argument and the choice uh(·, 0) = Ihu0 then finally proves the
theorem.

Remark 1. It is possible to show that in the two-dimensional case the
above error bounds imply that supΩ̄×[0,T ] Qh ≤ C uniformly in h. As a
consequence the error estimate can be written down with the help of the
usual norms, namely∫ T

0
‖ut − uh,t‖2

L2(Ω∩Ωh) dt + sup
(0,T )

‖∇(u − uh)‖2
L2(Ω∩Ωh) ≤ ch2.

5.3. Time discretization

Let us choose a time-step τ > 0 and let tm = mτ, m = 0, . . . , M, M ≤ [T
τ ]

as well as vm = v(·, mτ) for m = 0, . . . , M . Based on (5.11) we suggest the
following algorithm.

Algorithm 3. (Mean curvature flow of graphs) Let u0
h = Ihu0. For

m = 0, . . . , M − 1, compute um+1
h ∈ Xh such that um+1

h − Ihg ∈ Xh0 and,
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for every ϕh ∈ Xh0,

1
τ

∫
Ωh

um+1
h ϕh

Qm
h

+
∫

Ωh

∇um+1
h · ∇ϕh

Qm
h

=
1
τ

∫
Ωh

um
h ϕh

Qm
h

. (5.17)

with Qm
h =

√
1 + |∇um

h |2.
The above scheme is semi-implicit in time and has the property that in

each time-step a linear Laplace-type equation with stiffness matrix weighted
by Qm

h has to be solved. In order to analyse its stability we go back to the
basic energy norms introduced in (5.8).

Theorem 5.5. The solution um
h , 0 ≤ m ≤ M of (5.17) satisfies, for every

m ∈ {1, . . . , M},

τ
m−1∑
k=0

∫
Ωh

|V k
h |2Qk

h +
∫

Ωh

Qm
h ≤

∫
Ωh

Q0
h (5.18)

where V k
h = − (uk+1

h −uk
h)

τ Qk
h

is the discrete normal velocity.

Proof. We choose ϕh = uk+1
h − uk

h as a test function in (5.17) for m = k
and get

1
τ

∫
Ωh

(uk+1
h − uk

h)2

Qk
h

+
∫

Ωh

∇uk+1
h · ∇(uk+1

h − uk
h)

Qk
h

= 0. (5.19)

Let us use the notation νk
h = (∇uk

h,−1)

Qk
h

. The integrand in the second term
can be rewritten as

∇uk+1
h · ∇(uk+1

h − uk
h)

Qk
h

=
(Qk+1

h )2 − 1
Qk

h

− ∇uk+1
h

Qk+1
h

· ∇uk
h

Qk
h

Qk+1
h

=
(Qk+1

h )2

Qk
h

+
1
2
|νk+1

h − νk
h |2Qk+1

h − Qk+1
h

=
1
2
|νk+1

h − νk
h |2Qk+1

h + Qk+1
h − Qk

h +
(Qk+1

h − Qk
h)2

Qk
h

.

We insert this result into (5.19), sum over k = 0, . . . , m − 1 and obtain the
equation

τ
m−1∑
k=0

∫
Ωh

|V k
h |2Qk

h +
m−1∑
k=0

∫
Ωh

(Qk+1
h − Qk

h)2

Qk
h

+
1
2

m−1∑
k=0

∫
Ωh

|νk+1
h − νk

h |2Qk+1
h

+
∫

Ωh

Qm
h =

∫
Ωh

Q0
h

which implies the stability estimate (5.18).
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Let us emphasize that our scheme is unconditionally stable even though
the nonlinear expressions are treated explicitly. Other schemes, such as
fully explicit and fully implicit variants are discussed in Dziuk (1999a). It
is natural to follow the ideas of the semidiscrete case in order to analyse the
above algorithm. For the analysis of the fully discrete scheme we need the
following regularity assumptions:

sup
t∈(0,T )

(
‖u(·, t)‖H2,∞(Ω) + ‖ut(·, t)‖H1,∞(Ω)

)

+
∫ T

0

(
‖ut‖2

H2(Ω) + ‖utt‖2
)
ds ≤ N. (5.20)

This leads to the following result.

Theorem 5.6. Assume that there exists a solution of (5.2)–(5.4) on [0, T ],
which satisfies (5.20) and let um

h , (m = 1, . . . , M = [T
τ ]) be the solution of

Algorithm 3. Then there exists a τ0 > 0 such that, for all 0 < τ ≤ τ0,

τ
M−1∑
m=0

∫
Ω∩Ωh

(V m − V m
h )2Qm

h ≤ c(τ2 + h2), (5.21)

sup
m=0,...,M

∫
Ω∩Ωh

|νm − νm
h |2Qm

h ≤ c(τ2 + h2). (5.22)

Proof. This is a special case of the results obtained in Deckelnick and Dziuk
(2002a).

For computational tests we refer to the anisotropic case; see Table 8.2.
Here we give some test results for the usual norms. Error estimates in
these norms for the two-dimensional case are contained in Deckelnick and
Dziuk (2000). For the tests we have solved the partial differential equation

Table 5.1. Absolute errors in L∞((0, T );L2(Ω)),
L2((0, T );H1(Ω)) and experimental orders of
convergence (EOC) for the test problem.

h E1 EOC E2 EOC

2.0 1.1932 – 0.9428 –
1.0 0.6649 0.84 0.9453 0.00
0.7368 0.2878 2.74 0.5873 1.56
0.4203 0.1067 1.77 0.2919 1.25
0.2219 0.04211 1.46 0.1375 1.18
0.1137 0.01775 1.29 0.06536 1.11
0.05754 0.007986 1.17 0.03168 1.06
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(5.2) with a given additional right-hand side. We have chosen u(x, t) =
sin (|x|2 − t) − sin (1 − t) and calculated a right-hand side from this func-
tion. The computational domain was Ω = {x ∈ R

2| |x| < 1} and we used the
boundary condition u = 0 on ∂Ω. The time interval was [0, 4] and as time-
step size we have chosen τ = 0.125h. For two successive grids with grid sizes
h1 and h2 we computed the absolute errors E(hj), (j = 1, 2) between dis-
crete solution and exact solution for certain norms. The experimental order
of convergence was then defined by EOC = log (E(h1)/E(h2))/ log (h1/h2).
In Table 5.1 the errors in the norms E1 = sup0≤m≤M ‖um − um

h ‖ with
Mτ = T and E2 = sup0≤m≤M ‖∇(um − um

h )‖ are shown. The results
confirm the theoretical estimates. Note that the L∞((0, T ), L2(Ω))-error
behaves linearly in the grid size h because we have chosen the time-step
proportional to the spatial grid size.

6. Mean curvature flow of level sets

If we want to compute topological changes of free boundaries then it is
necessary to leave the parametric world, because this fixes the topological
type of the interface. One method to do this is to define the interface as the
level set of a scalar function:

Γ(t) =
{
x ∈ R

n+1|u(x, t) = 0
}
.

Let us assume for the moment that u ∈ C2,1(Rn+1 × (0, T )) with ∇u �= 0
in a neighbourhood of

⋃
t∈(0,T ) Γ(t) × {t}. Recalling (2.11) and (2.20), the

relation V = −H on Γ(t) would hold if

ut −
n+1∑
i,j=1

(
δij −

uxiuxj

|∇u|2
)

uxixj = 0 (6.1)

in a neighbourhood of
⋃

t∈(0,T ) Γ(t)×{t}. This partial differential equation
is highly nonlinear, degenerate parabolic and not defined where the gradient
of u vanishes. Therefore, standard methods for parabolic equations fail, but
it is possible to develop an existence and uniqueness theory for (6.1) within
the framework of viscosity solutions. The corresponding notion involves a
pointwise relation and the analysis relies mainly on the maximum principle.
It is therefore not straightforward to use finite element methods, which
are typically L2-methods and normally do not allow a maximum principle.
This difficulty will be reflected in the numerical analysis. An example of
the evolution of level sets under mean curvature flow is shown in Figure 6.1
(Deckelnick and Dziuk 2001).

Crandall, Ishii and Lions (1992) give a concise introduction to the theory
of viscosity solutions, while Giga (2002) describes in detail the application
of level set techniques to a large class of geometric evolution equations.
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Figure 6.1. Evolution of level lines under mean
curvature flow.

Detailed descriptions of computational techniques for level set methods
along with a host of applications can be found in the monographs by Sethian
(1999) and Osher and Fedkiw (2003).

6.1. Analytical results

Starting from (6.1), we are interested in the following problem:

ut −
n+1∑
i,j=1

(
δij −

uxiuxj

|∇u|2
)

uxixj = 0 in R
n+1 × (0,∞) (6.2)

u(·, 0) = u0 in R
n+1. (6.3)

An existence and uniqueness theory for (6.2), (6.3) can be carried out within
the framework of viscosity solutions.

Definition 3. A function u ∈ C0(Rn+1 × [0,∞)) is called a viscosity sub-
solution of (6.2) provided that for each φ ∈ C∞(Rn+2), if u − φ has a local
maximum at (x0, t0) ∈ R

n+1 × (0,∞), then

φt −
n+1∑
i,j=1

(
δij −

φxiφxj

|∇φ|2
)

φxixj ≤ 0 at (x0, t0), if ∇φ(x0, t0) �= 0,

(6.4)

φt −
n+1∑
i,j=1

(δij − pipj)φxixj ≤ 0 at (x0, t0) for some |p| ≤ 1,

if ∇φ(x0, t0) = 0.
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Figure 6.2. Evolution of a lemniscate under level set
mean curvature flow: the zero level.

A viscosity supersolution is defined analogously: maximum is replaced by
minimum and ≤ by ≥. A viscosity solution of (6.2) is a function u ∈
C0(Rn+1 × [0,∞)) that is both a subsolution and a supersolution.

We shall assume that the initial function u0 is smooth and satisfies

u0(x) = 1 for |x| ≥ S (6.5)

for some S > 0. The following existence and uniqueness theorem is a special
case of results proved independently by Evans and Spruck (1991) and Chen,
Giga and Goto (1991).

Theorem 6.1. Assume u0 : R
n+1 → R satisfies (6.5). Then there exists

a unique viscosity solution of (6.2), (6.3), such that

u(x, t) = 1 for |x| + t ≥ R

for some R > 0 depending only on S.

The level set approach can now be described as follows: given a compact
hypersurface Γ0, choose a continuous function u0 : R

n+1 → R such that
Γ0 = {x ∈ R

n+1 |u0(x) = 0}. If u : R
n+1 × [0,∞) → R is the unique

viscosity solution of (6.2), (6.3), we then call

Γ(t) = {x ∈ R
n+1 | u(x, t) = 0}, t ≥ 0



Computation of geometric PDEs and mean curvature flow 39

Figure 6.3. Evolution of the oriented distance function
of a lemniscate: level lines.

a generalized solution of the mean curvature flow problem. We remark that
Evans and Spruck (1991) and Chen, Giga and Goto (1991) also established
that the sets Γ(t) = {x ∈ R

n+1 | u(x, t) = 0}, t > 0 are independent of
the particular choice of u0 which has Γ0 as its zero level set, so that the
generalized evolution (Γ(t))t≥0 is well defined for a given Γ0. As Γ(t) exists
for all times, it provides a notion of solution beyond singularities in the flow.
For this reason, the level set approach has also become very important in
the numerical approximation of mean curvature flow and related problems.
Note however that it is possible that the set Γ(t) may develop an interior for
t > 0, even if Γ0 had none, a phenomenon which is referred to as fattening.
The level set solution has been investigated further in several papers: in
particular we mention Evans and Spruck (1992a, 1992b, 1995) and Soner
(1993).

6.2. Regularization

Evans and Spruck (1991) proved that the (smooth) solutions uε of

uε
t −

n+1∑
i,j=1

(
δij −

uε
xi

uε
xj

ε2 + |∇uε|2
)

uε
xixj

= 0 in R
n+1 × (0,∞), (6.6)

uε(·, 0) = u0 in R
n+1 (6.7)
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Figure 6.4. Evolution of the oriented distance
function of a lemniscate: graph.

converge locally uniformly as ε → 0 to the unique viscosity solution of (6.2),
(6.3). For numerical purposes it is important to know the asymptotic error
between the viscosity solution and the solution of the regularized problem
quantitatively as ε → 0. In Deckelnick (2000) there is a proof of the following
theorem together with several a priori estimates and their dependence on
the regularization parameter ε.

Theorem 6.2. For every α ∈ (0, 1
2), 0 < T < ∞ there is a constant

C = C(u0, T, α) such that

sup
0≤t≤T

‖u − uε‖L∞(Rn+1) ≤ Cεα for all ε > 0.

If one wants to calculate approximations to the viscosity solution u of
(6.2), (6.3) then, according to Theorem 6.2, it is sufficient to solve the
regularized problem (6.6), (6.7), which we have to study for computational
purposes, on a bounded domain. For simplicity we choose Ω = BS̃(0) with
S̃ > R = R(S), where R is the radius from Theorem 6.1, and consider

uεt −
n+1∑
i,j=1

(
δij −

uεxiuεxj

ε2 + |∇uε|2
)

uεxixj = 0 in Ω × (0,∞), (6.8)

uε = 1 on ∂Ω × (0,∞), (6.9)
uε(·, 0) = u0 in Ω. (6.10)
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An application of the parabolic comparison theorem yields the following
corollary of Theorem 6.2.

Corollary 6.3. For every α ∈ (0, 1
2), 0 < T < ∞ there is a constant

C = C(u0, T, α) such that

‖u − uε‖L∞(Ω×(0,T )) ≤ Cεα. (6.11)

We are now in position to look at the regularized level set mean curvature
flow problem as a problem for graphs. If we scale

U =
uε

ε
(6.12)

then U is a solution of the mean curvature flow problem for graphs (see
(5.2)), that is,

Ut −
√

1 + |∇U |2 ∇ · ∇U√
1 + |∇U |2

= 0 in Ω × (0, T ). (6.13)

This is a theoretical observation and implies that we can apply techniques
developed for the mean curvature flow of graphs to the mean curvature flow
of level sets. But for computations we shall not use (6.13) but the unscaled
version for uε.

6.3. The approximation of viscosity solutions

Numerical schemes based on the level set approach were first introduced in
Osher and Sethian (1988); see also Sethian (1990). Chen, Giga, Hitaka and
Honma (1994) proposed a finite difference scheme for which they proved sta-
bility with respect to the L∞-norm. Walkington (1996) used a finite element
approach on the dual mesh to construct a discretization that is stable both
with respect to L∞ and to W 1,1. Evans (1993) analysed a scheme based
on the solution of the usual heat equation, continually re-initialized after
short time-steps, and which was proposed in Merriman, Bence and Osher
(1994). Crandall and Lions (1996) constructed a finite difference scheme
that is both monotone and consistent, and obtained the first convergence
result for an approximation of (6.2), (6.3). An error analysis for this scheme
can be found in Deckelnick (2000).

Here we want to consider a different finite element scheme which exploits
the above-described formal similarity to the graph case. This will also allow
us to carry out some basic numerical analysis. In the following we use the
abbreviations

νε(v) =
(∇v,−ε)
Qε(v)

, Qε(v) =
√

ε2 + |∇v|2, Vε(v) = − vt

Qε(v)
.

Our results for the mean curvature flow of a graph can directly be trans-
formed into a convergence result for the regularized level set problem.
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Theorem 6.4. Let uε be the solution of (6.8), (6.10) and let uεh be the
solution of the semidiscrete problem uεh(·, t) ∈ Xh with uεh(·, t) − 1 ∈ Xh0,
uεh(·, 0) = uh0 = Ihu0 and∫

Ωh

uεhtφh

Qε(uεh)
+

∫
Ωh

∇uεh · ∇φh

Qε(uεh)
= 0 (6.14)

for all t ∈ (0, T ) and all discrete test functions φh ∈ Xh0. Then∫ T

0

∫
Ω∩Ωh

(Vε(uε) − Vε(uεh))2Qε(uεh) ≤ cεh
2,

sup
(0,T )

∫
Ω∩Ωh

|νε(uε) − νε(uεh)|2Qε(uεh) ≤ cεh
2.

We omit the proof as it is based on the scaling argument (6.12). Un-
fortunately, the constants cε contain a term that depends exponentially on
1
ε , which is due to an application of Gronwall’s lemma. Numerical tests,
however, suggest that the resulting bound overestimates the error.

In two space dimensions we can prove that the computed solutions uεh

converge in L∞ to the viscosity solution. The proof is contained in Deckel-
nick and Dziuk (2001).

Theorem 6.5. Let u be the viscosity solution of (6.2), (6.3) and let uεh

be the solution of the problem (6.14) with Ω ⊂ R
2 as in Corollary 6.3. Then

there exists a function h = h(ε) → 0 as ε → 0 such that

lim
ε→0

‖u − uεh(ε)‖L∞(Ω×(0,T )) = 0.

Finally, the fully discrete numerical scheme for (regularized) isotropic
mean curvature flow of level sets is now a straightforward adaption of Al-
gorithm 3.

Algorithm 4. (Mean curvature flow of level sets) Let u0
εh = Ihu0.

For m = 0, . . . , M − 1, compute um+1
εh ∈ Xh such that um+1

εh − 1 ∈ Xh0 and,
for every φh ∈ Xh0,

1
τ

∫
Ωh

um+1
εh φh

Qε(um
εh)

+
∫

Ωh

∇um+1
εh · ∇φh

Qε(um
εh)

=
1
τ

∫
Ωh

um
εhφh

Qε(um
εh)

. (6.15)

For this scheme we have the following convergence result.

Theorem 6.6. Let uε be the solution of (6.8)–(6.10) and let um
εh, (m =

1, . . . , M) be the solution from Algorithm 4. Then there exists a τ0 > 0
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such that, for all 0 < τ ≤ τ0,

τ

M−1∑
m=0

∫
Ω∩Ωh

(Vε(um
ε ) − V m

εh )2Qε(um
εh) ≤ cε(τ2 + h2), (6.16)

sup
m=0,...,M

∫
Ω∩Ωh

|νε(um
ε ) − νε(um

εh)|2Qε(um
εh) ≤ cε(τ2 + h2), (6.17)

with M = [T
τ ]. Here V m

εh = −(um+1
εh − um

εh)/(τ Qε(um
εh)) is the regularized

discrete normal velocity.

This result implies the convergence of the fully discrete regularized solu-
tion to the viscosity solution.

Theorem 6.7. Let u be the viscosity solution from Theorem 6.1 and let
Ω be the domain from Corollary 6.3 in R

2. Let uεhτ denote the time-
interpolated solution of the fully discrete scheme (6.15). Then there exist
functions h = h(ε) → 0 and τ = τ(ε) → 0 as ε → 0 such that

lim
ε→0

‖u − uεh(ε)τ(ε)‖L∞(Ωh×(0,T )) = 0.

7. Phase field approach to mean curvature flow

7.1. Introduction

The phase field approach to interface evolution is based on physical models
for problems involving phase transitions. In this section Ω is a bounded
domain in R

n+1 and Γ(t) is a hypersurface moving through Ω. In the case of
two phases one has the notion of an order parameter or phase field function
ϕ : Ω × (0, T ) → R which indicates the phase of a material by associating
with the phases the minima of a C2 double well bulk energy function W (·) :
R → R. For simplicity we suppose that W (r) = W (−r) and the minima of
W (·) are at ±1. The canonical example is

W (r) =
1
4
(r2 − 1)2. (7.1)

Consider the gradient energy functional

E(ϕ) =
∫

Ω

(
ε

2
|∇ϕ|2 +

W (ϕ)
ε

)
dx, (7.2)

where ε is a small parameter. Steepest descent or gradient flow for this
functional leads to the parabolic Allen–Cahn equation (Allen and Cahn
1979)

εϕt − ε∆ϕ +
1
ε
W ′(ϕ) = 0 in Ω × (0, T ) (7.3)
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with Neumann boundary conditions. In order to understand the behaviour
of this evolution equation for an initial function ϕ0 : Ω → R, observe that
the flow of the ordinary differential equation ϕt = −W ′(ϕ)

ε2
drives positive

values of ϕ0 to 1 and negative values to −1. On the other hand the Laplacian
term in the equation (7.3) has a smoothing effect which will diffuse large
gradients of the solution. Thus, on the basis of these heuristics, after a short
time the solution of (7.3) will develop a structure consisting of bulk regions
in which ϕ is smooth and takes the values ±1, and separating these regions
there will be interfacial transition layers across which ϕ changes rapidly
from one bulk value to the other. These transition layers are due to the
interaction between the regularizing effect of the gradient energy term and
the flow associated with the bi-stable potential term W ′. It turns out that
the motion of these interfacial transition layers approximate mean curvature
flow.

We can argue informally to support this in the following way. Let, for
t ∈ (0, T ), Γ(t) be a smoothly evolving closed and compact hypersurface
satisfying V = −H. Suppose that Γ(t) is the boundary of an open set
Ω(t) ⊂ Ω and denote by d(·, t) the signed distance function to Γ(t). We
consider the semilinear parabolic operator

P (v) = εvt − ε∆v +
1
ε
W ′(v).

A calculation yields for v(x, t) = ψ
(d(x,t)

ε

)
, where ψ : R → R, that

P (v) = (dt − ∆d)ψ′
(

d

ε

)
− 1

ε

(
ψ′′

(
d

ε

)
− W ′

(
ψ

(
d

ε

)))
.

Hence it is natural to define ψ = ψ(z) to be the unique solution of

−ψ′′(z) + W ′(ψ(z)) = 0, z ∈ R, (7.4)
ψ(z) → ±1, z → ±∞, ψ(0) = 0, ψ′(z) > 0. (7.5)

If W is given by (7.1) we have that ψ(z) = tanh( z√
2
) and therefore

P (v) = (dt − ∆d)ψ′
(

d

ε

)
.

Recalling (2.12) and (2.20) we obtain dt − ∆d = −V − H = 0 on Γ(t), so
that the smoothness of d implies

|dt − ∆d| ≤ C|d|
in a neighbourhood U of

⋃
0<t<T Γ(t) × {t}. Hence

|P (v)| ≤ Cε|d
ε

ψ′
(

d

ε

)
| ≤ Cε in U

and it follows that v = ψ
(

d
ε

)
is close to being a solution of (7.3) with initial
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data ϕ0 = ψ
(d(·,0)

ε

)
. That (7.3) is gradient flow for (7.2) is easily shown by

testing the equation with ϕt and integrating by parts, leading to

ε

∫
Ω
|ϕt|2 dx +

dE(ϕ)
dt

= 0,

which is the analogue of the energy equation in Lemma 3.1.
A more general isotropic phase field equation is

εϕt = ε∆ϕ − 1
ε
W ′(ϕ) + cW g, (7.6)

where g is a forcing term. The constant cW is a scaling constant dependent
on the precise definition of the double well potential W and is given by the
formula

cW =
1√
2

∫ 1

−1

√
W (r) dr. (7.7)

The equation of motion that this phase field model approximates is

V = H + g. (7.8)

We refer to Rubinstein, Sternberg and Keller (1989) and de Mottoni and
Schatzman (1995) for formal and rigorous interface asymptotics relating
the Allen–Cahn equation to mean curvature flow. Error bounds for the
Hausdorff distance between the zero level set of the phase field function and
the interface have been derived (Chen 1992, Bellettini and Paolini 1996). In
particular, a convergence rate of O(ε2| log ε|2) was established by Bellettini
and Paolini (1996). These bounds are proved using comparison theorems
for the phase field equation and this can be extended to prove convergence
to the viscosity solution of the level set equation in the case of nonsmooth
evolution and without the interface thickening (fattening) (Evans, Soner
and Souganidis 1992).

7.2. The double obstacle phase field model

We consider the phase field model

εϕt − ε∆ϕ +
1
ε
W ′(ϕ) = cW g. (7.9)

The potential W is taken to be of double obstacle form

W (r) =
1
2
(1 − r2) + I[−1,1](r), (7.10)

where

I[−1,1](r) =

{
+∞ for |r| > 1,

0 for |r| ≤ 1,
(7.11)

introduced in the gradient phase field models by Bellettini, Paolini and Verdi
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(1990), Blowey and Elliott (1991, 1993b), Chen and Elliott (1994), Paolini
and Verdi (1992).

Properly we should interpret W ′(r) in the following way:

W ′(r) =




(−∞, 1] if r = −1,

−r if |r| < 1,

[−1,∞) if r = 1.

For this potential, a calculation reveals that the profile of the phase variable
in the transition layer given by the solution of (7.4), (7.5) is

ψ(r) =



−1 if r ≤ −π

2 ,

sin(r) if |r| < π
2 ,

1 if r ≥ π
2 .

Furthermore, cW = π
4 . The double obstacle problem can be written in an

equivalent variational inequality formulation. Let K be the convex set

K = {η ∈ H1(Ω) : |η| ≤ 1}.
Then the problem is to seek ϕ ∈ L∞(0, T ;K) ∩ H1(0, T ; L2(Ω)) such that
ϕ(·, 0) = ϕ0 and

ε

∫
Ω

ϕt(η−ϕ)+ ε

∫
Ω
∇ϕ ·∇(η−ϕ)− 1

ε

∫
Ω

ϕ(η−ϕ) ≥ π

4

∫
Ω

g(η−ϕ) (7.12)

for all η ∈ K and for almost every t ∈ (0, T ). It is well known that this
problem has a unique solution.

Theorem 7.1. Suppose that the smooth hypersurfaces Γ(t)⊂R
n+1 satisfy:

(i) Γ(t) = ∂Ω(t) for open sets Ω(t) ⊂ R
n+1;

(ii) there exists δ > 0 such that dist(Γ(t), ∂Ω) ≥ δ for t ∈ [0, T ];
(iii) |dt − ∆d| ≤ D0|d| for |d| ≤ δ, t ∈ [0, T ], where d(·, t) is the signed

distance function to Γ(t);
(iv) V = −H on Γ(t) for t ∈ [0, T ].

Let ε be sufficiently small such that 1
2πε ≤ δ(1 + 2e2D0T )−1 and let ϕ = ϕε

be the unique solution of (7.12) with g = 0 and initial data ϕ0 = ψ
(d(·,0)

ε

)
.

Then, for all t ∈ [0, T ],

d(x, t) ≥ 1
2
πε(1 + 2e2D0t) ⇒ ϕε(x, t) = 1,

d(x, t) ≤ −1
2
πε(1 + 2e2D0t) ⇒ ϕε(x, t) = −1.

Proof. See Chen and Elliott (1994).
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A consequence of this theorem is that the diffuse interfacial region{
(x, t) : |ϕε(x, t)| < 1

}
is sharply defined with finite width bounded by c(t)πε and that both the
zero level set of ϕε(·, t) and Γ(t) are in a narrow strip of width c(t)πε. Here
c(t) = 1

2(1 + e2D0t); but in practice it is observed that this is pessimistic
and the growth of the interface width is not usually an issue. A more
refined analysis by Nochetto, Paolini and Verdi (1994) revealed in the case
of a smooth evolution of the forced mean curvature flow that the Hausdorff
distance between the zero level set of ϕε and the interface of the flow (7.8)
is of order O(ε2). Furthermore, there is convergence to the unique viscosity
solution of the level set formulation (Nochetto and Verdi 1996a).

7.3. Discretization of the Allen–Cahn equation

We use the same notation for the discrete spaces as in Section 5.2. We will
identify any function Φ ∈ Xh with the vector {Φj}N

j=1 of its nodal values,
so that Φ =

∑N
j=1 Φjχj . By (·, ·) we denote the L2(Ω) inner product.

For computational convenience we use a discrete inner product (·, ·)h on
C0(Ω) defined by

(χ, η)h =
∫

Ω
Ih(χη) dx for all χ, η ∈ C0(Ω), (7.13)

where Ih is the usual Lagrange interpolation operator for Xh. Furthermore,
let τ = T/M > 0 be the uniform time-step and tm = mτ . For any {Φm}M

m=0,
we set ∂Φm = τ−1(Φm+1 − Φm). The fully discrete approximation using
explicit (θ = 0) and implicit (θ = 1) time-stepping reads as follows.

Algorithm 5. (Allen–Cahn equation) Let Φ0 = Ihϕ0. For m = 0, . . . ,
M − 1, find Φm+1 ∈ Xh, 1 ≤ m ≤ M − 1, such that, for all χ ∈ Xh,

(∂Φm, χ)h + (∇Φm+θ,∇χ) − 1
ε2

(W ′(Φm+θ), χ)h =
cW

ε
(g, χ)h. (7.14)

For initial data we choose the finite element interpolant of the transition
layer profile

Φ0 = Ihψ

(
d0(x)

ε

)
,

where d0 is the signed distance function to the initial interface.
The explicit scheme requires the usual time-step constraint for parabolic

equations,
τ ≤ Ch2, (7.15)

where the constant C depends on the mesh and the L∞ norm of the initial
data through the magnitude of |W ′′|. On the other hand the implicit scheme
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requires a time-step constraint in order for the nonlinear equations defining
Φm+1 to have a unique solution. This constraint is

τ ≤ αε2, (7.16)

where α is the minimum value of W ′′. See Elliott and Stuart (1993) and
Chen, Elliott, Gardiner and Zhao (1998).

The analysis of convergence to mean curvature flow requires considera-
tion of the three approximation parameters ε, h, τ tending to zero. Standard
a priori finite element error analysis for fixed ε would lead to, for the differ-
ence between the finite element solution and the solution of the Allen–Cahn
equation, optimal order error bounds in terms of the mesh sizes τ, h but
with constants depending on the Gronwall-induced factor exp( T

ε2
). Feng

and Prohl (2003) have improved the finite element error analysis of the
Allen–Cahn equation using the special structure of the solution. Indeed,
they exploit spectral estimates of Chen (1994) which lead to error bounds
whose constants show just polynomial growth in 1

ε . They specifically con-
sider the implicit scheme without numerical integration. As a consequence
they derive an error bound of order ε2 between the zero level set of the
solution of the Allen–Cahn equation and the limiting surface.

7.4. Discretization of the double obstacle phase field model

We use the finite element setting of Section 7.3. Let Kh = {χ ∈ Xh : |χ| ≤
1}. The double obstacle version of Algorithm 5 is as follows.

Algorithm 6. (Double obstacle phase field) Let Φ0 = Ihϕ0. For m =
0, . . . , M − 1, find Φm+n ∈ Kh such that, for all χ ∈ Kh,

(∂Φm, χ − Φm+1)h + (∇Φm+θ,∇χ − Φm+1) (7.17)

− 1
ε2

(Φm+θ + εcW gm+θ, χ − Φm+1)h ≥ 0.

For initial data we choose the finite element interpolant of the transition
layer profile. The explicit scheme is a discrete obstacle variational inequality
associated with the mass matrix. Without mass lumping the solution of this
nonlinear algebraic problem would require quadratic programming or linear
complementarity methods. However, with the mass lumping quadrature
rule the explicit scheme is as simple as the explicit scheme for a semilinear
parabolic equation. It can be simply written as

Φm+1/2 =
((

1 +
τ

ε2

)
I − τA

)
Φm + cW

τ

ε
gm, (7.18)

Φm+1 = PΦm+1/2. (7.19)

Here A = M−1K, where M and K are defined by

Mij = (χi, χj)h, Kij = (∇χi,∇χj),
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for 1 ≤ i, j ≤ N . Furthermore, P : R
N → R

N is the component-wise
projection onto [−1, 1]N defined by

(PV )j = max(−1, min(1, Vj)).

On the other hand, in linear algebraic form the implicit scheme leads to the
discrete variational inequality: find Φm+1 ∈ R

N such that |Φj | ≤ 1 and((
1− τ

ε2

)
I+τA

)
Φm+1·

(
χ−Φm+1

)
≥

(
Φm+cW

τ

ε
gm+1

)
·
(
χ−Φm+1

)
(7.20)

for all χ ∈ R
N with |χj | ≤ 1. Because A is symmetric this is equivalent to

minimizing a quadratic function subject to bound constraints and can easily
be solved by projected SOR (Elliott and Ockendon 1982). Such a system
can also be solved by nonlinear multigrid (Kornhuber and Krause 2003).

As for the continuous parabolic variational inequality, a discrete compar-
ison principle holds for these schemes if the triangulation is acute. This
provides the basis for a convergence analysis (Nochetto and Verdi 1996b,
1997). For the implicit scheme without numerical integration an O(ε) error
bound for the interface is obtained when τ = O(h2) = O(ε4). For the expli-
cit scheme without numerical integration in the potential term an O(ε2) is
proved for τ = O(h2) = O(ε5).

7.5. Implementation

One expects there to be a relationship between ε and h in order that the dis-
crete phase field model can approximate the sharp interface motion. Since
the convergence analysis in the continuous case relies heavily on under-
standing the profile of the phase field function across the transition layer,
one would expect that for any ε the mesh size h should be sufficiently small
in order to resolve the interface. Indeed the existing convergence analysis de-
scribed above indicates that h should tend to zero faster than ε. In practice
this implies that across the discrete interfacial layer in the normal direction
there should be a sufficient number of elements.

In the case of the double obstacle potential, at the mth time-step, the
finite elements may be divided into three sets:

J h
−(m) = {Φj = −1 for each element vertex},

J h
+(m) = {Φj = 1 for each element vertex},
Ih(m) = T h \ (J h

+(m) ∪ J h
+(m)).

Clearly the approximation to the interface is the zero level set of Φm which
lies inside the discrete interfacial region Ih(m). We view Ih(m) as a sharp
diffuse interface, as opposed to the interfacial region associated with the
smooth double well, which is not sharply defined. The computational
work in evolving the interface is then associated with the small number of
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Figure 7.1. Meshes.

elements in this region. As observed above, the time-step, τ , in the phase
field calculations is substantially smaller than the mesh size, h. Thus, in
a numerical simulation one would expect that, for finite normal velocity of
the interface, the sharp diffuse interface should only move by at most the
addition or subtraction of a single layer of elements. In the case of the
explicit scheme this can be made precise. For nodes in J h

+(m) (or J h
−(m))

whose nearest neighbours are also in J h
+(m) (or J h

−(m)), we find

Φm+1/2
j = ±1 +

τ

ε2
(±1 + cW εgm(aj))

which, provided |gm(aj)| ≤ 1
cW ε , implies that Φm+1

j = ±1. It follows that
the sharp diffuse interface can not move more than one element per time-
step. It also implies that it is only necessary to compute Φm+1 on the closure
of the transition layer. This can be exploited in a number of ways.

The two-dimensional dynamic mesh algorithm (Nochetto, Paolini and
Verdi 1996) is based on the explicit scheme and carries a mesh only in
the sharp diffuse interface; it adds and removes triangles where necessary.

The mask method (Elliott and Gardiner 1996) keeps an underlying fixed
mesh and computes in the sharp diffuse interface only. It is possible to store
nodal values only in this region.

An amalgam of the above is an adaptive procedure which uses a fine
mesh within the diffuse interface and a coarse mesh outside. In Figure 7.1
a typical mesh is shown for a phase field calculation of anisotropic mean
curvature flow. The global mesh is shown together with a zoom. This
approach requires a fine mesh slightly larger than the diffuse interface. As
the interface region moves the mesh is refined and coarsened appropriately.
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Figure 7.2. Topological change.
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Figure 7.3. Diffuse interfaces with topological change.

Sharp diffuse interface front tracking
Using the double obstacle phase field method and only computing within a
sharp diffuse interface as described above can be viewed as a front tracking
method, which has the advantage of being able to handle topological change.
In Figure 7.2 the interfaces at various times are displayed for a forced mean
curvature flow starting from initial circles. Eventually the circles intersect.
Meshes associated with these computations are shown in Figure 7.3.

8. Anisotropic mean curvature flow

8.1. The concept of anisotropy

In free boundary problems such as phase transition problems it is often
necessary to treat interfaces which are driven by anisotropic curvature. This
is induced by modelling an anisotropic surface energy, which generalizes area
in the isotropic case to weighted area in the anisotropic case. Anisotropic
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surface energy has the form

Eγ(Γ) =
∫

Γ
γ(ν) dA, (8.1)

where Γ is a surface with normal ν and γ is a given anisotropy function. For
γ(p) = |p| this energy is the area of Γ. For our purposes it will be necessary
to restrict the admissible anisotropies to a certain class.

Definition 4. An anisotropy function γ : R
n+1 → R is called admissible if

(1) γ ∈ C3(Rn+1 \ {0}), γ(p) > 0 for p ∈ R
n+1 \ {0};

(2) γ is positively homogeneous of degree one, i.e.,

γ(λp) = |λ|γ(p) for all λ �= 0, p �= 0; (8.2)

(3) there exists γ0 > 0 such that

D2γ(p)q · q ≥ γ0|q|2 for all p, q ∈ R
n+1, |p| = 1, p · q = 0. (8.3)

It is not difficult to verify that (8.2) implies

Dγ(p) · p = γ(p), D2γ(p)p · q = 0, (8.4)

Dγ(λp) =
λ

|λ|Dγ(p), D2γ(λp) =
1
|λ|D

2γ(p) (8.5)

for all p ∈ R
n+1 \ {0}, q ∈ R

n+1 and λ �= 0. The convexity assumption (8.3)
will be crucial for analysis and numerical methods.

Anisotropy is normally visualized by using the Frank diagram F and the
Wulff shape W:

F = {p ∈ R
n+1 | γ(p) ≤ 1},

W = {q ∈ R
n+1 | γ∗(q) ≤ 1}.

Figure 8.1. Frank diagram (left) and Wulff shape (right)

for the regularized l1-anisotropy γ(p) =
∑3

j=1

√
ε2|p|2 + p2

j .
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Here γ∗ is the dual of γ, which is given by

γ∗(q) = sup
p∈Rn+1\{0}

p · q
γ(p)

. (8.6)

Let us consider some examples. Note that not all of them are admissible.
The choice γ(p) = |p| is called the isotropic case; in particular we have

that F = W = {p ∈ R
n+1| |p| ≤ 1} is the closed unit ball.

A typical choice for anisotropy is the discrete lr-norm for 1 ≤ r ≤ ∞,

γ(p) = ‖p‖lr =

(
n+1∑
k=1

|pk|r
) 1

r

, 1 ≤ r < ∞, (8.7)

with the obvious modification for r = ∞.
For a given positive definite (n + 1) × (n + 1) matrix G, the anisotropy

function

γ(p) =
√

Gp · p (8.8)

models an anisotropy which is defined by a (constant) Riemannian metric.
In Figure 8.2 we show the Frank diagram and Wulff shape for the anisotropy

γ(p) =
√

(5.5 + 4.5 sign(p1))p2
1 + p2

2 + p2
3. (8.9)

One anisotropy function often used in a physical context is

γ(p) =
(

1 − A

(
1 −

‖p‖4
l4

‖p‖4
l2

))
‖p‖l2 (8.10)

where A is a parameter. For A < 0.25 the Frank diagram is convex.
For more information on this subject, including anisotropies that may

depend on space, see Bellettini and Paolini (1996).

Figure 8.2. Frank diagram F (left) and Wulff shape W
(right) for the anisotropy (8.9).
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8.2. Anisotropic distance function

Let γ be an admissible anisotropy function. We can associate with γ a
nonsymmetric metric Υ on R

n+1 by setting

Υ(x, y) = γ∗(x − y), x, y ∈ R
n+1. (8.11)

It is possible to prove that Υ is equivalent to the standard Euclidean metric.
Suppose next that Ω ⊂ R

n+1 is a bounded open set with smooth boundary
Γ. Using Υ we now define an anisotropic signed distance function dγ :
R

n+1 → R by

dγ(x) =




infy∈Γ Υ(x, y), x ∈ R
n+1 \ Ω̄,

0, x ∈ Γ,

− infy∈Γ Υ(x, y), x ∈ Ω.

Lemma 8.1. There exists an open neighbourhood U of Γ such that dγ ∈
C2(U) and

γ(∇dγ) = 1, (8.12)

D2dγDγ(∇dγ) = 0. (8.13)

8.3. Anisotropic mean curvature

Our goal is to generalize the notion of mean curvature to the anisotropic
setting. Suppose that γ is an admissible anisotropy function and that Γ ⊂
R

n+1 is an oriented hypersurface with normal ν. We define the Cahn–
Hoffmann vector νγ on Γ by

νγ(x) = Dγ(ν(x)), x ∈ Γ, (8.14)

and the anisotropic mean curvature by

Hγ(x) = ∇Γ · νγ(x), x ∈ Γ. (8.15)

Note that Hγ = H in the isotropic case γ(p) = |p|. The following lemma
shows that Hγ is a natural generalization of mean curvature as the first
variation of the area functional with respect to normal variations.

Lemma 8.2. Suppose that Γ is compact. For φ ∈ C∞
0 (U) (U a neigh-

bourhood of Γ) define Fε(x) = x + εφ(x)ν(x), x ∈ U as well as Γε = Fε(Γ).
Then,

d
dε

Eγ(Γε)|ε=0 =
∫

Γ
Hγφ dA.

Proof. Let d(·, ε) : R
n+1 → R denote the signed distance function to Γε.

Consider g : U × (−ε0, ε0) → R, defined by

g(x, ε) = γ(νε(x)) = γ(∇d(x, ε)),
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where ∇ acts on the x variables only. Now (2.23), (2.20) and (2.6) imply

d
dε

Eγ(Γε)|ε=0 =
d
dε

∫
Γε

g(·, ε) dA|ε=0

=
∫

Γ

∂g

∂ε
(·, 0) dA −

∫
Γ

g(·, 0)
∂d

∂ε
(·, 0)H dA −

∫
Γ

∂g

∂ν
(·, 0)

∂d

∂ε
(·, 0) dA.

It is not difficult to see that ∂d
∂ε (·, 0) = −φ(x), x ∈ Γ, which also implies that

∂g

∂ε
(·, 0) = γ′(ν) · ∇∂d

∂ε
(·, 0) = γ′(ν) · ∇Γ

∂d

∂ε
(·, 0) = −νγ · ∇Γφ.

Here we have used the definition of νγ and the fact that ∇∂d
∂ε (·, 0) · ν = 0 on

Γ. Thus,

d
dε

Eγ(Γε)|ε=0 = −
∫

Γ
νγ · ∇Γφ dA +

∫
Γ

γ(ν)φH dA +
∫

Γ

∂g

∂ν
(·, 0)φ dA

=
∫

Γ
∇Γ · νγφ dA +

∫
Γ

∂g

∂ν
(·, 0)φ dA,

where the last identity follows from (2.16). Finally, observing that ∂g
∂ν (·, 0) =

γpi(ν)dxixj (·, 0)dxj (·, 0) = 0, and recalling the definition of Hγ , the claim
follows.

Let us next calculate Hγ for various descriptions of Γ.

Level set representation. Suppose that Γ is given as in (2.1) and oriented
by ν = ∇u

|∇u| . Since γpi is homogeneous of degree 0, we have (see also (2.2))

Hγ = ∇Γ · νγ =
n+1∑
i=1

Di

(
γpi

(
∇u

|∇u|

))
=

n+1∑
i=1

Di

(
γpi(∇u)

)

=
n+1∑
i,j=1

γpipj (∇u)uxixj −
n+1∑

i,k,l=1

γpipl
(∇u)uxlxk

uxk

|∇u|
uxi

|∇u| .

Recalling (8.4) we therefore deduce

Hγ =
n+1∑
i,j=1

γpipj (∇u)uxixj . (8.16)

Graph representation. If Γ is locally given as the graph of the function
x′ �→ v(x′), x′ = (x1, . . . , xn) with normal ν = (∇x′v,−1)√

1+|∇x′v|2
, formula (8.16)

applied to u(x′, xn+1) = v(x′) − xn+1 gives

Hγ =
n∑

i,j=1

γpipj (∇x′v,−1)vxixj . (8.17)
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Let us next derive an analogue of (2.16) with H replaced by Hγ . Observing
that Dkνl = Dlνk and recalling that Dkxl = δkl − νkνl, we obtain

Hγνl = Dk

(
γpk

(ν)
)
νl = Dk

(
γpk

(ν)νl

)
− γpk

(ν)Dkνl

= Dk

(
γpk

(ν)νl

)
− γpk

(ν)Dlνk

= Dk

(
γpk

(ν)νl

)
− Dl

(
γ(ν)

)
= Dk

(
γpk

(ν)νl

)
− Dk

(
γ(ν)(δkl − νkνl)

)
− γ(ν)νlDkνk

= Dk

(
γpk

(ν)νl

)
− Dk

(
γ(ν)Dkxl

)
− γ(ν)Hνl,

where summation over k is from 1 to n + 1. For a smooth test function
φ = (φ1, . . . , φn+1) we multiply the above relation by φl, sum over l and
integrate over Γ. Using (2.16) we infer∫

Γ
Hγν · φ = −

n+1∑
k,l=1

∫
Γ

γpk
(ν)νlDkφl +

n+1∑
k,l=1

∫
Γ

γpk
(ν)νlHνkφl

+
n+1∑
k,l=1

∫
Γ

γ(ν)DkxlDkφl −
n+1∑
l=1

∫
Γ

γ(ν)Hνlφl

and (8.4) yields∫
Γ

Hγν · φ = −
n+1∑
k,l=1

∫
Γ

γpk
(ν)νlDkφl +

n+1∑
k,l=1

∫
Γ

γ(ν)DkxlDkφl. (8.18)

This relation will be at the heart of the numerical methods in the parametric
case. For additional information on the subject of weighted mean curvature
including the crystalline case, see Taylor (1992).

8.4. Motion by anisotropic mean curvature with mobility

Having introduced the notion of anisotropic mean curvature we can now
formulate the following generalization of (3.1):

β(ν)V = −Hγ + g on Γ(t). (8.19)

Here, β : Sn → R is a given positive and smooth function of degree zero.
In applications where Γ(t) models a sharp phase-interface, the coefficient β
measures the drag opposing interfacial motion and the function 1

β is called
mobility. The function g represents the energy difference in the bulk phases.
A detailed derivation of (8.19) from the force balances and the second law of
thermodynamics can be found in Angenent and Gurtin (1989) and Gurtin
(1993). Taylor, Cahn and Handwerker (1992) give an overview of various
mathematical approaches to (8.19).



Computation of geometric PDEs and mean curvature flow 57

In what follows we shall consider the simpler problem

β(ν)V = −Hγ on Γ(t), (8.20)

even though all our techniques can be generalized to (8.19). It can be shown
(see Bellettini and Paolini (1996)) that for the choice β(ν) = 1

γ(ν) there is an
explicit solution of (8.20) consisting of shrinking boundaries of Wulff shapes;
the sets

Γ(t) = {p ∈ R
n+1 | γ∗(p) =

√
r(0)2 − 2nt}

satisfy 1
γ(ν)V = −Hγ and are therefore a generalization of the shrinking

circles from the isotropic case. We also have the following analogue of
Lemma 3.1.

Lemma 8.3. Let Γ(t) be a family of evolving hypersurfaces satisfying
(8.20) on Γ(t), and assume that each Γ(t) is compact. Then∫

Γ(t)
β(ν)V 2 dA +

d
dt

∫
Γ(t)

γ(ν) = 0.

Proof. In the same way as in the proof of Lemma 8.2, we derive

d
dt

∫
Γ(t)

γ(ν) =
∫

Γ(t)
HγV,

and the claim follows from the evolution law (8.20).

8.5. Anisotropic curve shortening flow

Let us consider a family Γ(t) of closed curves in R
2 which move according to

(8.20). As in Section 4.1 we describe the evolution by means of a mapping
X : R× [0, T ) → R

2 which satisfies X(θ, t) = X(θ + 2π, t) for t ∈ [0, T ), θ ∈
R. The curves Γ(t) = X(·, t) will move by (8.20) provided that

β(ν)Xt = −Hγν. (8.21)

Using the notation (a1, a2)⊥ = (−a2, a1) we may write ν = τ⊥, where
τ = Xθ

|Xθ| is the unit tangent to the curve Γ(t). Equation (8.21) amounts to a
system of partial differential equations for the vector function X. In order to
write down this system, let ϕ ∈ H1

per(I; R2), I = [0, 2π], be a test function,
which we can think of as being defined on Γ(t) via φ(X(θ, t)) = ϕ(θ). It
follows from (8.18) that∫

Γ(t)
Hγν · φ = −

2∑
k,l=1

∫
Γ(t)

γpk
(ν)νlDkφl +

2∑
k,l=1

∫
Γ(t)

γ(ν)DkxlDkφl

= −
2∑

k,l=1

∫
Γ(t)

(
γpk

(ν)νl − γ(ν)δkl

)
Dkφl,
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since Dkxl = δkl − νkνl. Using ∇Γφl = ϕl,θ

|Xθ|τ and recalling that γ(p) =
Dγ(p) · p, we obtain after some calculations

2∑
k,l=1

(
γpk

(ν)νl − γ(ν)δkl

)
Dkφl = −Dγ(ν) · ϕ⊥

θ

|Xθ|
.

In conclusion we have∫
Γ(t)

Hγν · ϕ dA = +
∫ 2π

0
Dγ(X⊥

θ ) · ϕ⊥
θ dθ,

so that we obtain the following weak form of (8.21):∫ 2π

0
β

(
X⊥

θ

|Xθ|

)
Xt ·ϕ |Xθ|+

∫ 2π

0
Dγ(X⊥

θ )·ϕ⊥
θ dθ = 0 for all ϕ ∈ H1

per(I; R2).

(8.22)
We shall base our numerical scheme on this formulation. The classical form
of (8.22) is

β

(
X⊥

θ

|Xθ|

)
Xt +

1
|Xθ|

∂

∂θ

(
Dγ

(
X⊥

θ

)⊥)
= 0 in I × (0, T ). (8.23)

For the convenience of the reader we explicitly write down the two equations
of this system:

β

(
X⊥

θ

|Xθ|

)
X1t|Xθ| − γp2p2(−X2θ, X1θ)X1θθ + γp2p1(−X2θ, X1θ)X2θθ = 0,

β

(
X⊥

θ

|Xθ|

)
X2t|Xθ| − γp1p1(−X2θ, X1θ)X2θθ + γp1p2(−X2θ, X1θ)X1θθ = 0.

It is easy to see that this system can be written as

β

(
X⊥

θ

|Xθ|

)
Xt − a

(
X⊥

θ

|Xθ|

)
1

|Xθ|
∂

∂θ

(
Xθ

|Xθ|

)
= 0,

where
a(p) = γpp(p) p⊥ · p⊥, p ∈ R

2 \ {0}.
Note that (8.3) implies a(p) ≥ γ0 > 0 for all p ∈ R

2, |p| = 1. Analytical
results for this problem which generalize the theory for the isotropic case
(a = 1) have been obtained by Gage (1993). We shall continue to use
the form (8.22) because this equation only contains first derivatives of the
anisotropy function γ. Recall the definition of Sh from Section 4.1. A
discrete solution of (8.22) will be a function Xh : [0, T ] → Sh, such that

Xh(·, 0) = Xh0 = IhX0 =
N∑

j=1

X0(θj)φj ,
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and for all discrete test functions ϕh ∈ Sh∫ 2π

0
β

(
Xhθ

|Xhθ|

)
Xht · ϕh |Xhθ|dθ +

∫ 2π

0
Dγ(X⊥

hθ) · ϕ⊥
hθ dθ = 0. (8.24)

In the same way as in the isotropic case we can write

Xh(θ, t) =
N∑

j=1

Xj(t)φj(θ)

with Xj(t) ∈ R
2, and find that the discrete weak equation (8.24) is equival-

ent to the following system of 2N ordinary differential equations:

1
6
βjqjẊj−1 +

1
3
(βjqj + βj+1qj+1)Ẋj +

1
6
βj+1qj+1Ẋj+1

+ Dγ(X⊥
j+1 − X⊥

j )⊥ − Dγ(X⊥
j − X⊥

j−1)
⊥ = 0,

for j = 1, . . . , N , where X0(t) = XN (t), XN+1 = X1(t), and

qj = |Xj − Xj−1|, βj = β

(
Xj − Xj−1

qj

)
.

Furthermore, the initial values are given by

Xj(0) = X0(θj), j = 1, . . . , N.

We again use mass lumping, which is equivalent to a quadrature formula.
Thus we replace this system by the lumped scheme

1
2
(βjqj + βj+1qj+1)Ẋj + Dγ(X⊥

j+1 −X⊥
j )⊥ −Dγ(X⊥

j −X⊥
j−1)

⊥ = 0 (8.25)

together with the initial conditions Xj(0) = X0(θj) for j = 1, . . . , N . We
are now ready to say what we mean by a discrete solution of anisotropic
curve shortening flow. The above system is equivalent to the one we use in
the following definition of discrete anisotropic curve shortening flow.

Definition 5. A solution of the discrete anisotropic curve shortening flow
for the initial curve Γh0 = Xh0([0, 2π]) is a polygon Γh(t) = Xh([0, 2π], t),
which is parametrized by a piecewise linear mapping Xh(·, t) ∈ Sh, t ∈ [0, T ],
such that Xh(·, 0) = Xh0 and for all ϕh ∈ Sh∫ 2π

0
β

(
Xhθ

|Xhθ|

)
Xht · ϕh |Xhθ|dθ +

∫ 2π

0
Dγ(X⊥

hθ) · ϕ⊥
hθ dθ

+
1
6
h2

∫ 2π

0
β

(
Xhθ

|Xhθ|

)
Xhθt · ϕhθ |Xhθ|dθ = 0. (8.26)
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Figure 8.3. Anisotropic curve shortening flow with a
sixfold anisotropy function applied to a circle (left) and
to a square (right).

Here h is the constant grid size of the uniform grid in [0, 2π]. The last
term of (8.26) is introduced by mass lumping. One could also define the
discrete curve shortening flow without this quantity, but then the geometric
property of length shortening would not be true for the discrete problem.

Dziuk (1999b) proved the following convergence result for β = 1. It
is easily extended to the case of general β. We formulate the result for
the geometric quantities normal, length and normal velocity. The error
estimates in standard norms then follow easily.

Theorem 8.4. Suppose that β : S2 → R is a smooth positive function.
Let X be a solution of the anisotropic curve shortening flow (8.23) on the
interval [0, T ] with X(·, 0) = X0, min[0,2π]×[0,T ] |Xθ| ≥ c0 > 0 and Xt ∈
L2((0, T ), H2(0, 2π)). Then there is an h0 > 0 such that, for all 0 < h ≤ h0,
there exists a unique solution Xh of the discrete anisotropic curve shortening
flow (8.26) on [0, T ] with Xh(·, 0) = Xh0 = IhX0, and the error between
smooth and discrete solution can be estimated as follows:

sup
(0,T )

∫ 2π

0
|ν − νh|2|Xhθ|dθ + sup

(0,T )

∫ 2π

0
(|Xθ| − |Xhθ|)2 dθ ≤ ch2,

∫ T

0

∫ 2π

0
|Xt − Xht|2|Xhθ|dθ dt ≤ ch2.

The constants depend on c0, T and ‖Xt‖L2((0,T ),H2(0,2π)).
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Table 8.1. Convergence test for anisotropic curve shortening flow.

h E1 EOC1 E2 EOC2 E3 EOC3 E4 EOC4

0.3927 0.4929 1.049 0.1236 1.042
0.1964 0.2544 0.954 0.5467 0.940 0.04703 1.39 0.5500 0.922
0.09818 0.1327 0.939 0.2762 0.985 0.02060 1.19 0.2787 0.981
0.04909 0.06698 0.986 0.1345 0.996 0.009875 1.06 0.1398 0.995
0.02454 0.03354 0.998 0.06928 0.999 0.004882 1.02 0.06996 0.999
0.01227 0.01680 0.998 0.03465 1.0 0.002434 1.0 0.03499 1.0

We tested the algorithm with an exact solution,

X(θ, t) =
√

1 − 2t (cos g(θ), sin g(θ)),

where we have chosen g(θ) = θ + 0.1 sin θ. The anisotropy function is
γ(p) = |p| − 0.25p1. We compute the errors

E1 = ‖Xt − Xht‖L2((0,T ),L2(Γh)), E2 = ‖ν − νh‖L∞((0,T ),L2(Γh)),

E3 = ‖|Xθ| − |Xhθ|‖L2((0,T ),L2(S1)), E4 = ‖Xθ − Xhθ‖L∞((0,T ),L2(S1))

with Γh = Xh((0, 2π), ·). For two successive grid sizes h1 and h2 with cor-
responding errors E(h1) and E(h2), the experimental order of convergence
EOC = ln (E(h1)/E(h2))/ ln (h1/h2) is calculated and shown in Table 8.1
from Dziuk (1999b). The time-step τ was chosen τ = 0.5 h2 for these compu-
tations. We emphasize that the algorithm for anisotropic curve shortening
flow does not use the second derivatives of the anisotropy function γ.

The system (8.25) can be formally written in complex tridiagonal form.
For details and a suitable time discretization we refer to Dziuk (1999b).
Let us finally mention that in Girao (1995) simple closed convex curves
evolving by (8.20) are computed by approximating the smooth anisotropy
by a crystalline one. Also, an error analysis for the resulting method
is given.

8.6. Anisotropic curvature flow of graphs

Let us next turn to the evolution of hypersurfaces which are given as graphs,
i.e., Γ(t) = {(x, u(x, t)) | x ∈ Ω}. In order to translate (8.20) into an
evolution equation for u we recall that

Hγ =
n∑

i,j=1

γpipj (∇u,−1)uxixj =
n∑

i=1

∂

∂xi

(
γpi(∇u,−1)

)
.
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Furthermore, since V = −ut
Q with Q =

√
1 + |∇u|2 we see that (8.20) leads

to the following nonlinear partial differential equation,

β

(
(∇u,−1)

Q

)
ut − Q

n∑
i=1

∂

∂xi
(γpi(∇u,−1)) = 0 in Ω × (0, T ), (8.27)

to which we add the following initial and boundary conditions:

u = g on ∂Ω × (0, T ),
u(·, 0) = u0 in Ω.

In the sequel we shall again assume that this problem has a solution u which
satisfies (5.12) and refer to Deckelnick and Dziuk (1999) for a corresponding
existence and uniqueness result.

Discretization in space and estimate of the error
As in the isotropic case we may use a variational approach even though
the differential equation is not in divergence form. Starting from (8.27) we
obtain, with the abbreviation ν = (∇u,−1)

Q ,

∫
Ω

β(ν)utϕ

Q
+

n∑
i=1

∫
Ω

γpi(∇u,−1)ϕxi = 0 (8.28)

for all ϕ ∈ H1
0 (Ω), t ∈ (0, T ) together with the above initial and boundary

conditions. We now consider a semidiscrete approximation of (8.28): find
uh(·, t) ∈ Xh with uh(·, t) − Ihg ∈ Xh0 such that∫

Ωh

β(νh)uh,tϕh

Qh
+

n∑
i=1

∫
Ωh

γpi(∇uh,−1)ϕh,xi = 0 for all ϕh ∈ Xh0, (8.29)

for all t ∈ (0, T ], where we have set

Qh =
√

1 + |∇uh|2, νh =
(∇uh,−1)

Qh
.

As an initial condition we use uh(·, 0) = u0
h = Ihu0. Our main result gives

an error bound for the important geometric quantities V and ν. The proof
is contained in Deckelnick and Dziuk (1999).

Theorem 8.5. Suppose that (8.27) has a solution u that satisfies (5.12).
Then (8.29) has a unique solution uh and∫ T

0
‖V − Vh‖2

L2(Γh(t)) dt + sup
t∈(0,T )

‖(ν − νh)(·, t)‖2
L2(Γh(t)) ≤ Ch2.

Here, Γh(t) = {(x, uh(x, t)) |x ∈ Ωh ∩Ω} and V , Vh are as in Theorem 5.4.
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Fully discrete scheme, stability and error estimate
Let us next consider discretization in time in order to get a practical method.
Compared to the isotropic case, our problem has become more complicated
because of the presence of two additional nonlinearities, namely the func-
tions β and γ. In order to keep the computational effort as small as possible
it would be desirable to have a method that only requires the solution of
a linear problem at each time-step. This can be achieved by treating the
nonlinearities in an explicit way and guaranteeing stability via the introduc-
tion of an additional stabilizing term. We start again from the variational
formulation (8.28) and choose a time-step τ > 0. Using the notation from
Section 5.3 our scheme reads as follows.

Algorithm 7. (Anisotropic mean curvature flow of graphs) Given
um

h , find um+1
h ∈ Xh such that um+1

h − Ihg ∈ Xh0 and

1
τ

∫
Ωh

β(νm
h )(um+1

h − um
h )

Qm
h

ϕh +
n∑

i=1

∫
Ωh

γpi(ν
m
h )ϕhxi

+ λ

∫
Ωh

γ(νm
h )

Qm
h

∇(um+1
h − um

h ) · ∇ϕh = 0 (8.30)

for all ϕh ∈ Xh0. Here we have set u0
h = Ihu0 as well as

Qm
h =

√
1 + |∇um

h |2, νm
h =

(∇um
h ,−1)
Qm

h

.

The above scheme is semi-implicit and requires the solution of a linear
system in each time-step. We shall see that it is unconditionally stable
provided the parameter λ is chosen appropriately.

Theorem 8.6. Let γ = 1√
5−1

max
{
sup|p|=1 |∇γ(p)|, sup|p|=1 |D2γ(p)|

}
.

Then we have for 0 ≤ M ≤ [T
τ ]

τ
M−1∑
m=1

∫
Ωh

β(νm
h )

Qm
h

∣∣∣∣um+1
h − um

h

τ

∣∣∣∣
2

+ λτ
M−1∑
m=1

∫
Ωh

γ(νm
h )

Qm
h

(
Qm+1

h − Qm
h√

τ

)2

+
(

λ inf
|p|=1

γ(p) − γ

)
τ

M−1∑
m=1

∫
Ωh

∣∣∣∣νm+1
h − νm

h√
τ

∣∣∣∣
2

Qm+1
h +

∫
Ωh

γ(νM
h )QM

h

≤
∫

Ωh

γ(ν0
h)Q0

h.

In particular, if λ is chosen in such a way that λ inf |p|=1 γ(p) > γ, then we
have for Γm

h = {(x, um
h (x)) | x ∈ Ωh}

Eγ(Γm
h ) ≤ Eγ(Γ0

h) for all 0 ≤ m ≤
[
T

τ

]
. (8.31)
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Thus we have proved stability for the semi-implicit scheme without any
restriction on the time-step size. An error analysis for the above scheme has
been carried out in Deckelnick and Dziuk (2002a). The precise result is as
follows.

Theorem 8.7. Suppose that λ inf |p|=1 γ(p) > γ (γ as in Theorem 8.6).
Then there exists τ0 > 0 such that, for all 0 < τ ≤ τ0,

[T
τ

]−1∑
m=0

τ

∫
Ω∩Ωh

(V m − V m
h )2Qm

h + max
0≤m≤[T

τ
]

∫
Ω∩Ωh

|νm − νm
h |2Qm

h ≤ c(τ2 + h2).

We have run numerical tests for anisotropic mean curvature flow of graphs.
The Wulff shape shrinks homothetically during the evolution. We have
chosen the very strong anisotropy γ(p) =

√
0.01p2

1 + p2
2 + p2

3. The equa-
tion γ∗(x, u(x, t)) =

√
1 − 4t defines a solution of the differential equation

when the mobility is chosen as β = 1/γ. The exact solution is given by
u(x, t) =

√
1 − 4t − 100x2

1 − x2
2. The condition on the stabilizing para-

meter λ (see Theorem 8.6) is satisfied for λ = 81.0. We use τ = 0.01h as
a uniform time-step size. The coupling between time-step size and spatial
grid size is done in order not to spoil the asymptotic orders of convergence.
For a discussion with respect to the choice of λ and τ we refer to Deckelnick
and Dziuk (2002a). Table 8.2 shows the grid size h, the errors

E(V ) =

(
M∑

m=0

τ

∫
Ωh

|V m − V m
h |2Qm

h

) 1
2

,

E(ν) =
(

max
0≤m≤M

∫
Ωh

|νm − νm
h |2Qm

h

) 1
2

,

Table 8.2. Convergence test for anisotropic mean curvature flow of graphs.

h E(ν) EOC E(V ) EOC L∞(H1) EOC

7.0711e-2 9.7027e-2 – 2.3278e-2 – 1.3366e-1 –
3.5355e-2 2.3213e-2 2.06 6.0827e-3 1.94 4.4935e-2 1.57
2.6050e-2 2.4818e-2 −0.22 7.5203e-3 −0.70 4.5372e-2 −0.03
1.4861e-2 1.3868e-2 1.04 4.1117e-3 1.08 2.4163e-2 1.12
7.8462e-3 7.0232e-3 1.07 1.9806e-3 1.14 1.2256e-2 1.06
4.0210e-3 3.5368e-3 1.03 1.0176e-3 1.00 6.1725e-3 1.03
2.0342e-3 1.8103e-3 0.98 5.2675e-4 0.97 3.1225e-3 1.00
1.0229e-3 9.2938e-4 0.97 2.6988e-4 0.97 1.5799e-3 0.99
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Figure 8.4. Level lines for the time-steps 0, 250, 500,
750, 3000 for a regularized crystalline anisotropy.

Figure 8.5. Initial value and stationary solution for a
regularized crystalline anisotropy.

and the corresponding experimental orders of convergence (EOC) between
two successive grid sizes. We add a column with the L∞((0, T ), H1(Ω)) er-
ror. Obviously the results of the asymptotic error estimates of Theorem 8.7
are reproduced in our test computations. We add a long time computation
from Deckelnick and Dziuk (2002a). As an anisotropy function we used an
anisotropy which is a regularized form of γ(p) = |p|l∞ (see also Figure 8.1
for the dual situation). We have chosen a nonzero constant right-hand side
for the equation. In Figure 8.4 we show the level lines of the initial func-
tion, of four time-steps and of the stationary solution. The boundary values
were kept fixed during the evolution. We can see that the octahedral shape
develops during the evolution. In Figure 8.5 we show the initial graph and
the stationary graph. The domain was the unit disk. Figure 8.4 shows the
evolution of some levels of the graph.
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8.7. Anisotropic mean curvature flow of level sets

Here we briefly sketch how the level set approach can be adapted to the
anisotropic case. Let us look for solutions of (8.20) in the form

Γ(t) = {x ∈ R
n+1|u(x, t) = 0}

where the scalar function u has to be determined. The relations (2.20) and
(8.16) lead to the following nonlinear partial differential equation

β

(
∇u

|∇u|

)
ut − |∇u|

n∑
j,k=1

γpjpk
(∇u)uxjxk

= 0 in R
n+1 × (0,∞), (8.32)

which is degenerate parabolic since D2γ(p)p = 0. We regularize the equation
by using an extension of the anisotropy to n + 2 space dimensions. Let us
assume that there is an admissible weight function γ = γ(p1, . . . , pn+1, pn+2)
such that

γ(p1, . . . , pn+1, 0) = γ(p1, . . . , pn+1).

In the following we denote this extension again by γ. Rather than treat-
ing (8.32) we introduce for a (small) positive parameter ε the regularized
problem

β

(
∇uε√

ε2 + |∇uε|2

)
uε t −

√
ε2 + |∇uε|2

n+1∑
j,k=1

γpjpk
(∇uε,−ε)uε xjxk

= 0.

We consider this differential equation on Ω × (0, T ), where Ω ⊂ R
n+1 is

a bounded smooth domain and T > 0 is some final time. Furthermore,
appropriate initial and boundary conditions need to be added, which can
be done similarly to the isotropic case. The numerical approximation of the
resulting problem follows the ideas of the graph case. The same applies to
the analysis of the schemes, where of course one has to bear in mind the
dependency on the regularization parameter ε.

8.8. Anisotropic phase field

We turn now to the setting of Section 7. Anisotropic phase field models are
based on the following anisotropic interfacial energy functional

Eε
γ(ϕ) =

∫
Ω

(
εA(∇ϕ) +

1
ε
W (ϕ)

)
dx, (8.33)

where A : R
n+1 → R is smooth, convex and positively homogeneous of

degree two which replaces the quadratic gradient energy used in the isotropic
case. In order to relate it to the anisotropic energy density used in this
section we set

A(p) =
1
2
γ(p)2, p ∈ R

n+1. (8.34)
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The double well bulk energy function W may be chosen as in the isotropic
situation. The L2-gradient flow of Eγ leads to the following quasilinear
parabolic equation:

εϕt − ε∇ · DA(∇ϕ) +
1
ε
W ′(ϕ) = 0 in Ω × (0, T ). (8.35)

For small ε and suitable initial data, (8.35) approximates the following an-
isotropic mean curvature flow:

1
γ(ν)

V = −Hγ on Γ(t). (8.36)

This can be motivated in a similar manner to the isotropic case. For con-
venience we suppose that W is a smooth double well. Set

P (v) = εvt − ε∇ · DA(∇v) +
1
ε
W ′(v) (8.37)

and

v(x, t) = ψ

(
dγ(x, t)

ε

)
,

where ψ is the transition profile defined by (7.4) and (7.5) and dγ(·, t) de-
notes the anisotropic signed distance function to the smoothly evolving in-
terface Γ(t) which satisfies (8.36) on Γ(t). A calculation shows

vt = ψ′
(

dγ

ε

)
dγ,t

ε
, ∇v = ψ′

(
dγ

ε

)∇dγ

ε
,

D2v = ψ

(
dγ

ε

)∇dγ ⊗∇dγ

ε2
+ ψ′

(
dγ

ε

)
D2dγ

ε
,

and using (8.4), (8.5) as well as Lemma 8.1, we obtain

P (v) = ψ′
(

dγ

ε

)
|∇dγ |

(
dγ,t

|∇dγ |
− γ

( ∇dγ

|∇dγ |

) n+1∑
i,j=1

γpipj (∇dγ)dγ,xixj

)

+
1
ε

(
−ψ′′

(
dγ

ε

)
+ W ′

(
ψ

(
dγ

ε

)))
.

Observing that

dγ,t

|∇dγ |
− γ

( ∇dγ

|∇dγ |

) n+1∑
i,j=1

γpipj (∇dγ)dγ,xixj = −V − γ(ν)Hγ = 0 on Γ(t)

and choosing ψ as in (7.4), (7.5) we see that v is close to being a solution
of P (v) = 0 in a neighbourhood of

⋃
0<t<T Γ(t) × {t}.
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Kinetic anisotropy and a generalized double obstacle phase field model
As a generalization of (8.35) we consider the phase field model

εβ(∇ϕ)ϕt − ε∇ · DA(∇ϕ) +
1
ε
W ′(ϕ) = cW ρ(ϕ)g. (8.38)

Here, the potential W is taken to be of double obstacle form,

W (r) = W0(r) + I[−1,1](r), (8.39)

where W0 ∈ C2[−1, 1] and

I[−1,1](r) =

{
+∞ for |r| > 1,

0 for |r| ≤ 1.

A possible example of W0 is

W0(r) = 1
4(1+ξ2)

[
(r2 − 1 − ξ2)2 − ξ4

]
(8.40)

with ξ ∈ (0,∞). For ξ = 0, W0 takes the classical smooth double well
Ginzburg–Landau quadratic form 1

4(r2−1)2, whereas for ξ → ∞ we recover
the classical double obstacle potential

W (r) = 1
2(1 − r2) + I[−1,1](r). (8.41)

The function ρ is nonnegative and even with a positive integral across the
transition region [−1, 1]. As above one can show that the zero level set of ϕ
approximates an interface which evolves according to the anisotropic forced
mean curvature flow:

β(ν)
γ(ν)

V = −Hγ − g. (8.42)

Properly (7.9) should be written as the parabolic variational inequality

ε

∫
Ω

β(∇ϕ)ϕt(η − ϕ) + ε

∫
Ω

DA(∇ϕ) · (∇η −∇ϕ) +
1
ε

∫
Ω

W ′
0(ϕ)(η − ϕ)

≥ cW

∫
Ω

ρ(ϕ)g(η − ϕ) for all η ∈ K = {H1(Ω) : |η| ≤ 1}, (8.43)

which is treated in the viscosity sense in Elliott and Schätzle (1997) because
of the singularity in β at the origin.

Convergence
The phase field approximation of anisotropic interface motion can be estab-
lished as in the isotropic case for smooth potential W (McFadden, Wheeler,
Braun, Coriell and Sekerka 1993, Wheeler and McFadden 1996). Conver-
gence of the double obstacle model to the unique viscosity solution of the
anisotropic level set equation was proved in Elliott and Schätzle (1997)
even in the case of kinetic anisotropy. The error bounds for smoothly
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evolving flows are again O(ε2) (Elliott and Schätzle 1996, Elliott, Paolini
and Schätzle 1996).

Discretization of anisotropic phase field equation
The numerical approximation of (8.43) follows the approach used for the
isotropic Allen–Cahn equation (Section 7.3). We use the same notation for
the finite element spaces and time discretizations. In order to implement
the method it is necessary to use a regularization βε of β.

Fully explicit time-stepping
The fully discrete approximation of (8.43) using explicit time-stepping reads
as follows.

Algorithm 8. (Anisotropic double obstacle phase field) Let Φ0 =
Ihϕ0. For m = 0, . . . , M − 1, find Φm+1 ∈ Kh such that, for all χ ∈ Kh,

ε(βε(∇Φm)∂Φm, χ − Φm+1)h + ε(DA(∇Φm),∇χ −∇Φm+1) (8.44)

+
1
ε
(W ′

0(Φ
m), χ − Φm+1)h − cW (ρ(Φm)gm, χ − Φm+1)h ≥ 0.

This scheme is as simple to implement as in the isotropic situation. Let
Mm

β , Km, Mm
ρ , and Mm

W be defined by

(Mm
β )ij = (βε(∇Φm)χi, χj)h, (Km)ij = (D2A(∇Φm)∇χi,∇χj),

(Mm
ρ )j = cW (ρ(Φm)gm, χj)h, (Mm

W )j = (W ′
0(Φ

m), χj)h

for 1 ≤ i, j ≤ J, 0 ≤ m ≤ M . Here we made use of the fact that
DA(∇Φm) = D2A(∇Φm)∇Φm, which follows from (8.4) and the fact that
DA is homogeneous of degree 1. The variational formulation (8.44) is then
equivalent to the following matrix formulation

Mm
β Φm+1/2 =

(
Mm

β − τKm
)
Φm +

τ

ε
Mm

ρ gm − τ

ε2
Mm

W (8.45)

and it remains to project Φm+1/2 component-wise yielding Φm+1 =PΦm+1/2.
The use of the mass lumping in (8.45), which diagonalizes Mm

β , is crucial
to eliminate any iteration in solving (8.45).

Semi-implicit time-stepping scheme
A semi-implicit scheme is obtained by treating the gradient energy term
implicitly, yielding the following method.

Algorithm 9. Let Φ0 = Ihϕ0. For m = 0, . . . , M − 1, find Φm+1 ∈ Kh

such that, for all χ ∈ Kh,

ε(βε(∇Φm)∂Φm, χ − Φm+1)h + ε(DA(∇Φm+1),∇χ −∇Φm+1) (8.46)

+
1
ε
(W ′

0(Φ
m), χ − Φm+1)h − cW (ρ(Φm)gm, χ − Φm+1)h ≥ 0.



70 K. Deckelnick, G. Dziuk and C. M. Elliott

The algebraic problem is now a convex optimization problem with obstacle
constraints.

These schemes are stable in the sense of satisfying energy norm bounds
analogous to those enjoyed by the solution of the PDE. The stability con-
straints are analogous to those holding in the isotropic case. However, owing
to the anisotropy in the discrete elliptic operator there is a lack of a com-
parison principle which has proved a barrier to proving convergence.

9. Fourth order flows

9.1. Surface diffusion

In this paragraph we study various ways to approximate surfaces which
evolve according to surface diffusion, that is,

V = ∆ΓHγ on Γ(t). (9.1)

Here, Hγ denotes the anisotropic mean curvature of the surface Γ(t) as it was
introduced in (8.15). This evolution has interesting geometrical properties:
if Γ(t) is a closed surface bounding a domain Ω(t), then the volume of Ω(t)
is preserved and the weighted surface area of Γ(t) decreases. At present,
the existence and uniqueness theory for surface diffusion is limited to the
isotropic case γ(q) = |q|, q ∈ R

n+1. For example, it is known that for
closed curves in the plane or closed surfaces in R

3, balls are asymptotically
stable subject to small perturbations: see Elliott and Garcke (1997) and
Escher, Mayer and Simonett (1998). However, topological changes such as
pinch-off are possible (Giga and Ito 1998, Mayer and Simonett 2000) and a
one-dimensional graph may lose its graph property. An example of pinch-off
is shown in Figure 9.1. We start with the axially symmetric initial surface
given by

r0(x) = 1 + 0.05(sin (5.5x) + sin (5x)), x ∈ (0, 8π). (9.2)

Pinch-off happens after a very long computation time. Note the different
scaling of the x- and the r-axis. This example was first computed in Cole-
man, Falk and Moakher (1995).

9.2. Surface diffusion for axially symmetric surfaces

In applications one is interested in the stability of so-called whiskers, which
are axially symmetric cylindrical bodies of small diameter with respect
to their length: see Nichols and Mullins (1965) and Coleman, Falk and
Moakher (1995). Let us consider an axially symmetric cylindrical body,
whose boundary

Γ(t) = {x ∈ R
3 | x = (x, r(x, t) cos φ, r(x, t) sinφ), x ∈ [0, L], φ ∈ [0, 2π]}



Computation of geometric PDEs and mean curvature flow 71

 

t = 0.0

t = 10.0

t = 20.0

t = 28.0

t = 28.2

0.00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

5.00 10.00 15.00 20.00 25.00

r

x

Figure 9.1. Evolution of the initial surface given by (9.2)
for t = 0.0, 10.0, 20.0, 28.0 and 28.2.

evolves by V = ∆ΓH. We assume that the radius r is a smooth positive
function, which is periodic in x, so that r(0, t) = r(L, t). In these coordinates
the mean curvature of Γ(t) is

H =
1

r
√

1 + r2
x

− rxx√
1 + r2

x
3 =

1
r
√

1 + r2
x

−
(

rx√
1 + r2

x

)
x

, (9.3)

while normal velocity and the surface Laplacian, respectively, are given by

V =
rt√

1 + r2
x

, ∆ΓH =
1

r
√

1 + r2
x

(
rHx√
1 + r2

x

)
x

.
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It follows from these two equations that r satisfies the quasilinear fourth
order parabolic problem

rt =
1
r

(
rHx√
1 + r2

x

)
x

in I × (0, T ], (9.4)

r(0, t) = r(L, t) in (0, T ], (9.5)
H(0, t) = H(L, t) in (0, T ], (9.6)
r(·, 0) = r0 in I, (9.7)

where I = (0, L) and H is given by (9.3). The initial function r0 is assumed
to be periodic and positive.

For discretization purposes it is convenient to split the fourth order prob-
lem into two coupled second order equations for the radial variable r and
the mean curvature H resulting in the following variational form:∫

I
rrtη dx +

∫
I

rHxηx√
1 + r2

x

dx = 0 (9.8)
∫

I
rHζ dx −

∫
I

√
1 + r2

x ζ dx −
∫

I

rrxζx√
1 + r2

x

dx = 0 (9.9)

for all η, ζ ∈ H1
per(I) = {η ∈ H1(I)| η(0) = η(L)}. We note that Coleman,

Falk and Moakher (1995) proposed a similar second order splitting and used
R = r2 and H as the variables.

We employ (9.8), (9.9) in order to define a semidiscrete scheme using
linear finite elements to approximate r and H. Let 0 = x0 < x1 < · · · <
xN = L, hj = xj − xj−1 and h = max1≤j≤N hj . We shall make an inverse
assumption of the form h ≤ ρhj for all j = 1, . . . , N , where ρ > 0 is
independent of h. The spatial discretization is based on piecewise linear
finite elements,

Xh = {φh ∈ C0(Ī) | φh|[xj−1,xj ] ∈ P 1, 1 ≤ j ≤ N, φh(0) = φh(L)}.
Our discrete problem now reads: find rh, Hh : [0, T ] → Xh such that∫

I
rhrh,tηh dx +

∫
I

rhHh,xηh,x√
1 + r2

h,x

dx = 0, (9.10)

∫
I
rhHhζh dx −

∫
I

√
1 + r2

h,x ζh dx −
∫

I

rhrh,xζh,x√
1 + r2

h,x

dx = 0 (9.11)

for all ηh, ζh ∈ Xh, t ∈ [0, T ] and with rh(0) = Ihr0, where Ih denotes the
Lagrange interpolation operator. In Deckelnick, Dziuk and Elliott (2003a)
a convergence analysis for the above scheme is carried out. The principal
results are error bounds for position and mean curvature as described in the
following theorem.
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Theorem 9.1. Let us assume that (9.4)–(9.7) has a sufficiently smooth
positive solution on a maximal time interval [0, Tmax). Then the discrete
solution (rh, Hh) exists on [0, T ] for all T < Tmax and there is an h0 > 0
such that, for all 0 < h ≤ h0,

sup
(0,T )

‖r − rh‖2
H1(I) +

∫ T

0
‖H − Hh‖2

H1(I) dt ≤ Ch2. (9.12)

9.3. Surface diffusion for graphs

The anisotropic surface diffusion (1.8) of a graph Γ(t) = {(x, u(x, t))|x ∈ Ω}
sitting above a domain Ω ⊂ R

n leads to a highly nonlinear fourth order
geometric partial differential equation. For graphs the Laplace–Beltrami
operator applied to anisotropic mean curvature Hγ reads

∆ΓHγ =
1
Q
∇ ·

(
Q

(
I − ∇u ⊗∇u

Q2

)
∇Hγ

)
, (9.13)

where we have again written Q =
√

1 + |∇u|2. Recalling (8.17) as well as
V = −ut

Q , we see that (1.8) for graphs is equivalent to the partial differential
equation

ut + ∇ ·
(

Q

(
I − ∇u

Q
⊗ ∇u

Q

)
∇

(
n∑

i,j=1

γpipj (∇u,−1)uxixj

))
= 0. (9.14)

As in the previous section, it is convenient to split the fourth order problem
into two second order problems as follows:

ut = ∇ ·
(

Q

(
I − ∇u

Q
⊗ ∇u

Q

)
∇w

)
, (9.15)

w = −
n∑

i,j=1

γpipj (∇u,−1)uxixj . (9.16)

The system is closed using Neumann boundary conditions and an initial
condition for u:

Q

(
I − ∇u

Q
⊗ ∇u

Q

)
∇w · ν∂Ω = 0, (9.17)

Dγ(∇u,−1) · (ν∂Ω, 0) = 0, (9.18)
u(·, 0) = u0. (9.19)

The first equation, (9.17), is the zero mass flux condition, whereas the second
equation, (9.18), is the natural variational boundary condition which defines
w as the variational derivative or chemical potential for the surface en-
ergy functional. Note that an initial condition on w is not required. The
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problem (9.15)–(9.18) can easily be rewritten in variational form, namely∫
Ω

utη +
∫

Ω
Q

(
I − ∇u

Q
⊗ ∇u

Q

)
∇w · ∇η = 0, (9.20)

∫
Ω

wψ −
n∑

j=1

∫
Ω

γpj (∇u,−1)ψxj = 0 (9.21)

for all η, ψ ∈ H1(Ω), t ∈ (0, T ].
Replacing H1(Ω) by the space Xh of piecewise linear finite elements we

immediately arrive at a natural way to discretize in space. A finite element
error analysis for the resulting semidiscrete scheme in the isotropic case was
carried out by Bänsch, Morin and Nochetto (2004) for graphs in arbitrary
space dimension. The time discretization follows the ideas of the discretiza-
tion techniques introduced in Algorithm 7 and Theorem 8.7, leading to the
following.

Algorithm 10. (Anisotropic surface diffusion of graphs) Let τ > 0
be the time-step size with Mτ = T and assume that λ > 0 is as in The-
orem 8.7. Let the initial value uh0 ∈ Xh. For m = 1, . . . , M , compute
um+1

h , wm+1
h ∈ Xh such that

1
τ

∫
Ω
(um+1

h − um
h )ηh +

∫
Ω

Qm
h

(
I − ∇um

h

Qm
h

⊗ ∇um
h

Qm
h

)
∇wm+1

h · ∇ηh = 0,∫
Ω

wm+1
h ψh − λ

∫
Ω

γ(∇um
h ,−1)

(Qm
h )2

∇(um+1
h − um

h ) · ∇ψh

−
h∑

i=1

∫
Ω

γPi(∇um
h ,−1)ψhxi

−τ

∫
Ω

Qm
h

(
I − ∇um

h

Qm
h

⊗ ∇um
h

Qm
h

)
∇(um+1

h − um
h ) · ∇ψh = 0

for all discrete test functions ηh, ψh ∈ Xh. Here Qm
h =

√
1 + |∇um

h |2.

Note that in each time-step a linear system of equations has to be solved.
An error analysis for this scheme is carried out in Deckelnick, Dziuk and
Elliott (2003b).

Theorem 9.2. Let u be a sufficiently smooth solution of anisotropic sur-
face diffusion (9.14), (9.17)–(9.19) on the domain Ω × (0, T ) and set w =
−Hγ . Let Xh be the space of continuous piecewise linear finite elements.
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Figure 9.2. Anisotropic surface diffusion with a very strong
anisotropy. Level lines are shown for the time-steps 0, 10, 200
and a view from a position vertically above the graph for
time-step 300.

Then for the discrete solution um
h , wm

h (m = 1, . . . , M) we have the error
estimates

max
m=1,...,M

‖um − um
h ‖2

L2(Ω) + τ
M∑

m=1

‖wm − wm
h ‖2

L2(Ω) ≤ c(τ2 + h2),

max
m=1,...,M

∫
Ω

|∇(um − um
h )|2

Qm
h

+ τ
M∑

m=1

∫
Ω

|∇(wm − wm
h )|2

Qm−1
h

≤ c(τ2 + h2).
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Here um = u(·, mτ), wm = w(·, mτ).

The proof uses ideas that were developed for the motion of graphs by
anisotropic mean curvature. There is neither a restriction on the space di-
mension nor a coupling of time-step size and grid size. In two dimensions in-
verse estimates yield L∞((0, T ), H1(Ω))-convergence for u and convergence
in L2((0, T ), H1(Ω)) for w.

In Figure 9.2 we show computational results for anisotropic surface diffu-
sion of a graph. The anisotropy is chosen to be a regularized l1 norm (see
Figure 8.1),

γ(p) =
3∑

j=1

√
p2

j + ε2|p|2 (9.22)

with ε = 10−3. Thus the Frank diagram is a smoothed octahedron and the
Wulff shape is a smoothed cube. The initial data were taken to depend on
three random numbers r1, r2, r3 ∈ (0, 1),

u0(x) = 0.25 (sin (2πr1x1) + 0.25 sin (3πr2x2))×
(0.1 sin (2πr3x1) + sin (5πr1x2)) sin (2πr2x1x2). (9.23)

We used Neumann boundary conditions and the right-hand side (for the
curvature equation) f = 1 − x2

1 − x2
2. The level lines for some time-steps

are shown in Figure 9.2. The Wulff shape (a smooth cube) appears in the
solution as a consequence of the right-hand side f . For more computational
results we refer to Deckelnick, Dziuk and Elliott (2003b).

9.4. Phase field model for surface diffusion

Just as the phase field model for mean curvature flow is gradient flow for the
gradient energy functional and leads to a second order parabolic equation,
a phase field model for surface diffusion may also be based on the same
energy functional and a suitable approximation of the Laplace–Beltrami
operator leading to a nonlinear degenerate fourth order parabolic equation.
The appropriate setting is in the context of the Cahn–Hilliard equation for
phase separation in binary alloys. The phase function ϕ may be viewed as
the difference in mass fractions of the two species so that the values ϕ = ±1
are associated with the pure materials. Stable phases of the alloy are then
associated with the minima of a double well bulk energy W , which in the
regular solution form is

W (ϕ) =
θ

2
[(1 + ϕ) ln[1 + ϕ] + (1 − ϕ) ln[1 − ϕ]] +

1
2
(1 − ϕ2).

This homogeneous free energy function is non-convex with a double well,
for |θ| < 1, and W ′(ϕ) is said to be the homogeneous chemical potential.
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The Cahn–Hilliard gradient energy functional is then

E(ϕ) =
∫

Ω

[
ε

2
|∇ϕ|2 +

1
ε
W (ϕ)

]
. (9.24)

The functional derivative of this energy is used to define the chemical po-
tential

w = −ε∆ϕ +
W ′(ϕ)

ε
. (9.25)

Mass conservation is
∂tϕ + ∇ · J = 0, (9.26)

where J is the mass flux and typically for diffusion

J = −M(ϕ)∇w (9.27)

with the degenerate mobility {M}(ϕ) = 1−ϕ2. The upshot is a fourth order
Cahn–Hilliard equation with degenerate mobility. Interface asymptotics
(Cahn, Elliott and Novick-Cohen 1996) show that, as θ(ε) and ε tend to
zero, the zero level set of ϕ approximates a surface evolving by surface
diffusion. Computational results in a setting which includes a forcing due
to an electric field may be found in Barrett, Nürnberg and Styles (2004).

9.5. Willmore flow

Our starting point is the Willmore functional

E(X) =
1
2

∫
Γ

H2 dA, Γ = X(M), (9.28)

where M is an n-dimensional reference manifold and X : M → R
n+1 is a

smooth immersion. Considering variations Xε(p) = X(p) + εφ(p), p ∈ M ,
where φ : M → R

n+1 is smooth and vanishes near ∂M , one obtains the
formula

〈E′(X), φ〉 =
d
dε

E(Xε)|ε=0 (9.29)

=
∫

Γ
∆ΓX ·

(
∆Γφ + 2ν∇Γν · ∇Γφ

)
+

1
2

∫
Γ

H2∇ΓX · ∇Γφ

=
∫

Γ
∇Γ(Hν) · ∇Γφ − 2

∫
Γ

H∇Γν · ∇Γφ +
1
2

∫
Γ

H2∇ΓX · ∇Γφ,

where we have used (2.10). Note that ∇ΓX · ∇Γφ =
∑h+1

j,k=1 DjXkDjφk.

Willmore flow then arises as the L2-gradient flow of the Willmore functional,
that is, ∫

Γ
Xt · φ dA = −〈E′(X), φ〉. (9.30)
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Figure 9.3. Surface relaxing under Willmore flow, cut open
at x2 = 0.

Using integration by parts one obtains the nonlinear evolution equation of
fourth order, that is,

Xt = ∆Γ(Hν) − 2∇Γ ·
(
H∇Γν

)
+ H∇ΓH − 1

2
H3ν. (9.31)

If we take the scalar product of the above expression with ν and observe
that ∆Γν · ν = −|∇Γν|2, we obtain the evolution law

V = ∆ΓH + H|∇Γν|2 − 1
2
H3 on Γ(t). (9.32)

Note that from Section 2.3 we have

|∇Γν|2 =
n+1∑
j,k=1

(Djνk)2 = κ2
1 + · · · + κ2

n.

For two-dimensional surfaces Γ we then have

|∇Γν|2 = κ2
1 + κ2

2 = (κ1 + κ2)2 − 2κ1κ2 = H2 − 2K

with Gauss curvature K. This leads to the evolution law

V = ∆ΓH +
1
2
H3 − 2KH. (9.33)

Compared with the surface diffusion problem (1.7) additional dimension-
dependent nonlinearities appear. Up to now analytical results for the above
evolution law have been primarily obtained for the case of closed surfaces.
In Simonett (2001) it is shown that a unique local solution of (9.32) satis-
fying Γ(0) = Γ0 exists provided that Γ0 is a compact closed immersed and
orientable C2,α-surface in R

3. The solution exists globally in time if Γ0 is
sufficiently close to a sphere in C2,α. Using different methods, Kuwert and
Schätzle (2004a) obtain global existence of solutions provided that

∫
Γ0

|A◦|2
is sufficiently small, where A◦ denotes the trace-free part of the second
fundamental form. They were subsequently able to remove the smallness
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assumption and to prove the existence of a global smooth solution provided
that E(X0) ≤ 16π, where Γ0 = X0(S2) (see Kuwert and Schätzle (2004b)
and note that our definition differs from theirs by a factor of 2). There is
numerical evidence (Mayer and Simonett 2002) that the above condition is
optimal in the sense that the flow develops a singularity if the initial surface
has energy greater that 16π. A major problem in the numerical solution
of this problem is the treatment of Gauss curvature, which is a nonlinear
expression of the principal curvatures and – contrary to mean curvature –
is not easily accessible to variational methods.

The elastic flow of curves
Let us start with the one-dimensional parametric problem. The Bernoulli
model of an elastic rod (Truesdell 1983) described by a closed curve X :
S1 → R

2 uses the curvature integral (9.28) as elastic energy. Since this
energy can be minimized by scaling, one usually adds length multiplied by
a parameter λ > 0 resulting in the functional

Eλ(X) =
1
2

∫
Γ

H2 ds + λ

∫
Γ

1 ds.

Let us introduce Y = Hν, where H is just the usual curvature of a curve.
We then obtain from (9.29) and the Frenet formula ∇Γν = Hτ ⊗ τ (with
the unit tangent τ)

〈E′
λ(X), φ〉 =

∫
Γ
∇ΓY · ∇Γφ ds − 2

∫
Γ

H ∇Γν · ∇Γφ

+
1
2

∫
Γ

H2∇ΓX · ∇Γφ + λ

∫
Γ

Y · φ

=
∫

Γ
∇ΓY · ∇Γφ − 3

2

∫
Γ

H2∇ΓX · ∇Γφ + λ

∫
Γ

Y · φ.

Thus one may expect the gradient flow for Eλ to be given by the equation

Xt = ∆ΓY − 3
2
∇Γ ·

(
H2∇ΓX

)
− λY. (9.34)

Long time existence for this problem has been proved by Polden (1996).
Just as in Section 4.1 we think of X as a mapping from R × [0, T ) into R

2.
We then have the following system to be satisfied by X and Y :

Xt −
1

|Xθ|

(
Yθ

|Xθ|

)
θ

+
3
2

1
|Xθ|

(
|Y |2 Xθ

|Xθ|

)
θ

+ λY = 0, (9.35)

Y +
1

|Xθ|

(
Xθ

|Xθ|

)
θ

= 0 (9.36)

in [0, 2π]×(0, T ). In addition, X has to satisfy the initial condition X(·, 0) =
X0 in I = [0, 2π] and the periodicity condition X(θ, t) = X(θ + 2π, t) for
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Figure 9.4. Time series of the two-dimensional
length-preserving elastic flow (graphically scaled).
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0 ≤ t < T, θ ∈ R. As in the derivation of (4.6) we obtain a variational
formulation of (9.35), (9.36),∫

I
Xt · ϕ|Xθ| +

∫
I

Yθ · ϕθ

|Xθ|
− 3

2

∫
I
|Y |2 Xθ · ϕθ

|Xθ|
+ λ

∫
I
Y · ϕ|Xθ| = 0,∫

I
Y · ψ|Xθ| −

∫
I

Xθ · ψθ

|Xθ|
= 0

for all test functions ϕ, ψ ∈ H1
per([0, 2π]; R2). We use this weak form of our

problem for a finite element discretization in space, which in one space di-
mension leads to a suitable difference scheme. The derivation of this scheme
follows the derivation of (4.9), additionally using mass lumping in both equa-
tions. Let us denote by φ1, . . . , φN the basis of the finite element space Sh

introduced in Section 4.1. Then, expanding Xh(θ, t) =
∑N

j=1 Xj(t)φj(θ),
Yh(θ, t) =

∑N
j=1 Yj(t)φj(θ) with vectors Xj(t), Yj(t) ∈ R

2, yields the follow-
ing system of 2N ordinary differential equations:

1
2
(qj + qj+1)

(
Ẋj + λYj

)
+

Yj − Yj−1

qj
− Yj+1 − Yj

qj+1
(9.37)

− pj
Xj − Xj−1

qj
+ pj+1

Xj+1 − Xj

qj+1
= 0

1
2
(qj + qj+1)Yj −

Xj − Xj−1

qj
+

Xj+1 − Xj

qj+1
= 0 (9.38)

(j = 1, . . . , N), where X0 = XN , XN+1 = X1, Y0 = YN , YN+1 = Y1, and the
initial values are given by Xj(0) = X0(θj)(j = 1, . . . , N). Furthermore,

qj = |Xj − Xj−1|, pj =
1
2
(
|Yj−1|2 + Yj−1 · Yj + |Yj |2

)
. (9.39)

A more detailed description can be found in Dziuk, Kuwert and Schätzle
(2002). The paper actually treats curves in arbitrary codimension both
showing long time existence of solutions as well as numerical examples. We
include here a computation which shows the unravelling of a planar knotted
curve under the length-preserving elastic flow in Figure 9.4.

Parametric Willmore flow of surfaces
The equation for Willmore flow of two-dimensional surfaces in R

3 is much
more difficult to treat. This is because Gauss curvature appears in the
equation (9.33) for Willmore flow. Mean curvature H is given as a diver-
gence expression (see (2.9)), so that in the discretization of parametric mean
curvature flow, for example, we were able to formulate the mean curvature
vector in a weak form, which then lead to a finite element scheme for para-
metric mean curvature flow. We were able to define the mean curvature
vector of a polyhedron as a continuous and piecewise linear vector-valued
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Figure 9.5. Half of a sphere eversion: the unravelling of a
perturbed Willmore sphere under parametric Willmore
flow (scaled graphically). Time-steps 0, 5600, 6000, 6400,
6800, 7000, 7200, 7400, 7600 and 8000.
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function. Rusu (2001) employed a trick to remove Gauss curvature from
the equations. Let us briefly describe the underlying idea, which we think is
very important for applications of Willmore flow. For simplicity we look at
closed surfaces. Going back to (9.29) and introducing the mean curvature
vector Y = Hν as a new variable, we have

〈E′(X), φ〉 =
∫

Γ
∇ΓY · ∇Γφ − 2

∫
Γ

Y · ν ∇Γν · ∇Γφ +
1
2

∫
Γ
|Y |2∇ΓX · ∇Γφ.

Integration by parts gives∫
Γ

Y · ν ∇Γν · ∇Γφ =
∫

Γ

(
∇ΓY · ∇Γφ −

(
ν∇ΓY

)
·
(
ν∇Γφ

))
.

If we insert this identity into the above expression for E′(X) we obtain

〈E′(X), φ〉 = −
∫

Γ
R(ν)∇ΓY · ∇Γφ +

1
2

∫
Γ
|Y |2∇ΓX · ∇Γφ

with the reflection matrix Rkl(ν) = δkl − 2νkνl. Starting from (9.30) we
can now write down a variational formulation for parametric Willmore flow
which uses position X and mean curvature vector Y as variables: find X :
M × [0, T ) → R

3 such that∫
Γ

Xt · φ dA −
∫

Γ
R(ν)∇ΓY · ∇Γφ dA +

1
2

∫
Γ
|Y |2∇ΓX · ∇Γφ dA = 0,∫

Γ
Y · ψ dA −

∫
Γ
∇ΓX · ∇Γψ dA = 0

for all test functions φ, ψ ∈ H1(Γ)3. Here, Γ = Γ(t) = X(M, t). Further-
more we require the initial condition X(·, 0) = X0. We observe that all
quantities are well defined for a polyhedral surface Γ so that it is possible
to use this formulation in order to approximate solutions by linear finite
elements (see Rusu (2001) for more details and Clarenz, Diewald, Dziuk,
Rumpf and Rusu (2004) for applications to problems in image restoration).

9.6. Willmore flow of graphs

If the two-dimensional surface Γ = {(x, u(x, t))|x ∈ Ω} is a graph above
some domain Ω ⊂ R

2, then we can directly derive a fourth order parabolic
partial differential equation for u. We write the equation (9.33) for a graph.
In order to write down this equation we note that the quantities V , H, K
and ∆ΓH appearing in (9.33) are expressed in terms of u as in (5.1) and

K =
detD2u

Q4
, (9.40)

∆ΓH =
1
Q
∇ ·

(
Q

(
I − ∇u

Q
⊗ ∇u

Q

)
∇H

)
. (9.41)
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We can rewrite the last equation as

∆ΓH = ∇·
(

1
Q

(
I−∇u ⊗∇u

Q2

)
∇(QH)

)
−H ∇·

(
1
Q

(
I−∇u ⊗∇u

Q2

)
∇Q

)
.

(9.42)
With the expression (5.1) for H we conclude

1
Q

(
I − ∇u ⊗∇u

Q2

)
∇Q =

1
Q

(
∇Q − ∆u

Q
∇u

)
+ H

∇u

Q
, (9.43)

and a calculation shows that

∇ ·
(

1
Q

(
∇Q − ∆u

Q
∇u

))
= −2K. (9.44)

Inserting (9.43) and (9.44) into (9.42), we obtain

∆ΓH = ∇·
(

1
Q

(
I − ∇u ⊗∇u

Q2

)
∇(QH)

)
+ 2HK − H∇·

(
H

∇u

Q

)

= ∇·
(

1
Q

(
I − ∇u ⊗∇u

Q2

)
∇(QH)

)
+ 2HK − 1

2
∇·

(
H2

Q
∇u

)
− 1

2
H3.

Comparing this expression with (9.33), we obtain a fourth order parabolic
partial differential equation for u,

ut+Q∇·
(

1
Q

(
I−∇u ⊗∇u

Q2

)
∇(QH)

)
−1

2
Q∇·

(
H2

Q
∇u

)
= 0 in Ω×(0, T ).

(9.45)
As before we can split the fourth order problem into two second order equa-
tions. The above equation suggests using the height u and

w = −QH

as variables which is different from the case of surface diffusion. Note that
Gauss curvature no longer appears. The above ideas were introduced by
Droske and Rumpf (2004) for a level set approach to Willmore flow.

The finite element approach is now based on dividing (9.45) by Q, mul-
tiplying by a test function ϕ ∈ H1

0 (Ω) and integrating by parts. This leads to∫
Ω

utϕ

Q
+

∫
Ω

1
Q

(
I − ∇u ⊗∇u

Q2

)
∇w · ∇ϕ +

1
2

∫
Ω

w2

Q3
∇u · ∇ϕ = 0, (9.46)∫

Ω

wζ

Q
−

∫
Ω

∇u · ∇ζ

Q
= 0, (9.47)

for all ϕ, ζ ∈ H1
0 (Ω). As boundary conditions we choose

u = u0 on ∂Ω × [0, T ] ∪ Ω × {0}, (9.48)
w = 0 on ∂Ω × [0, T ] (9.49)
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with a given function u0, which is independent of time. For the error estim-
ates we need the following regularity of the continuous solution:

∂ku

∂tk
∈ L∞((0, T ); H4−2k,∞(Ω)) ∩ L2((0, T ); H5−2k(Ω)), k = 0, 1, 2.

(9.50)

Thus we need high compatibility of initial and boundary data. The spatially
discrete problem now reads as follows. Find (uh(t), wh(t)), 0 ≤ t ≤ T , such
that uh(t) − Ihu0 ∈ Xh0, wh(t) ∈ Xh0, uh(0) = u0h ∈ Xh0 and∫

Ω

uhtϕh

Qh
+

∫
Ω

1
Qh

(
I − ∇uh ⊗∇uh

Q2
h

)
∇wh · ∇ϕh

+
1
2

∫
Ω

w2
h

Q3
h

∇uh · ∇ϕh = 0 for all ϕh ∈ xh0,∫
Ω

whζh

Qh
−

∫
Ω

∇uh · ∇ζh

Qh
= 0 for all ζh ∈ xh0.

The discrete initial value uh(·, 0) = uh0 ∈ Xh is chosen as the ‘minimal
surface projection’∫

Ω

∇uh0 · ∇ζh√
1 + |∇uh0|2

=
∫

Ω

∇u0 · ∇ζh√
1 + |∇u0|2

for all ζh ∈ Xh0, (9.51)

of the continuous initial value u0.

Theorem 9.3. Let us assume that (9.45), (9.48) has a unique solution u
on the interval [0, T ], which satisfies (9.50). Also suppose that u0h is defined
as the projection (9.51) of u0. Then

sup
0≤t≤T

‖(u − uh)(t)‖ + sup
0≤t≤T

‖(w − wh)(t)‖ ≤ ch2| log h|2, (9.52)

sup
0≤t≤T

‖∇(u − uh)(t)‖ ≤ ch, (9.53)

∫ T

0
‖ut − uht‖2 dt ≤ ch4| log h|4, (9.54)∫ T

0
‖∇(w − wh)‖2 dt ≤ ch2. (9.55)

Appendix

Proof of Lemma 2.1. We prove (2.23), leaving (2.22) to the reader. Fix
t0 ∈ (0, T ). For x ∈ Γ(t0) let Ux, δx > 0 and u be as in (2.19). By the
implicit function theorem there exists an open set Ũx ⊂ Ux, 0 < δ̃x ≤ δx

such that Ũx× (t0− δ̃x, t0 + δ̃x) ⊂ Q and Ũx∩Γ(t) can be written as a graph
over some open set Ωx ⊂ R

n for |t− t0| < δ̃x. Since Γ(t0) ⊂ ∪x∈Γ(t0)Ũx and
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Γ(t0) is compact, there exist a1, . . . , aN with Γ(t0) ⊂ ∪N
j=1Ũj , Ũj = Ũaj . Let

Qj = Ũj × (t0 − δ̃j , t0 + δ̃j) and let ηj ∈ C∞
0 (Qj), 1 ≤ j ≤ N , be a partition

of unity which satisfies
∑N

j=1 ηj(x, t) = 1 for (x, t) in a neighbourhood of
Γ(t0) × {t0}. For t close to t0 we then have

d
dt

∫
Γ(t)

g(x, t) dA =
N∑

j=1

d
dt

∫
Ũj∩Γ(t)

ηj(x, t)g(x, t) dA. (9.56)

Let us fix j ∈ {1, . . . , N}; by construction there exists Ω ⊂ R
n and v ∈

C2,1(Ω × (t0 − δ̃j , t0 + δ̃j)) such that w.l.o.g.

Ũj ∩ Γ(t) = {(x′, v(x′, t)) | x′ = (x1, . . . , xn) ∈ Ω}.
Abbreviating h = ηjg, we have∫

Ũj∩Γ(t)
h(x, t) dA =

∫
Ω

h(x′, v(x′, t), t)
√

1 + |∇x′v|2 dx′

so that we obtain, for t close to t0,

d
dt

∫
Ũj∩Γ(t)

h dA =
∫

Ω

(
hxn+1vt + ht

)√
1 + |∇x′v|2 +

∫
Ω

h
∇x′v · ∇x′vt√

1 + |∇x′v|2

=
∫

Ω

(
hxn+1vt + ht

)√
1 + |∇x′v|2 −

∫
Ω

h∇x′ ·
(

∇x′v√
1 + |∇x′v|2

)
vt

−
∫

Ω

(
∇x′h + hxn+1∇x′v

)
· ∇x′v√

1 + |∇x′v|2
vt

where we have used integration by parts observing that supp h(·, t) ⊂ Ω.
Recalling that ν = (∇x′v,−1)√

1+|∇x′v|2
and H = ∇x′ ·

(
∇x′v√

1+|∇x′v|2

)
we finally get

d
dt

∫
Ũj∩Γ(t)

h dA =
∫

Ũj∩Γ(t)

(
∂h

∂ν
V + ht + hV H

)
dA.

Note that the above identity has been derived under the implicit assumption
that ∇x′vt exists; the general case can be justified with the help of an
approximating argument. If we return to (9.56) and recall that

∑N
j=1 ηj ≡ 1

in a neighbourhood of Γ(t0) × {t0}, we obtain (2.23) at t = t0.
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