Please let me know if any of the problems are unclear or have typos.

Exercise 10.1. [Medium.] Suppose that A is a set. The free group generated by A, denoted \mathbb{F}_A , is the free product of copies of \mathbb{Z} , one for each element of A. The rank of \mathbb{F}_A is defined to be |A|, the cardinality of A. Show that $\mathbb{F}_A \cong \mathbb{F}_B$ if and only if |A| = |B|. (You may assume that A is finite. When it is, we may use the notation \mathbb{F}_n for \mathbb{F}_A , where n = |A|.)

Exercise 10.2. [Page 85, of Hatcher.]

- Suppose that G is a graph and $p: G' \to G$ is a covering map. Show that G' is homeomorphic to a graph.
- [Nielsen-Schreier.] Suppose that $H < \mathbb{F}_A$ is a subgroup. Show that H is isomorphic to a free group.

Exercise 10.3. [Easy.] Suppose that $H < \mathbb{F}_n$ is a subgroup of index $k < \infty$. Compute the rank of H. Give a concrete example of an index three subgroup of \mathbb{F}_2 .

Exercise 10.4. For any non-zero integer p we define the topological space L_p as follows.

$$L_p = \frac{D^2 \sqcup S^1}{z \sim z^p}$$

Check that $L_1 \cong D^2$. In general, find the fundamental group $\pi_1(L_p)$ and a universal cover $\widetilde{L_p}$. Provide illustrative figures. (For the completist: Do the same for L_0 .)

Exercise 10.5. Set $\zeta = \exp(\pi i/n)$. Let D_n be the regular 2n-gon in the complex plane \mathbb{C} , with vertices at the points $\{\zeta^k\}_{k=0}^{2n-1}$. Thus D_n is a closed, two-dimensional disk with 2n vertices and 2n edges. Let e_k be the edge with vertices ζ^k and ζ^{k+1} . Let $d_n = |1 + \zeta|$. We now form a quotient space $Q_n = D_n/\sim$. Identify two points $x, y \in D_n$ if

(*) for some k, we have $x \in e_k$, $y \in e_{n+k}$, and $|x - y| = d_n$.

Show that Q_n is a surface. Using the induced CW structure, find a presentation of $\pi_1(Q_n)$. Give careful illustrations of the cases n = 2 and n = 3. (Challenge: Prove $Q_{2m} \cong Q_{2m+1}$.)

Exercise 10.6. [Exercise 14, page 80, of Hatcher.] List all connected covers of $P^2 \vee P^2$. Prove your list is complete, up to isomorphism of covers.

Exercise 10.7. [Picture-hanger's problem.] We identify our living-room wall with \mathbb{C} and hammer in a pair of nails at 0 and 1. It is straight-forward to hang a picture P from these nails so that, after removing just one of them, P does not fall to the ground. Find a way to hang the picture so that, after removing either nail, P does fall. (Challenge: Suppose that we hammer in n nails at $0, 1, \ldots, n-1$. Find a way to hang P so that removing any one nail causes P to fall.)

Exercise 10.8. Explain the game of skill *fast-and-loose*, also called the *endless chain*, shown here: http://youtu.be/pw0_u9E3ihU?t=1m27s