2024-12-05 LECTURE 30 MA3F1 SAULSCHLEIMER
(1) TOPOLOGY ON X.
RECALL PATHS(X, π_0) = $\{d: I \rightarrow X \mid d \text{ CONTINUOUS}\}$
AND $\hat{X} = \{ [x] x \in PATHS(X, x_0) \}$
AND $\tilde{x}_0 = [e]$
SUPPOSE UCX IS CONTRACTABLE SUPPOSE NEW AND
a: J > X HAS a(o)= xo, a(1)= u. PICTURE
DEFINE
$U_d = \left\{ [x + p] \mid p \in PATHS(u, u) \right\}$
CLAIM: THE COLLECTION { Ua } ud
IS A BASIS FOR A TOPOLOGY DN X.
TROOF. SEE HATCHER.
② p:(X, x₀) → (X, x₀) IS A CONERTING MAP.
CLAIM: p CONTINUOUS
$CLAJM: p'(u) = U U_{8+d}$
CIJETI, (X, Yo)
$C_{11311}, b_{1}M^{2}, M^{2}$
() TE PARI · (ONNEITED
ETX 1-16 X DEFINE E: TXT -> X BY
ITY TOTAL TITY V SL
$T(a+b) = \begin{cases} \chi_0, & if s+t \leq 1 \end{cases} \qquad \qquad$
f(s,t) = d(s+t-1) if 14s+t s
So $f = e$ $f = d$
$CLAIM: \hat{F}: I \rightarrow \hat{X}, \hat{F}(t) = [f_{+}T]$
TS A FRITH FROM [e]= To [a].

(4) X IS SIMPLY- CONNECTED :

LET & & LOOPS (X, x) BE DEFINED BY & (+)= 75 SO & IS THE CONSTANT PATH IN X. NOTE POZEC FIX ANY & ELOOPS (x, 2).

CLATM: T = E

PROUF: DEFINE 8= pol. SO YELOOPS(X, 20), AND

F:I→X IS A LIFT of O. DEFINE F:IXI→X AS ABOVE: $F(s,t) = \begin{cases} x_0, & s+t \le 1 \\ \overline{D}(s+t-1), & 1 \le s+t \\ x_0 & \chi_0 \\ \hline \chi_0 & \chi$

So $\tilde{F}: I \rightarrow \tilde{X}$, $\tilde{F}(t) = [f_1]$ IS A PATH IN \tilde{X} . ALSO $\vec{F}(\omega) = [e]$, $p \cdot \vec{F} = \delta$ [CHECK!]. SO F IS ALSO A LIFT of T. THUS BY UNIQUENESS of PATH LIFTING T=F. BUT S(1)=[e] AND F(1)=[8] SO [D]=[e] AND SO I = e. THUS 8 = E BY HOMOTOPY LIFTING.

(5) DECK GROUP ACTION

Osi

WE DEFINE $p: \pi_i(X, \kappa_0) \times \tilde{X} \longrightarrow \tilde{X}$ BY ALTION (157, 127) \longrightarrow Front ([1], [d]) → [1+d]

THIS GIVES A GROUP ACTION of TI(X, X.) ON X. $ALSO: \quad po([\delta] \cdot [d]) = p([\delta + d]) = (\delta + d)(1) = d(1) = p([d]).$ PATH LIFTING PROVES J, (X, x) = DECK (P:X→X). PICTURE R DECKLP)

π.(s) - Ζ

