2024-12-02 SAVLSCHLEIMER LECTURE 28 MA3F1

(1) FROM COMPLEXES TO PRESENTIFIEDNS WE GIVE AN "ALGORITHM" WHICH, GIVEN A CW COMPLEX X, PRODUCES A PRESENTATION of π , (X). SUPPOSE THAT X IS THE GIVEN COMPLEXED CW COMPLEX FIX XOF X^(o) AND TCX" A SPANNING TREE. LET S c X⁽ⁱ⁾ T BE THE NON-TREE EDGES of X⁽ⁱ⁾ - T. PROP: π , (X⁽ⁱ⁾, xo) = F₅.

SUPPOSE $\mathcal{D}_{\mathcal{A}}^2$ IS A TWO-CELL IN X. SO $(\mathcal{Q}_{\mathcal{A}}: S_{\mathcal{A}}^2 \longrightarrow \chi'')$
IS THE ATTACHING MAP. FIX $s_a \in S'_a$ and $g: I \longrightarrow X'''$
FROM 7. TO (a(S.). DEFINE Va ELOOPS (X", x.)
$BY \delta_a = g_a * \varphi_a * \overline{g_a} \underline{PICTURE} \qquad \qquad D_a^2$
LET VI BE THE RESULTING WORD IN T LAS T IN X = T
SET $R = \frac{1}{2} \sqrt{\frac{1}{2}} \frac{1}{2} \frac$
THEN, BY PROP 1.26(b) $\pi_1(X^{(2)}, \pi_0) = F_5 (\langle R \rangle \rangle$
THUS, BY PROP (126 (c)) 7, (X, 76) = < S R)
(2) HEXAGON SPACE: A NICE FAMILY of SPACES COMES FROM THE 2M-GON, GWING OPPOSITE SIDES
WE HAVE SEEN THE 4-GON ALREADY.

HERE IS THE HEXAGON EXAMPLE:

PICTURE

TAKE T = c AND $S = \{e, b\}$. THE ATTACHING MAP GIVES THE LOOP ON DECT a' + y' + z''IN X'''. BUT $c \in T$ So IS A TREE EDGE, SO r = a + b + a'' + b''Let a'' + b'' + b''

AND $\pi_i(\mathbf{x}, \mathbf{v}) \leq \langle \mathbf{a}, \mathbf{b} \mid \mathbf{a} \mid \mathbf{b} \mid \mathbf{c}^{-1} \mid \mathbf{b}' \rangle \leq \mathbb{Z}^2$

Xu

 $TO S_g = \# T^2$

SINCE THERE IS MORE THAN ONE VERTEX THE SPANNING TREE IS NON-TRINIAL

EXERCISE: SHOW THE 49-GON SURFACE IS HOMEOMORPHIC

AND SO (OR OTHERWISE) GIVE A PRESENTATION of Of TI, (Sg).

(3) FROM GROUPS TO SPACES
SUPPORE G IS A GROUP. WE DEFINE A TWO-COMPLEX
X=X, AS FOLLOWS: X ⁽⁰⁾ = T. IS A POINT.
THERE IS A ONE-CELL & FOR EACH at G.
So X"= Y S!. THE TWO-CELLS e ² _{ab} ARE TRIANGLES
$q \in G$
$\begin{array}{c} +0 \times \text{ALL } a, b \in G \\ \hline \end{array}$
$aD = \{x_0\} \cup \{u \cup D_{a,b}\}$
ATTACHING MAPS.
EXAMPLE: G = Z/27. ATTACH
NUTE
$\pi_{n}(X_{G}) \cong F_{G} / \mathfrak{a} \ast \mathfrak{b} \ast (\mathfrak{a} \cdot \mathfrak{b})^{-1} \cong G.$
[SKIP THE MORE GENERAL CASE of TRESENTATION
() WINTHERES. J
(4) UNIVERSHL COVERS
UEF SVITUSE $p:(X, K_0) \longrightarrow (X, \chi_0)$ is a covering
MAP. JV IS A UNIVERSAL CONFICING JF M, UK, NoV=11
THEOREM 136-38 DUTIONE X IS A CW COMPLEX, XOEX
AND X IS CONNECTED. THEN & UNIVERSAL COVER (X, No.)
EXISTS AND IS UNIQUE UT TO UNIQUE ISONOMPHISM.

EXAMPLES OIF T, (X, x)=1 THEN X=X AND Id, X X B A UNINERSAL COVER. (SO, R", S" (172), B",] @ p: R -> S JS A VNIN. COVER t i exp (21:1) IS AS WELL SPECIAL CASE of: $(3) p: \mathbb{R}^{n} \to \mathbb{T}^{n}$ XYY = XXY IF X Y EXIST. **(4)** R. HAS WHINER COVER . -THE REGULAR FUR WAVENT TREE. EXERCISE: FIND THE UNIVERSAL COVER of (1) RP Y RP' AND TWO POINT UNION of 5 AND 5. NON-EXAMPLE THE EARRING SPACE HAS NO VUTVERSAL COVER. BLVEPRINT FOR (X, K.) P (X, K.) FIX (X, T.) 1) DEFINE A SET X. AND A POINT X. ② DEFINE A FUNCTION p:X→X. CHECK p(x)=x. (3) DEFINE A TOPOLOGY ON X 4) PROVE P IS A COVERING MAP. (5) PROVE & AS PATH- CONNECTED. (b) PROVE $\pi_1(\tilde{x}) = 1$.