2024-11-28 LECTURE 27 MABEI SAVLSCHLETMER
1) TREES
DEF A GRAPH IS A ONE-DIM'L OU-COMPLEX.
EXAMPLES DES' OORZ HEAVENT TREE
LEMMA: SUPPOSE T IS A CONNECTED NONEMPTY GRAPH:
THE FOLLOWING ARE EQUIVALENT: (i) $T.(T) \stackrel{\sim}{=} 11$
(ii) T IS CONTRACTIBLE (II) T DEF RETRACTS TO (iii) THERE IS NO EMBEDDED LOOP IN T A POINT
(i) FUR ANY X, Y & T THERE IS A UNIQUE EMBEDDED PATH FROM & TO V IN T.
(U) REMOVERY ANY (OPEN) EDGE FROM T
DISCONNELTS T. FOR FINITE T (vi) # VERT(T) - # EDGE(T) = 1 $x(T)=1$
(viii) T = ipt) OR b) T - any LEAF IS A TREE
DEF: SUPPOSE I IS SUCH AFORENTI: US CALL IN MEL
EXAMIPLES:
DEF: SUPPOSE X IS A CONN. GRAPH, SUPPOSE TO X HAS
(i) X ^(o) CT AND } THEN CALL T A SPANNING (ii) T IS A TREE TREE FOR X.

LEMMA: ALL CONNECTED GRAPHS CONTAIN SPANNING TREES. [THIS IS EQUINALENT TO AX of CHOICE!] PROPOSITION : SUPPOSE X IS A CONNECTED GRAPH SUPPOSE TOX IS A SPANNING TREE. LET S=X-T BE THE SET of OPEN "NUN TREE" EDGES. THEN T, (X) = F. THE FREE GROUP GENERATED

LET UCX BE A WEIGHBOURHOOD PROUF of PROP : of T IN X WHICH DEF RETRACTS TO T. [PROP (43)] NOTE J, (N)= T, (T)= 1 BECAUSE T IS A TREE FOR EVERY SES [NON TREE EDGE] DEFINE As= Uuss.

NOTE A, A, A, AND A, A, A, ARE PATH CONNECTED, AND T, (As) = ZLI. APPLY SUK TO FIND □//

 $\pi_1(X) = \# \mathbb{Z} = F_{e_1}$ As desired.

PICTURE

@ FROM PRESENTATIONS TO COMPLEXES SUPPOSE GE (SIR) IS A PRESENTATION of a GROMP. WE BUILD XG. THE TOKEGENTIATION AS FOLLOWS Two-COMPLEX o) $X^{(0)} = \{x, y\}$ IS A POINT. 1) X '') IS THE ROSE RS [ONE PETAL CC FOR BACH SES] 2) THERE IS A TWO CELL D' FOR EACH VER WITH U.S' -> X" THE CONTRACT. of THE EDGES SPEKLING re R. $PROP : \pi_1(X_G) \cong \mathcal{G}.$ COROLLARY: EVERY GROUP G ARTSES AS A FUND. GROMP. PROOF SET S=G AND R= { a* b* (ab)] abe G]. SO G= (SIR) EXAMPLE $\pi, \alpha \neq (a, b, c, d)$ abida b c d