


IF	(i) A (ii) A	IS CL	oæd Nign	of	CELL	s,	s Sf	x	•	•	· ·	•	•
· max A with the		1.1.1											
EXAMPLE	<u>-</u> : .						• •						
	-		to A				• •				• •		
• • • • •				• •			• •		•		• •		
	· · · · · <u>· +</u> ·		- · · ·				• •				• •		
						•	• •				•		
EXAMPLE	: X"'a	⊂ X _ Z	S A S	BCO	mple	ΞX	•		•				
EVO.	C M .	Mr - M	On M. C.			-	V .	1.15-	- 1	4	DA-	+ıD	1

(A) MANY USEFUL FACTS SUPPOSE X IS A CU COMPLEX. PROP (A) SUPPOSE KCX IS COMPACT. THEN THERE IS A FINITE SUBCOMPLEX ACX SO THAT KCA. PROP (A.) X IS NORMAL (THUS HAUSDORFF] PROP (A.) X IS NORMAL (THUS HAUSDORFF] PROP (A.) X IS LOCALLY CONTRACTABLE THAT IS FOR ALL XEX, FOR ALL OPEN UCX WITH XEU THERE IS SOME OPEN VCX SO THAT XEVCU, AND V IS CONTRACTIBLE (Y = [pt]). PICTURE V U EXAMPLE: R² IS LOCALLY CONTRACTIBLE. (BK B² IS GNTRACTIBLE)

(3) EXERCISES FROM HIATCHER (PAGE 529)

(J) SUPPOSE X IS CW. SUPPOSE p: X→X IS A COVERING MAP. THEN THERE IS A (UNIQUE) LIFT of THE CW-STR ON X TO X.

3 SUPPOSE X IS CW. THE X IS PATH CONN

IF AND JULY X⁽¹⁾ IS PATH CONN. HERE IS OWR FINAL USEFUL FACT THEOREM (PAGE 97-KIND of I SUPPOSE X IS CW. SUPPOSE XOE X⁽⁰⁾. THEN THE INCLUSTON L: X⁽²⁾ X INDULES ix: T, (X⁽¹⁾, Xo) $\xrightarrow{\cong}$ T, (X, Xo) ISOM. THAT IS : IT, IS DETERMINED BY THE TWO-SKELETON.

EXERCISES

(1) SHOW S" HAS A EW-COMPLEX STR WITH EXACTLY A SINGLE O-CELL AND A SINGLE M-CELL (2) SHOW S" HAS A OW - COMPLEX STRUCTURE WITH A PATR of R-CELLS IN DIMENSIONS R=0,1,2,..., N. (3) DEFINE RP" = S"/x--x : THE QUOTIENT of S" UNDER THE ANTIPODAL MAP. GIVE RP A CW-COMPLEX STR.