$$\frac{2014 \cdot 1(-14)}{2} (ECTURE 2) MAPT SAVE SCHLEIMER
DTHEOREM [SETTERT-VALI KAMPEN] (D)
SURPOSE (X, r) IS A POINTED SPACE. SURPSE $\{(A, x_0)\}_{A}$
IS AN OPEN COVER $4 \times WITH A PATH-CONNECTED$
FOR ALL & DEFINE $i_{X}:A_{A} \longrightarrow X$ AND $\overline{\Phi} = \frac{1}{2}(i_{A})_{A}$
(1) SURPSE B_{AB} PATH CONN. FOR
ALL ~, DEFINE $i_{X}:A_{A} \longrightarrow X$ AND $\overline{\Phi} = \frac{1}{2}(i_{A})_{A}$
DEFINE $B_{AB} = A_{A} \cap P_{B}$, i_{ab} : $B_{AB} \longrightarrow A_{a}$. AND $B_{ab} = A_{A} \cap P_{B} \cap P_{A}$.
DEFINE $M = \left\{ (i_{ab} | w) (i_{bA} | w^{-1}) \right\} ALL ~, P.$
DEFINE $M = \left\{ (i_{ab} | w) (i_{bA} | w^{-1}) \right\} ALL ~, P.$
DEFINE $M = \left\{ (i_{ab} | w) (i_{bA} | w^{-1}) \right\} ALL ~, P.$
DEFINE $M = \left\{ (i_{ab} | w) (i_{bA} | w^{-1}) \right\} ALL ~, P.$
 $DEFINE M = \left\{ (i_{ab} | x_{ab}) (i_{bA} | w^{-1}) \right\} ALL ~, P.$
 $DEFINE M = \left\{ (i_{ab} | x_{ab}) (i_{bA} | w^{-1}) \right\} ALL ~, WE TI, (B_{ab}, T_{ab}) \right\}$
AND $N = \langle \langle M \rangle T$ THE NORMAL CLOSURE of M .
 $\left[THAT IS: THE INTERSECTION \oint ALL NORMAL SUBGROUPS \right] d_{A} + T_{a} (A_{a}, x_{ab}) CONTAINING M$
 $\left[@ SUTPORE B_{ab} IS TATH CONNECTED \\ ROR ALL ~, P, THEN ~, KER($\overline{\Phi}$) = N.
 $\overline{\Phi}$ $T_{ab}(X, x_{ab}) = T_{ab}(X, x_{ab}) = T_{$$$$

SO IF WET, (BOB) IT APPEARS TWICE IN IT, (A) + T, (A) ONCE AS $(\iota_{ap})_{k}(\omega)$ AND ONCE AS $(\iota_{pd})_{k}(\omega)$ SO $\overline{D}\left((\iota_{ap})_{k}(\omega)\cdot(\iota_{pd})_{k}(\omega^{-1})\right) = [e] \int_{II_{1}}^{SO} \frac{1}{II_{1}(B_{ap})} \frac{1}{IEAD} \frac{1}{ID} \frac{1}{$ THUS N < KER (I). THE OTHER INCLUSION IS WHERE THE WORK JS. 2) REDUCTIONS, EXAMPLICANS, EXCHANGES. SUPPOSE [f] e T. (X, x.) FACTORS AS [f.][f.]- [f.] SUPPOSE [+;][fin] & J, (Aa,x.). [[f,] -- [f:][fn,]-- [fn] THEN (ERAND) | REDUCE (f.]... (f.+f...]... [f..] $w \in \pi, (B_{AP}, x_{-}) AND [f_{i}] = (i_{AP})_{*}(w), [g_{i}] = (i_{PA})_{*}(w)$ SUPPOSE THEN $\begin{cases} [f_1] - [f_2] - [f_n] \\ \int f = \underbrace{xchAnge}_{[f_1] - [f_2] - [f_n]} \\ [f_1] - [f_2] - [f_n] \end{cases}$ CLAIM: SUPPOSE BUDG IS PATH CONN FOR ALL U.B.T. THEN ANY TWO FACTORISATIONS OF ANY [f] & T. (X.T.) ARE CONNECTED BY SIME SEQ of EXTANSIONS, REDUCTIONS, AND EXHANCES EXERCISE : CLAIM PROVES 2 PROOF: FIX feloops (x, x.) suppose for f. + f. + - * f. f= f:= f:+ -- + fe IS A PAIR of FACTORTSATIONS of f. FIX HOMOTOPY $G: I \times I \longrightarrow X$ WITH $g_0 = f_1 \ast \cdots \ast f_{p}$, $x_0 \int f' | x_0$ $g_1 = f_1' \ast \cdots \ast f_{e}'$

of [GIOn] TO THAT of [GIDM,] STEP 1 : EXPAND TO ENSURE LOWER VERTICES IN S. STEP 2 : EXCHANGE TO ENDIRE EDGES of 8 - This LIE IN TUANTO (RATI) CAA STEP 3 REDUCE AWAY BOWNDARY of Rat. STEP 4 HOMOTOPE ACROSS R.H. [LEAVES FACTORIBATION UNCHANGED NOW REVERSE STEPS 32,1 PICTURE To OBTATH FARTOR. of The ([6176.]) RESPECTIVELY, USENG THE MOVES AS ABOVE. [90] CONNECTS PICTURE 6