2024-11-05 LECTURE 17 MA3F1 SAVL SCHLEIMER
(1) TOPI AND SPHERES.
THEOREM (12): SUPPOSE (X, x), (Y, J.) ARE POINTED SPACES.
$\pi_{HEN} = \pi_{r} \left(\chi_{r} \chi_{r} (\chi_{r}, \chi_{r}) \right) \cong \pi_{r} (\chi_{r} \chi_{r}) \times \pi_{r} (\chi_{r}, \chi_{r})$
PROOF: DEFINE PX: XXY -> X AND PY: XXY -> Y
$(x,y) \longrightarrow x \qquad (x,y) \longmapsto y$
AND CONSIDER $(P_x)_* \times (P_r)_*$
EXAMPLES: $T^2 = S' \times S'$ G HAS $\pi_1(T^2) \cong T^2$
AND $\pi_{i}(\mathbf{T}^{n}) \cong \mathbb{Z}^{n}$.
THEOREM (1.14: SUPPOSE N > 2. THEN T, (S") = 11.
PROOF: SET s = (0,0,,-1), n = (0,0,,1)
SUPPOSE TE LOOPS(S', s). HOMOTOPE
(
52 LINES of LONGITUDE
s
3 THE GALOIS CORRESPONDENCE
THEOREM SUPPOSE (X,2.) IS A "HICE POINTED SPACE
THEN THERE IS A SUBGROUPS of ? STOLINTED ?
THEN THERE IS A "NATURAL BIJECTION { SUBGROUPS of } ~ { TOLNTED } TI, (X, X) } ~ ? CONNECTED }
ISOMORPHIEM

PATH-CONNECTED POINTED COVER, THEN PA JS
INJECTIVE, FURTHERMORE: SUPPOSE de LOOPS(X,X)
AND $\hat{a}: I \longrightarrow \hat{\chi}$ IS THE LIFT of a WITH $\hat{a}(0) = \hat{\chi}_0$.
THEN & IS A LOOP IF AND ONLY IF
$Lage P_{4}(\pi,(\tilde{X},\tilde{x}_{s})) = INMGE(P_{4}).$
Proof: FIX $(\bar{x}] \in \pi, (\bar{X}, \bar{x})$ with $p_{x}([x]) = [e]$.
DEFINE &= pod. So d'= e. SUPPOSE F: INJ -> X
IS THE GIVEN HOMOTOPY. 7 WE LIFT TO
x F e obtath
IS THE GIVEN HONOTOPY. X. F & WE LIFT TO X. F & OBTAIN X. F : INI-X
Ĩ.
THE CONSTANT PATHS LIFT TO CONSTANT PATHS.
a F CONSTANT PATHS.
THUS $\overline{a} = \overline{e}$ so $[\overline{a}] = \overline{e}$]
X. AND PA IS JNDECTIVE.
EXERCISE: PROVE THE "FURTHERMORE"
3 INDEX 13 DEGREE
RECALL' SUPPOSE G IS A GROUP. SUPPOSE H <g< td=""></g<>
THEN [G:H], THE INDEX of H IN G, IS
THE CARDIWALITY of
THE CARDIWALITY of H/G = EH.y/geGZ = SET of RIGHT COSETS.
DEF: SUPPOSE $P: (\hat{X}, \tilde{x}_{2}) \longrightarrow (X, x_{2})$ is a path-connected

PROPORTION (1.31) SUPPOSE p: (X, X) -> (X, X) IS A

HERE IS THE BACKWARDS MAP:

COVERTING SPACE. THE deg (P) (THE DEGREE
$$4, P$$
)
IS CARD ($p^{-1}(\pi_0)$).
EXERCISE: CARD ($p^{-1}(\pi_0)$) = deg (P) FOR ALL XeX.
TROP (132) SUPPOSE $p:(\tilde{X}, \tilde{x}_0) \longrightarrow (X, n)$ IS A PATH-
CONN COVER. THEN
deg (p) = [$\pi_1(X, x_0)$: $P_1(\pi_1(\tilde{X}, \tilde{x}_0))$]
PROOF: SET $p^{-1}(\pi_0) = \tilde{\chi} \tilde{\chi}_1$; PICK PATHS
 $\tilde{\mu}_1$: $\Sigma \longrightarrow \tilde{X}$ WITH $\tilde{\mu}_1(0) = \tilde{\chi}_0$ AND $\tilde{\mu}_1(1) = \tilde{T}$:
SO $p_1 = p_0 \tilde{p}_1$ = LOOPS(X, x_0).
SET $G = \pi_1(X, n)$ AND $H = p_0(\pi_1(\tilde{X}, \tilde{x}_0))$.
SET $G = \pi_1(X, n)$ AND $H = p_0(\pi_1(\tilde{X}, \tilde{x}_0))$.
CLATHN (D): $H(p_1) = H(p_1)$ IFF $i=j$.
CLATHN (D): $H(p_1) = H(p_1)$ IFF $i=j$.
CLATHN (D): $H(p_1) = H(p_1) = H(p_1)$ SO THERE IS
SOME $\tilde{\alpha}_1$: $\tilde{\alpha}_1 \in LOOPS(\tilde{X}, \tilde{x}_0)$ WITH
 $p^0(\tilde{x}_1) + p_1 = (p^0 \tilde{\alpha}_1) + p_1$
SO (LIFT $p \in \tilde{X}$ AND FIND
 \tilde{x}_1 \tilde{x}_1 \tilde{x}_1 \tilde{x}_2
 \tilde{x}_1 \tilde{x}_2 \tilde{x}_2
 \tilde{x}_2 \tilde{x}_2 \tilde{x}_2
 \tilde{x}_1 \tilde{x}_2 \tilde{x}_2
 \tilde{x}_2 \tilde{x}_2 \tilde{x}_2
 \tilde{x}_1 \tilde{x}_2 \tilde{x}_2
 \tilde{x}_2 \tilde{x}_2 \tilde{x}_2
 \tilde{x}_2 \tilde{x}_2 \tilde{x}_2
 \tilde{x}_1 \tilde{x}_2 \tilde{x}_2 \tilde{x}_2
 \tilde{x}_2 \tilde{x}_2 \tilde{x}_2 \tilde{x}_2
 \tilde{x}_2 \tilde{x}_2 \tilde{x}_2
 \tilde{x}_2 \tilde{x}_2 \tilde{x}_2 \tilde{x}_2
 \tilde{x}_2 \tilde{x}_2 \tilde{x}_2
 \tilde{x}_2 \tilde{x}_2 \tilde{x}_2 \tilde{x}_2
 \tilde{x}_2 \tilde{x}_2 \tilde{x}_2 \tilde{x}_2 \tilde{x}_2
 \tilde{x}_2 $\tilde{x$

TRUOF of E FIX ANY CUJEG. LIFT TO Z'I-X WITH JUI= RJ. SUPPOSE J(1)= 21. 50 2 * E LOOPS (K, K.) THUS [P. (2 Fi)] EH THAT IS CATEBIJ & H SO CAJEHEBJ 2 - HXB. J IS A BIJECTION THUS T; FROM p'(To) TO HIG to understand this we EXAMPLE : WINST UNDERSTAND WITH DEG=3. J, (X, x.) AND, P F NORE GENERALLY, THE FUNDAMENTAL GROUPS) {X of GRAPHS.