(1) <u>ENENI AND ODD</u> <u>PROP</u> (A) SUPPOSE $f: S' \rightarrow S'$ IS ODD. THEN f IS <u>NOT</u> NULL HUMOTOPIC. <u>PROOF of (A)</u> : SUPPOSE $f: S' \rightarrow S'$ IS ODD. SUPPOSE $f: e$ (FOR A <u>CONTRA-</u> <u>VIA</u> $F: S' \times I \rightarrow S'$. DEPINE $G: S' \times I \rightarrow S'$ $(a, t) \mapsto \frac{F(a, t)}{F(1, t)}$
Homotopic.
HIMOTOPIC. PROOF of (A): SUPPOSE f:S' >S' IS ODD. SUPPOSE f= e (CONTRA- VIA F:S'XI -> S'. DEFINE G:S'XI -> S' DICTION
PROOF of (A): SUPPOSE f: S'→S' IS ODD. SUPPOSE f= e CONTRA- VIA F: S'XI→S'. DEFINE G:S'×I→S' DICTION
VIA F: S'XI -> S' DEFINE G: S'XI -> S'
$(z,t) \longleftrightarrow \frac{F(z,t)}{F(l,t)}$
NOTE THAT $G(l,t) = \frac{F(l,t)}{F(l,t)} = 1$
SO G IS A POINTED HOMPTOPY.
NOTE g= go: S'->S' IS AGAIN ODD [g IS A ROTHTION of f]
DEFINE $p: \mathbb{R} \rightarrow S' \neq p(s) = \exp(2\pi i S)$
TEFINE $f: I \rightarrow S'$ by $f = g \circ p$, so $\delta(S) = g(cxp(etis))$.
SINCE & IS ODD WE FIND: PICTURE
SINCE g IS ODD WE FIND: PICTURE $Y(t+1/2) = -T(t)$ FOR $t \in [0, 1/2]$ -1 G
SENCE $\delta(0) = \delta(1) = 1$ DEDUCE $\delta(1_2) = -1$.
NOW LIFT of to $\hat{\sigma}: I \rightarrow jR$ with $\hat{\sigma}(\sigma) = 0$.
90 8(1/2)= 1+1/2 FOR SOME NE Z [B/C 01/2)=-1]
DEFINE Tuni R - R BT t - t+m+2

DEFINE $J: I \rightarrow S'$ by $\delta(t) = T(t_{\lambda})$ 7 SO $T = \delta + e$
$e: I \rightarrow S' BT \varepsilon(t) = \delta(t/2 + 1/2) (AND \varepsilon(t) = -5(t))$
DEFINE J : I -> S' AND E: I -> S' TO BE THE LIFTS of
S AND E WITH $\tilde{J}(0) = 0$ AND $\tilde{\varepsilon}(0) = n + \frac{1}{2}$.
BY UNIQUENESS of LIFTING $\vec{\sigma} = \vec{\delta} * \vec{\epsilon}$.
$\underline{CLAIM}: \widehat{\varepsilon} = \tau_{u+1/2} \cdot \overline{\delta}.$
PRODE: WE USE UNITQUENESS.
FIRST, $\hat{E}(0) = n + \frac{1}{2}$ AND $(T_{n+k_2} \cdot \hat{\delta})(0) = T_{n+k_2}(\hat{\delta}(0)) = T_{n+k_2}(0) = n + \frac{1}{2}$
NEXT $(p \circ \tau_{n+1/2} \circ \delta)(t) = p(\tau_{n+1/2}(\delta(t)))$
$= p(n+k_2+\hat{\delta}(t))$
$= a \times a \left(a + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)$
$= \exp \left(2\pi i n + \pi i + 2\pi i \delta \left(+ \right) \right)$
$= -1 \cdot \exp(2\pi i \overline{\delta}(t))$
$= -\delta(t)$
= e(t)
So T _{n+1/2} & IS A LIFT of E, THUS EQUALS Ê. O
THUS $\widehat{\tau}(1) = \widehat{\varepsilon}(1) = n + \frac{1}{2} + \widehat{\delta}(1) = 2n + 1$, which is <u>odd</u> .
DEFINE $H: I \times I \longrightarrow S'$ BY $H(s,t) = G(p(s),t)$.
SO h = 8, h = e, AND H IS A HUMOTOPY RELENDETS.
NOW LIFT: $2n+1$ $2n+1$ $2n+1$ 7 50 $2n+1 = 0$
AND O IS ODD.
$[\mathbf{D}] = \mathbf{C} $

TEMPERATURE AND HUMIDITY." THE "HAM SANDWICH THEREM." GIVEN U,VCR3 MEASURABLE DETS, THERE IS A PLANE CUTTING BOTH IN HALF PICTURE

(3) BOASUK VLAW THEODEM. THEOREM (I.D): SUPPOSE f:S² → IR² IS ANY MAP. THEN THERE IS SOME x + S² WITH f(-x) = f(x). PROOF GIVEN f:S² → IR² ANY MAP. DEFINE g:S² → IR² BY g(x) = f(x) - f(-x) THIS IS ODD, SO HAS A ROT, BY (C) "AT ANY MOMENT THERE ARE ANTIPODES WITH THE SAME TEMPERATURE AND HUMSDITY."

 $\chi \in S^2$. **PROOF of (B)** SUPPOSE f(x) NEVER VANITSHES. DEFINE $g: S^2 \longrightarrow S^1$ $\int SD \ q \ JS \ ALSO \ ODD$ $\chi \longmapsto f(x)/(f(x))$ DEFINE $U \subseteq S^2 \ BT \ \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, z = 0\}$ $U \ DEFINE \ \partial U = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, z = 0\}$ $SO \ q \ DU \ JS \ ODD \ AND \ NOT \ NUL \ HOMOTOPIC \ BY (P)$ $D \ BUT \ g(M \ JS \ A \ MUL \ HOMOTOPY \ of \ g(D)M;$ $GIVING \ THE DESIRED \ CONTRADICTION \ D$

PROP B: SUPPOSE f: S2 > IR2 IS ODD. THEN f(x)=0 FOR SOME