GIVEN HOMOTOPY. DEFINE G: IXI -> Y BY GIS,t) = F(p(s),t) DEF h: I -> Y BY h(t) = F(1,t). FOR P(S) = exp(cn is)

(2) <u>NULL HOMOTOPTES</u>: SUPPOSE f: X→Y IS GIVEN. WE PAY f IS <u>NULL</u> HOMOTOPIC IF f=e [A CONSTANT MAP] DEF: A POINTED MAP f: (X, x_0) → (Y, y_1) IS <u>NULL</u> HOMOTOPIC REL BASE POINT IF THERE IS A HOMOTOPY F: X * I → Y WITH fo=f, fi=e [e(x)=j.FOR] AND F(x_0,t)=y_0.

fIS'= Ids'. THEN f IS SURJECTIVE. PERRON-FRUBENTUS (n=3): SUPPOSE AEMAT_{3:3}(R) HAS a; > 0 FOR ALL i, i. THEN A HAS AN EIGENVALUE 7>0 AND A X-EIGENVECTOR J WITH J; > 0 FOR ALL i. THE NEXT RESULT REQUIRES MORE WORK TO PROVE FUNDAMENTAL THEM A ALGEBRA SUPPOSE Q EQ[z] IS A NON-GONSTANT POLYNDMIAL. THEN THERE IS SOMUE z, E C SO THAT Q(z_0)=0. [THAT IS, Q HAS A ROOT.]

2024-10-31 MA3F1 SAUL SCHLEIMER LECTURE IS (1) GROLLARIES of NO RETRACT THM. TABLECLOTH THEOREM : SUPPOSE f: D² HAS fig² - The TUEN for Suppose find the suppose for the suppose find the

PICTURE: ST INY
for Ger Suff Fie fre
SO BUTID H: IXI -> Y BY / FINALLY DEFINE
$\{ (i) \ / h.p. \} K: S' \times I \longrightarrow Y$
$(z,t) \longrightarrow G\left(\frac{\log(z)}{2}, t\right)$
fil G or fli) THIS IS THE DESIRED
POINTED HOMOTOPY.
DEFINE $P_{k}: S' \rightarrow S' \text{ BY } P_{k}(z) = z^{k}$.
$\frac{\text{COROLLARY}}{\text{SO}}: P_{\text{R}} = P_{\text{R}} \text{IFF} k = \{. \\ \text{SO}: P_{\text{R}} \text{IS NULL HOMOTOPIC JFF} k = 0. \\ \end{array}$
<u>≤ </u>
3 PROOF SKETCH of FUND. THM of ALGEBRA.
SUPPOSE, FOR A CONTRAPTCTION, THAT HAS NO ROOT.
SO Q(C) C C-20]. FOR REPR., DEFINE
$C_{R} = \left\{ 2 \in \mathbb{C} \mid 131 = R \right\}$
SUPPOSE Q(z) = an z"+ an-, z"++++++++++++++++++++++++++++++++++++
an = 0. SINCE IT DOES NOT CHANGE THE ROOTS
WE MAY DIVIDE AND SO ASSUME on = 1.
NOW FICK R>70 SO THAT R" >> ZI INALR" &=0

$F: C_{R} \times I \longrightarrow C^{-20}$ $(\Xi, t) \longrightarrow Q(t:2)$ $PICWRE:$ $Q C$	TN FACT DY STRAJGHT- -LINE HUMOTOPY. SO: Q IS HOMOTOPIC TO $p_n: S' \rightarrow \mathbb{C} - 50$? $z \mapsto z'$ SO QICR JS NOT NUCL- HUMOTOPIC JN $\mathbb{C} - 50^{2}$. THIS IS A HULL - HOMOTOPY of QICR*50?. THIS IS THE DESIRED CONTRADICTION II *
(2) EVEN / ODD. SUPPOSE VELTOR SPACES. SUPPOSE UNDER NEGATION. DEF: SAY f:X -> Y IS EVEN 7 17 ODD 7 17	X, Y ARE SUBSETS of X, Y ARE INVARIANT f(-x) = f(x) f(-x) = f(x)

EXAMPLES: (1) sin: $\mathbb{R}' \to \mathbb{R}'$ is ord											• •																								
	$(2) \cos : \mathbb{R}' \longrightarrow \mathbb{R}'$																						• •												
· ·	•										IR" IS ODD.														• •										
· · ·	(u) 1) 1		Per	-	•	5 2	۲ ۱	•	>∘ ,	5) 2 k		Z	1	5			E Y 9	1 5 7	-N >))	IJ		1	27			,)]]	₩		¥2	2	· · ·
• •	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•1	•		•	•	•	•	•			•		•	•	•			• •
• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•		• •
• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•		• •
• •	•	•	•	•	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•		• •
•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•		• •
0 0	0													0					0					0					0	0					
• •	•	•		•		•	•	•	•	•				•	•	•		•	•			•			•					•	•	0	•		• •
• •	•	•		•		•	•	•	•	•	•					•		•						•	•						•	•	•	•	• •
0 0	•	•		•		•	•	•	•	•	•	•			•			•			•		•		•			•		•	•	•	•		• •
•••	•			•		•	•	•	•				•	•	•		•		•			•		•					•	•	•	•	•		• •
•••	•	•		•		•	•	•	•	•	•	•	•	•	•		•	•	•			•	•	•	•				•	•	•	•	•		• •
• •	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	• •		•	•	•	•	0	•		• •
•••																																			
0 0 0 0																																			
•••																																			
• •																																			
0 0 0 0																																			