2024-10-24 LECTURE 12 MA3F1 SAVL SCHLEIMER	•
CURRENT GOAL B' HAS THE FIXED POINT PROPERTY (1.9)	
WE FIRST DENELOP A BIT of THEORY.	•
(1) INDUCED HOMOWORPHISMS	•
DEF SUPPOSE (X, 26) AND (Y, y0) ARE POINTED SPACES	•
SUPPOSE F: X->Y IS A MAP WITH f(K.)=y.	•
DEFINE $f_*: \pi_1(X, x_0) \longrightarrow (Y, y_0)$	•
$BY \qquad [x] \longrightarrow [fod]$	•
LEMMA: O for is well-defined	•
@ fo IS A HONOMORPHISM.	•
PROOF O SUPPOSE & ELGOPS (N. 7.). THEN	
fode LOOPS (Y, Jo). SUPPOSE d'Ed. THEN, AS	•
HOMOTOPIES PUSH FORWARD, fod = fod', GIVING (),	•
2) WE COMPUTE AS FOLLOWS	•
$f_{*}(cajcpj) = f_{*}(ca*pj)$ DEF MULTI	•
$= [f_0(\alpha * \beta)] DEF f_{\phi}$	•
= [(fod) + (f.p)] CONCAT PUSHES FORWARD	•
= [fod] [fop] DEF MULTI	•
= $f_{a}([\alpha]) f_{a}([\beta])$ DEF f_{a}	•
$EXAMPLE: (Id_X)_* = Id_{\pi_i(X_i, N_0)}$	•
EXAMPLE: $p_2: S' \longrightarrow S'$? THE SQUARING MAP. $z \longmapsto z'$	•
NOTE $p_2(1) = 1$ So $(p_2)_{p} : \pi_1(S', 1) \to \pi_1(S', 1)$.	•

NOTE
$$(p_2 \cdot w_k)(t) = p_2 (exp(2\pi i t t))$$

 $= oxp(2\pi i t t)$
 $= w_{2k}(t).$
DTAGRAM of
GROMPS
 $Z \xrightarrow{k} \xrightarrow{k} Z \xrightarrow{k}$

3 HONED MORPHISM INARFANCE
COROLLART: SUPPOSE f: (X, x_) -> (Y, y_) IS A HOMED.
THEN \$, IS A GROUP ISOMORPHISM. PROOF: LET & BE THE GIVEN INVERSE.
So $g \circ f = Jd_X$ AND $f \circ g = Jd_Y$
So $g_{x} = Id_{\pi_i}(x, n)$ AND $f_{x} = Jd_{\pi_i}(Y, y)$
SO g*, f* ARE INVERSES, THUS ISOMORPHISMS. I
(HOMOTOPY INVARIANCE.
IN FACT, JT, IS "LESS SENSITINE"
PROPOSETTON: SUPPOSE (X, X_) IS POINTED. SUPPOSE
$f, f': X \rightarrow Y$ ARE HOMOTOPIC VIA $F: X \times I \rightarrow Y$
SET $y_o = f(x_o), y' = f'(x_o)$ AND $h: I \longrightarrow Y, t \mapsto F(x_o, t)$
[SO h IS A PATH FROM y. to y. 1.
THEN $p_n \circ f_* = f_*$
DEFAGRAM: fx TI, (Y, y.) (IF h IS CONSTANT PATH
$\pi_{i}(X, x_{o}) \xrightarrow{\bullet} \pi_{i}(Y, y') \xrightarrow{\bullet} \pi_{i}(Y, y')$

Done too PICTURE quick Xo PROOF: FIX [x]ET, (X,xo) $s_{p_n} \circ f_{p_n} \circ f_{p_n} [\alpha] = \beta_n [f_{od}] = [h * (f_{od}) * h]$ fox So IT SUFFICES TO SHOW h * (fod) *h ~ fod. у. DEFINE GIINI -> Y BY $G(s,t) = F(\kappa(s),t)$ WE USE THE HONOTOPY