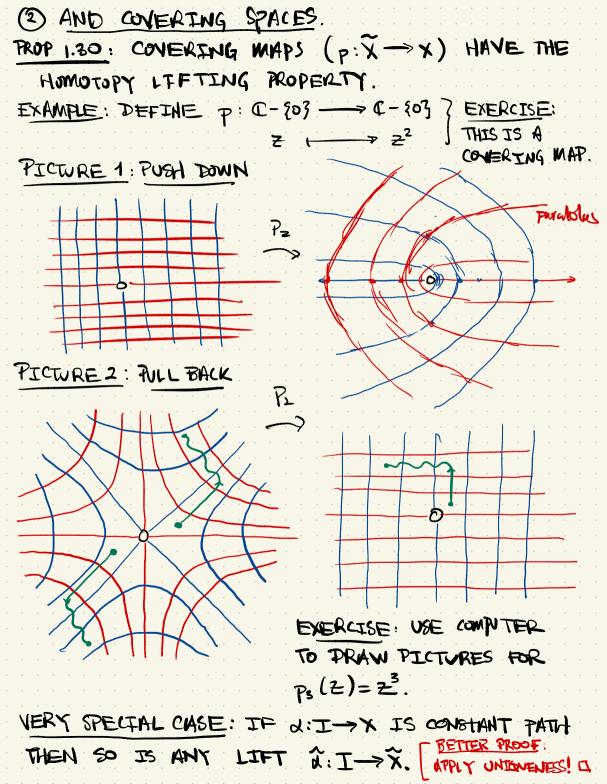
2024-10.17 MA3F1 LECTURE 9 SAVESCHLEIMER	
AS ALWAYS GOAL JS	
THEOREM 1.7: JT, (X,7.) = Z [ISOMORPHIC GROUPS]	
HOMPTUPY LIFTING	
WE NEED AH "INVERSE" TO "HOMUTOPTES DESCEND"	
DEF: SUPPOSE p: Z >X IS A MAP. WE SAT P	
HAS THE HUMOTOPY LIFTING TROPERTY of	
O GIVEN A HOMOTOPY F: YXI-X AND	
B GIVEN A MAP q: Yrsu3→Z WITH pog=f.	
A ITFT of to	
(HERE IS A UNLOVE F:YXI -> Z WITH	
fo=g AND poF=F.	
PIAGRAM Yx {0} = = Z	THINK of F AS A
	BIT LIKE A DIFF.
P	EQU AND & LIKE
	A BUNNDARY
$Y : I \xrightarrow{F} X$	CONDITION. AND F
	LIKE A SOLUTION!
SPECIAL CASE: Y= {pt}: THVS F IS A PATH. THEN	
WE OBTAIN PATH LIFTING BY FINDING F.	
PICTURE	7 THE LIFT of THE
	PATH IS DETERMINED
	BY THE INITIAL
RxI 8×1	POINT (AND THE PATH)



$\underline{PROOF}: pod(t) = d(t) = d(0), SO d(t) \in \underline{p}'(d(0)).$
BUT POINTS of p'(d(0)) ARE SEPARATED BY DISJOINT
OPEN SETS AND I IS CONNECTED.
(3) THEOREM 1.7: ∮: ℤ → π, (S',1) JS AN ISOMORPHISM
PROOF: \$ IS HOMOMORPHISM BY LAST TIME.
SURJELTIVE : SUPPOSE [x JE IT, (6',1) SO
x: I→ S' wITH x(0)=x(1)=1. APPLY (1.30)TO
GET 2: I -> R WITH pod = & AND
$\overline{DTAGRAM}: \{0\} \longrightarrow \overline{\Gamma} \qquad \widehat{J}(0) = 0.$
$\int \overline{a} / \int P$
I S'
$\underline{Mote}, (p \cdot \hat{\mathcal{A}})(i) = p(\hat{\mathcal{A}}(i)) = \mathcal{A}(i) = 1.$
SO $\widehat{d}(1) = \widehat{R}$ FOR SOME $\widehat{R} \in \mathbb{Z}$
APPLY STRAIGHT LINE HOMOTOPY IN IR.
$F(s,t) = (1-t) \widehat{x}(s) + t \cdot \widehat{\omega}_{k}(s)$
TO FIND $\tilde{a} \cong \tilde{w}_{R}$. SO [HOMOTOPIES DESCEND]
WE HAVE POZ = POWR
SO a ~ w _k
50 $[d] = [w_{2}] = \bar{\phi}(k) \in \pi, (s', 1) /$

