

2024-10-15 LECTURE & MAJEI SAULSCHLEIMER

(2) FUNDAMENTIAL GROUP of S'.
THEOREM 1.7 $TI_{(S',1)} \cong \mathbb{Z}$
WE FIRST NEED A CANDEDATE HOMOWORTHESM.
DEFTINE FOR REZ
WR: I>S' (TIMES MBOUTS'
$t \longrightarrow exp(2\pi i kt)$
NOTE W = e IS CONSTANT.
EXAMPLE
I w ₃ w ₁₁
$0 \frac{1}{5} \frac{2}{3} \frac{1}{5}$
DEFINE $\overline{D}: \mathbb{Z} \longrightarrow \pi_1(S', 1)$
PROPOSITION: \$ IS A HUMOMORPHISM
PROOF: RECALL P: R -> 5' LOOKS LIKE
t -> explorit) (CONTINUETION
$DEFFNE: \widetilde{W}_p: I \longrightarrow R$
$t \longrightarrow k t$
LEMMA (C). POWA = WA
$\overline{PROF}: (p \cdot \widehat{w_k})(t) = p(tt) = exp(z_{t}; tt) = w_2(t)$

THAT IS : We IS A LIFT of we.	BUT NUT
$\frac{DEF}{t}: \tau_l: \mathbb{R} \longrightarrow \mathbb{R}$	Lone !
LEMMA D: TI IS A DELK TRANSFORM, FOR	ALL REZ.
PROOF NOTE $p \circ \tau_{\ell}(t) = p(t+\ell)$	
$= \exp(2\pi i t + 2\pi i l)$	
$= \exp(2\pi i t)$	
= p(t)	
So $\tau_1 \in DECK(p)$.	
LEMMA D: WATE & WE * (TROW,)	· · · · · · · ·
PICTURE 1 - Thow	
0 1 4 4+K	· · · · · · · ·
PROOF: WE USE STRATGHT-LINE HOMOTOPY	TN R.
$F(s,t) = (1-t) \cdot \widetilde{\omega}_{k+2}(s) + t \left(\left(\widetilde{\omega}_{k} * (\tau_{k} \circ \widetilde{\omega}_{k}) \right) \right)$	(s))
[CHECK THES NORKS!]	
WE NOW PROVE THE PROPOSITION VIA	· · · · · · · ·
COMPUTATION:	

$\overline{\mathbf{b}}(\mathbf{k} + \mathbf{l}) = [\mathbf{w}_{\mathbf{k} + \mathbf{l}}]$	DEF I
$= [P \circ \widetilde{W}_{ptl}]$	Lemmh ©
$= \left[P \circ \left(\widehat{w}_{\underline{a}} * \left(\tau_{\underline{a}} \cdot \widehat{w}_{\underline{b}} \right) \right) \right]$	LEMMAS (E)+(A)
= $\left[\left(p \circ \widetilde{W_{\mu}} \right) * \left(p \circ \tau_{\mu} \circ \widetilde{W_{\mu}} \right) \right]$	Lemma B
$= [p \circ \tilde{w}_{k}] \cdot [p \circ \tilde{w}_{k}]$	Lemmh D
$= [w_{2}][w_{1}]$	Lemma ()
$= \Phi(\mathbf{k}) \Phi(\mathbf{l})$	DEF D. U. PROP.
NEXT TWO LECTURES . I IS AN I	SON
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·