LECTURE 7 MAJES SAUL SCHLEIMER 2024-10-14
RECALL: A MAP P: $\tilde{X} \longrightarrow X$ IS A CONEXING MAP IF THERE JS AN OPEN COVER $M = \{U_{a}\}$ of X SO THAT FOR ALL & THERE IS A PARTITION $p^{-1}(U_{a}) = \bigcup V_{a}^{A}$ SO THAT, FOR ALL p THE MAP $p[V_{a}^{B}: V_{a}^{B} \longrightarrow U_{a}]$ IS A
HOMEO MORPHISM.
MORALLY, X LOCALLY IS A CORY of X
$\frac{E \times AmPLE}{\tilde{X}} : \qquad \qquad$
RECALL: COVERS P:Y-X, g: Z-X ARE ISOMORPHIC
IF THERE IS A HOMEO. $h: \gamma \longrightarrow Z$ so that
$\gamma \xrightarrow{n} Z \qquad P = g \circ h$
P, 2
(DECK GROUPS: SUPPOSE P:X->X IS A CONER.
DEFINE: DECK(p) = { h: X -> X h IS A HOMEO } AND p=poh }
THAT IS: THE SET of "AVTOMORPHEIMS" (SELF
ISOMORPHISMS)
EXERCISE (DECK(p), 0) IS A GROUP.
PE: poIdx = P, IF p=pob THEN poh = P. U.

TERMINOLOGY: CALL ELTS of DECKLP DECK
TERMINOLOGY: CALL ELTS of DECKLP) DECK TRANSFORMATIONS.
EXAMPLES SUPPOSE S'= {ZED [121=1].
(1) LET $P_k: S' \longrightarrow S'$ THIS IS A COVERING $z \longmapsto z^k$
PICTURE . S' EXERCISE DECK (Pb) = Z1.7
() · · · · · · · · · · · · · · · · · ·
[AND NATURALLY ISOM
$\frac{1}{P_3} TD M_R = \left\{ \exp\left(\frac{2\pi i l}{L}\right) l \in \mathbb{Z} \right\}$
OC' THE 2th ROOTS of WITY.]
(2) DEFINE Po: R-S' (THINK ABOUT A=2]
$t \longrightarrow exp(z\pi i t)$
EXERCISE: PICTURE JANAN
EXERCISE: PICTURE DODDOD
3 THE EXAMPLE AT THE BEGINNTHY of LECTURE
HAS DECK(p) $\cong \mathbb{Z}^2$.
2 LIFTING
SUPPOSE P: X->X IS A COVERING MAP.
SUPPOSE f:Y->X IS ANY MAP. WE CALL
A MAP $\hat{f}: Y \longrightarrow \hat{X}$ IS A LIFT of f IF $f = p \cdot \hat{f}$.

DIAGRAM: ΓX AN EXAMPLE THE STRIP IR I COVERS THE ANNULUS S'XI VEA THE MAP P: RXI -> S'XI (s,t) ~ (explanis),t) THINK OF A SPIRAL STAIRCASE (UR A CARPARK, OR A SLINKY -) PICTURE > RTI RXI O JAZ AN EXAMPLE OF LIFTING: LET W2: I -> (A2, 20) BE GIVEN BY w2(S) = (exp(4mis), =) W2, PERTURBED A BIT. W2 ALTET of W2