| 2024-10-07 LECTUREY MAJEI SAULSCHLEIMER      |
|----------------------------------------------|
| (1) OUR FRIEND THE SQUARE                    |
| (i) PROVE THAT $I^2 \cong B^2 \cong $        |
| (ii) PROVE THAT $M^2 \cong$                  |
| 2 HONDTOTY EQUIVALENT                        |
| DEF. SUTPOSE X, Y ARE SPACES. SUPPOSE f:X-Y  |
| AND g: Y -> X ARE MAPS WITH                  |
| $f \circ g \cong Id_{\gamma}$                |
| as for The                                   |
| THEN WE WOTTE XOT AND CAY X AND Y ARE        |
| HOMOTOPY BOUTNALENT FAND WE CALL TO HEMOTOPY |
| ROUNDALENCES AND ALSO HOMOTOPY INVERSES 7    |
| NOTATIONS: X & Y HOMEDHODDATC                |
|                                              |
| F:X =>Y HOMEOWORPHISM                        |
| X=Y HOMOTOPY BQUIVALENT                      |
| f:X=>Y HUMOTOPY BOUINALENCE                  |
| $Ket energiese \qquad x \longmapsto x_{ini}$ |
| R"-902 ~ S"-1                                |
|                                              |
| $\mathbf{x} \leftarrow \mathbf{x}$           |
| NOTE: X=Y IMPLIES X=Y. Skipped               |
| (3) CONTRACTIBILITY:                         |
| SAT A SPACE X IS CONTRACTIBLE IF X= 1pt ].   |
|                                              |



NOTE , ALL PATHS (IN PATH CONH X) ARE HOMOTOPIC TO CONSTANT PATHS. So  $f_{\bullet} = f$ GIVEN P: I -> X CONSIDER f = f(o)FIJI -> X DEF BY  $F(s,t) = f(s \cdot (i-t))$ CONST. [REELING IN FISHING LINE] TO OBTAIN A THEORY WE NEED TO IMPOSE CONDITIONS AT THE ENDROINTS. DEE: SUPPOSE X IS A SPACE, X, Y + X ARE POINTS. SUPPOSE f.g: I -> X ARE PATHS FROM X TO J PICTURE, x J WE SAY fig [HUMOTOPTE REL ENDPOINTS] JE THERE IS A HOMPTORY FIXI -> X WITH  $f=f_0, g=f_1$  AND  $f_t(0)=\pi$ ,  $f_t(D=y$  FOR ALL teI. PICTURE : t the NON-EXAMPLE f,g: I -> R2{03  $f(t) = (\cos(\pi t), \sin(\pi t))$  $g(t) = (\cos(\pi t), -\sin(\pi t))$ 

NOTE fig BUT NOT fig . (TRY TO PROVE THIS!] EXERCISE: f=9 IS AN EQU. REL. [PROP 1.2] EXERCISE: SUPPOSE f(1) = g(0) ( THEN f = f , g = g . f + g = f + g RUE: f' g' ZROOF. USE GIDETAG LEMMA. f g g ZDIAGRAM: F G x f y g z PICTURE (5) ( $\alpha$ ) DEF: SUPPOSE X IS A SPACE SUPPOSE T.EX IS A POTNT: CALL X. THE BASEPOINT. CALL THE PATR (N.7.) A FINTED SPACE DEF, A PATH Q: I -> X WITH Q(0)=f(1)=N-JS A LOOP BASED AT X. PICTURE NOTE: IF f.g ARE LOOPS BASED X AT TO THEN SO JS f\*g! x Op PICTURE 7 SAY IN R3 FIX(X, x.) IF  $f: I \rightarrow X$  IS A LOOP BRED of X. DEFINE  $[f] = \{g: I \rightarrow X \mid g \mid \text{DOP} \text{ AT } x_0\}$  $f_{3}^2g$ THAT IS: THE GEQUIN CLASS OF f.

MORALLY JE fof THEN CAN WEGGLE TO TURN & ENTO F'. BUT CANNOT "JUMP OVER HOLES" DEFINE : THE SE  $\pi_{1}(X, x_{0}) = \{ Cf \} | f: I \rightarrow X$ DEFINE THE PRODUCT [f].[g]=[f+g] (EXERCISE: THIS IS WELL - DEFINED .] PROP 1.3: (T, (X,X), ·) JS A GROUP. [THE HARDEST PART IS ASSOCIATIVITY!]