MA3F1 SAVL SCHLEIMER 2024-09-30 LECTURE 1 : RE- AND OVER VIEW

(1) TOPOLOGSCAL SPACES

DEFINITION: SUPPOSE X IS A SET A TOPOLOGY ON X IS A COLLECTEON of SUBSETS ILCP(N) SO THAT (E) Ø,XES2

EI) IF KIYED THEN KNYED

CALL MESS AN OPEN SET of (X,2).

DEF: A SUBSET BCSI IS A BASSIS for (X,SI).F (E) for all UEIL, for all XEU, THERE IS SOME VEB SO THAT XEVCU.

THAT IS: ENERY NESL IS A UNION of SETS FROM B EXAMPLE: 303 THE SPACE WITH ONE POINT.

IT HAS ONLY TWO OPEN SETS. [ALSO CALLED R°]

BXAMPLE: IR WITH BASIS B = 2 (1, b) | acb } THE "OPEN" INTERVALS. (minimum) > IR

WE USUALLY SURPRESS THE NOTATION D.

D NEW SPACES FOR OLD : PRODUCTS

DEF: SUPPOSE X,Y ARE SPACES. THEN WE GIVE X × Y THE PRODUCT TOPOLOGY WITH BASIS B = { u, v | u, v open in X,Y }

NUTE: XXY IS USED BOTH FOR THE SPACE AND
THE UNDERLYING SET. WHAT A SYMBOL "MEANS"
DEPENDS on ITS CONTEXT.
EXAMPLE: R° = {pt3
$\mathbb{R}^{n+1} = \mathbb{R}^n \times \mathbb{R}$
(3) SAMENESS:
DEF: SUPPOSE X, Y ARE SPACES. A FUNCTION
f: X -> Y JS CONTENNOVE : f f'(Y) is OPEN
FUR ALL VCY OPEN.
$Ff'(N) = g_{x} \in X \setminus f(x) \in N $
EXAMPLES (i) Id. : X -> X is CONTINUOUS.
$(ii) f: \mathbb{R} \longrightarrow \mathbb{R}^{-}, f(t) = (\cos(t), \sin(t))$
B CONTINUOUS, K
\mathbb{R}^2
f = f
$(iii) f: \mathbb{R} \rightarrow \mathbb{R}, f(t) = \{ 0 \ \text{if } t=0 \ \text{NOT} \}$
(t/ l++0) CONTINUOUS
TERMENOLOGY: CALL CONT. FCN'S MAPS
DEF: A MAP f: X -> Y IS A HOMEOMORPHIM
IF THERE IS A MAP 9:Y-X SO THAT
i + i q = I dv
(i) gof = Ldx
· · · · · · · · · · · · · · · · · · ·

EXAMPLES: () Idx IS A HOMEONORPHISM.
(i) $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = \pi + 1$ (ALSO (i) $f: \mathbb{R} \longrightarrow \mathbb{R}$; $f(x) = x^3$
$(\varepsilon v) g: \mathbb{R} \longrightarrow \mathbb{R} , g(x) = x^2 $ is NOT
FOUNDATIONAL PROBLEMS OF TOPOLOGY:
(E) WHELH PROPERTIES of SPACES ARE INVARIANTS
of Homeomorphism?
(i) GIVEN SPACES X, Y: ARE THEY HOMEOMORPHIC?
EXAMPLE () R. & IR' ARE NOT HOMEOMORPHIC.
$(i) R' \neq R^2$ "
INVARIANCE OF DOMAIN (BROUWER, 1910]
$\mathbb{R}^{m} \cong \mathbb{R}^{m}$ iff $m = n$.
TO PROVE THIS TAKES A YEAR!
(4) NEW SPACES FOR OLD
SUPPOSE (X, I) IS H SPACE. SUPPOSE ACX.
DEFINE SLA = { UNA UESLS AND CALL
(A, J2A) A SUBSPACE of X LEQUIPPED WITH THE
SUBSPACE TOPOLOGY]
EXAMPLES: (1) LO, 1 J C IK CLOSED JNTERNAL
LO, 1) C IK HALF-OPEN
Lon) CIK OPEN
WHITCH OF THESE IS HOWED ID IK ?
EXAMPLES

 $S' = \{x \in \mathbb{R}^{m} | |x| = 1\}$ SPHERES B" = {x + IR" | 1x1 + 1} POALLS T° = 2pt 3 TORI T"+1 = T"x5. PICTURES ? <? Þ. C² T GOT HERE. EXERCISE: T2 \$ 5? EXERCISE: IN FACT SZ XXX FOR ANY SPACE X.