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Lecture 1

“[...] so far as geometry is concerned, we need still
another analysis which is distinctly geometrical or linear
and which will express situation [situs] directly as
algebra expresses magnitude directly. ”

— G.W.Leibniz, Letter to Huygens, Sept. 8, 1679

Topology is the study of properties of sets that are invariant under continuous
deformations; it is concerned with concepts such as “nearness”, “neighbourhood”,
and “convergence”. An often cited example is that a cup is topologically equivalent to
a torus, but not to a sphere. But what exactly does “topologically equivalent” mean?

Figure 1.1: A cup morphing into a torus. (c) LucasVB (Wikipedia)

The roots of topology go back to the work of Leibniz and Euler in the 17th and
18th century. It was only towards the end of the 19th century, through the work
of Poincaré, that topology began taking shape as a subject in its own right. His
seminal paper “Analysis Situs” from 1895 introduced, among other things, the idea
of a homeomorphism and the fundamental group. Nowadays, topological ideas are
an indispensable part of many fields of mathematics, ranging from number theory to
partial differential equations.

1.1 Background and terminology

This course assumes familiarity with metric spaces, linear algebra, some algebra
(group theory), and calculus. We use capital letters X,Y, Z to denote sets and A,B,C
to denote subsets. We often use U and V to label open sets and write I = [0, 1] for
the unit interval in R. The notation A ⊂ X denotes (not necessarily proper) inclusion,
and X − A is the complement of A in X . Following common pedantry, we will
refer to “sets” of sets as collections of sets, to avoid logical catastrophes (the “set
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of sets that are not members of themselves”). Other notation will be explained as it
arises. Following common convention, we use arrows and diagrams to describe maps
between sets. A diagram such as

X Y

Z

h

f

g

describes three sets X,Y, Z and three functions, f : X → Y , g : Y → Z, and
h : X → Z. Such a diagram is commutative if all compositions agree; here, this
means that h = g ◦ f . We sometimes use the notation X ↪→ Y to denote an injective
(or one-to-one) map (for example, the map x 7→ x arising from an inclusion X ⊂ Y ),
and X ↠ Y for a surjective (or onto) map. We recall the definition of a metric space.

Definition 1.1. A metric space is a set X , together with a function d : X ×X → R,
such that for all x, y, x ∈ X ,

1. (positivity) d(x, y) ≥ 0, with equality if and only if x = y;

2. (symmetry) d(x, y) = d(y, x);

3. (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

Well known examples include Rn with the Euclidean distance

d(x, y) = ∥x− y∥2 =

√√√√ n∑
i=1

(xi − yi)2,

any distance induced by a norm, or the space C([0, 1]) of real-valued, continuous
functions on the interval [0, 1], with the metric

d(f, g) =

∫ 1

0
|f(x)− g(x)| dx.

Given a metric space (X, d) and x0 ∈ X , we denote by

B(x0, ε) = {x ∈ X : d(x, x0) < ε}

the open ball of radius ε centred on x0.

Definition 1.2. Let (X, d) be a metric space. A set U ⊂ X is called open in X , if for
every x ∈ U there exists an ε > 0 such that B(x, ε) ⊂ U . A subset of X is closed in
X if its complement is open.

Clearly, if (X, d) is a metric space, then the empty set ∅ and the whole set X are
open. Moreover, the union of any collection of open sets is open, and the intersection
of a finite collection of open sets is open (show this!). It turns out that these properties
allow us to define open sets and neighbourhoods beyond metric spaces.
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1.2 Topological spaces

Definition 1.3. A topological space is a set X , together with a collection Ω of subsets
of X , such that

(i) ∅ ∈ Ω and X ∈ Ω;

(ii) if {Ui}i∈I ⊂ Ω, then
⋃

i∈I Ui ∈ Ω;

(iii) if U, V ∈ Ω, then U ∩ V ∈ Ω.

The sets in Ω are called open sets and their complements in X are called closed sets.

Note that point (iii) implies that any finite intersection of open sets is again open.

Definition 1.4. Let (X,Ω) be a topological space. A neighbourhood of a point
x ∈ X is a set N such that there exists U ∈ Ω with x ∈ U ⊂ N .

While formally a topological space consists of the pair (X,Ω), we usually omit
mentioning Ω explicitly. Unless otherwise stated, when considering a metric space
(X, d) we will always use the metric topology, i.e., the topology whose open sets are
given by Definition 1.2.

Example 1.5. Different metric spaces can give rise to the same topology. In fact,
any two norms on a finite-dimensional vector space give rise to the same topo-
logy. Consider, for example, X = Rn with the norms ∥x∥1 =

∑n
i=1 |xi| and

∥x∥∞ = maxi |xi|, and the corresponding distance functions d1(x, y) = ∥x − y∥1
and d∞(x, y) = ∥x− y∥∞. The norm inequalities

∥x∥∞ ≤ ∥x∥1 ≤ n · ∥x∥∞
ensure that for any set U ⊂ X and x0 ∈ U , there is an open ball around x0 in U with
respect to one of these norms, if and only if there is one with respect to the other.

Specifying a topology is not always easy. Just as one can specify a vector space
by giving a basis, one can also describe a topology in terms of a basis.

Definition 1.6. Let (X,Ω) be a topological space. A collection B ⊂ Ω is called a
basis for the topology Ω, if for every U ∈ Ω there exists a collection {Bi}i∈I ⊂ B
such that

⋃
i∈I Bi = U .

Example 1.7. The open balls form a basis for the topology of a metric space.

Saying that B is a basis for a topology on X is equivalent to saying that for every
x ∈ X and every open set U with x ∈ U there is a B ∈ B with x ∈ B ⊂ U .

Given a collection of subsets B of a topological space (X,Ω), we say that B
generates the topology if B is a basis of Ω.

Lemma 1.8. A collection, B, of subsets of a set X generates some topology on X if it
satisfies the following two properties:
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1. The elements of B cover X .

2. For every pair B1 and B2 in B and every point x ∈ B1 ∩B2 there exists some
B3 in B with x ∈ B3 ⊂ B1 ∩B2.

The first condition is required to show that the set X is open. The second condition
is required to show that the intersection of two open sets is open.

Definition 1.9. Let (X,Ω) be a topological space. Given x ∈ X , a collection B of
neighbourhoods of x is called a neighbourhood basis for x, if for every open set
U ∈ Ω with x ∈ U , there exists B ∈ B such that B ⊂ U .

Exercise 1.10. 1 Show that every metric space (X, d) is first countable: every point in
X has a countable neighbourhood basis. Next, show that R with the cofinite topology,
i.e., the topology whose open sets are the complements of finite sets, is not first
countable. Hence, conclude that there are topological spaces that do not arise from a
metric.

Product spaces

Definition 1.11. Let X,Y be topological spaces. The product topology on X × Y
is the topology generated by sets of the form U × V , with U ⊂ X open and V ⊂ Y
open.

Every open set in the product topology can be written as a (generally infinite)
union of “rectangles” U × V , but it is important to note that not all open sets are
rectangles.

U

V

X

Y

Figure 1.2: The product topology

1The exercises in these notes do not define what is examinable. Some, for example this one, are
mostly there for your enjoyment (though you may benefit intellectually from attempting them). The
questions on the assignment sheets, including those for which you are not required to submit solutions,
are a better guide to the sort of thing that might appear in an exam.
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Exercise 1.12. One can define the product topology on Rn recursively by setting
R2 = R×R and Rn = Rn−1×R for n ≥ 2. Show that the product topology on Rn is
the same as the metric topology. (One can interpret the first as the topology generated
by “open boxes”, and the second as the topology generated by “open balls”.)

Example 1.13. Just as in the case of Rn, one can form the unit cube In = In−1 × I .
The product topology in this case is also the same as the subspace topology.

Subspaces

Definition 1.14. Let (X,Ω) be a topological space and A ⊂ X a subset. The
subspace topology on A consists of the open sets

Ω|A = {U ∩A | U ∈ Ω}.

Example 1.15. Consider the closed interval [0, 1] ⊂ R. Note that (1/2, 1] is open in
the subspace topology on [0, 1]!

Example 1.16. The unit sphere,

Sn = {x ∈ Rn+1 |
n+1∑
i=1

x2i = 1}.

Note that the superscript denotes the dimension of the sphere, and not that of the
ambient space in which the sphere lives.

Figure 1.3: The spheres S0, S1 and S2.

Example 1.17. The unit disk (or unit ball)

Dn = {x ∈ Rn |
n∑

i=1

x2i ≤ 1}.

Example 1.18. The topological torus is defined as product of 1-spheres (circles)

T1 = S1, Tn = Tn−1 × T1 = S1 × · · · × S1 (n times),

for n ≥ 2. [T2 is the usual torus - the surface of a doughnut; if we wanted to include
the interior substance of the doughnut as well we would refer to this as a solid torus.]
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To justify the terminology “torus”, consider the parametrization of a torus X in R3 as
the set of (x, y, z) such that

x(θ, φ) = (a cos(θ) + b) sin(φ)

y(θ, φ) = (a cos(θ) + b) cos(φ)

z(θ, φ) = a sin(θ).

for θ, φ ∈ [0, 2π) and fixed 0 < a < b.

Figure 1.4: The embedded torus. The large circle going through the torus has radius b
and the small circle bounding a section has radius a.

The product of spheres, T2 = S1 × S1, can in turn be parametrized as the set of
(x1, y1, x2, y2) ∈ R4 such that

x1 = cos(θ), y1 = sin(θ), x2 = cos(φ), y2 = sin(φ),

for θ, φ ∈ [0, 2π). This gives rise to a function f to the embedded torus X ⊂ R3

f : S1 × S1 → X
x1
y1
x2
y2

 7→

(ax1 + b)y2
(ax1 + b)x2

ay1


This map is a continuous bijection with a continuous inverse; in the next section we
will see that such maps are called homeomorphisms.

1.3 Maps and Topological equivalence

Definition 1.19. Let X,Y be topological spaces. A function f : X → Y is called
continuous, if for any open set V ⊂ Y , the preimage f−1(V ) = {x ∈ X | f(x) ∈
V } is open in X . We refer to a continuous function as a map.

Throughout these notes whenever we say f is a map we mean that f is a continu-
ous function.

Example 1.20. The identity function, IdX : X → X , x 7→ x, is clearly continuous,
as is the inclusion ι : A ↪→ X of a subset A ⊂ X with the subspace topology.
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Example 1.21. The function R → S1 given by t 7→ (cos(t), sin(t)) is continuous.
We will often identify R2 with C, and write eit instead of (cos(t), sin(t)).

Example 1.22. The function R → R, defined by

x 7→
{

x
|x| if x ̸= 0

0 if x = 0

is not continuous.

It is clear that compositions of continuous maps are continuous, a fact we will
use repeatedly. Equally, the product map of two continuous maps is continuous. The
following result, which will be used often, is a little less obvious.

Lemma 1.23. (Pasting Lemma) Let X = A ∪B, with A,B both closed subspaces of
a topological space X . Let f : X → Y be a function and assume that f |A and f |B
are continuous. Then f is continuous.

Exercise 1.24. Prove Lemma 1.23.

Definition 1.25. Let X,Y be topological spaces. A map f : X → Y is called a
homeomorphism, if there exists a map g : Y → X such that

f ◦ g = IdY , g ◦ f = IdX .

If a homeomorphism between X and Y exists, these spaces are called homeomorphic,
written X ∼= Y .

Notice that in this definition it is required that the inverse function g is a map, i.e.
is continuous.

Example 1.26. The identity IdX is clearly a homeomorphism. The map R → R,
x → x3 is a homeomorphism, while x 7→ x2 is not (it is not invertible).

When we speak of spaces being “topologically equivalent”, we mean that they are
homeomorphic. Topology does not distinguish between homeomorphic spaces.

Exercise 1.27. Show that the map f : T2 → X from Example 1.18 is a homeomorph-
ism. This requires figuring out the inverse of this map and showing that both the map,
and its inverse, are continuous.

1.4 A Basic Problem

A basic problem in topology is to classify spaces up to homeomorphism. More
precisely, we would like to have a way of answering the question:

Given topological spaces X and Y , is X ∼= Y ?
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Exercise 1.28. Show that the unit cube In is homeomorphic to the unit ball Dn.

Example 1.29. R0 = {pt} (a single point) is not homeomorphic to R1 (a line).

How about R1 and R2? One might think that they are topologically not the same,
as one is “somehow bigger”. If they were homeomorphic, one could find a continuous
and continuously invertible parametrization of the plane by a line. It turns out that
the problem of showing that two real vector spaces of different dimension are not
homeomorphic is quite deep. The tools developed in this module and its successor
will allow us to prove the following.

Theorem 1.30. (Invariance of Domain, Brouwer 1910) Rm ∼= Rn if and only if
m = n.

We know from linear algebra that the dimension of a finite dimensional vector
space is invariant under linear isomorphisms. This theorem shows that the dimension
of finite dimensional real vector space is a topological invariant.

Exercise 1.31. Try to show that S2 ̸∼= T2.

To show that two spaces are homeomorphic, one only needs to provide a homeo-
morphism. To show that they are not homeomorphic is more difficult, and amounts to
finding a property that is a) invariant under homeomorphism, and b) is satisfied by one
of the spaces but not the other. You will already be aware of some topological proper-
ties that are invariant under homeomorphism (e.g. compactness, connectedness) but
this only gets us so far. As we will see, algebraic invariants such as the fundamental
group (the main topic of this module) allow to accomplish more.

Last updated 30/04/2024.



Lecture 2

In this lecture we will have a closer look at the construction of topological spaces
using disjoint unions and quotient spaces, and show how to formalize “cut and paste”
operations on topological spaces.

2.1 The disjoint union

Definition 2.1. Let {Xj}j∈J be a family of topological spaces indexed by some index
set J . The disjoint union of this family is the topological space with underlying set⊔

j∈J
Xj = {(x, j) : x ∈ Xj},

whose topology is generated by the basis consisting of sets of the form U × {j} for
some j ∈ J and U ⊂ Xj open..

Remark 2.2. Formally, given a topological space X and a one-point space {pt}
(we often use this notation to denote a space consisting of only one point, whose
precise identity does not matter for topological purposes), we can construct the space
X × {pt} and equip it with the product topology. It is then an easy exercise to show
that the inclusion map

ι : X ↪→ X × {pt}, x 7→ (x,pt)

is a homeomorphism. Using this identification we can think of Xj and Xj × {j} as
the same space. As such, we can view

⊔
j∈J Xj as containing a separate copy of each

of the spaces Xj .

Example 2.3. Let X be a topological space. Given two copies of X we can index
them by 0 and 1. The disjoint union X ⊔X then amounts to taking two disjoint copies
of X

X ⊔X = (X × {0}) ∪ (X × {1})

while X ∪X is just X .

9
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Example 2.4. For example, if we take Xi = [i, i+ 1), the half open interval starting
at i, then

⋃
iXi = R. However the disjoint union is homeomorphic to the following

subspace of the plane: ⊔
i∈Z

Xj
∼=
⋃
i∈Z

[i, i+ 1)× {i} ⊂ R2.

Example 2.5. The 0-sphere can be written as S0 ∼= {pt} ⊔ {pt}. The topology on
this space is the discrete topology (all subsets are open).

2.2 The quotient topology

Another important construction is the quotient, which formalizes the notion of “gluing”
or “pasting”. Recall that an equivalence relation is a subset E ⊂ X ×X such that:

• for all x ∈ X , (x, x) ∈ E (reflexive);

• if (x, y) ∈ E, then (y, x) ∈ E (symmetric);

• if (x, y) ∈ E and (y, z) ∈ E, then (x, z) ∈ E (transitive).

Once we fix an equivalence relation E, we usually write x ∼ y instead of (x, y) ∈ E.
The equivalence class of x ∈ X is the set

[x] = {y ∈ X | x ∼ y}.

The set of all equivalence classes of an equivalence relation E is denoted by X/E or
X/∼. The quotient map is the function q : X → X/∼, q(x) = [x].

Definition 2.6. The quotient topology on X/E has as open sets those V ⊂ X/E for
which q−1(V ) = {x ∈ X | q(x) ∈ V } is open.

Note that by definition (of the quotient topology), the quotient map is continuous.
Note also that a subset V ⊂ X/E is open if and only if

U =
⋃

[x]∈V

[x]

is open in X .

Exercise 2.7. Let X be a topological space, E an equivalence relation, and X/E the
corresponding quotient space. Show that for all topological spaces Z and all functions
g : X/E → Z, g is continuous if and only if the composition f = g ◦ q is continuous.

X

X/E Z

fq

g
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Example 2.8. Consider X = I = [0, 1]. Define the equivalence relation

x ∼ y ⇔ (x = y) or (x = 0, y = 1) or (x = 1, y = 0).

The quotient space X/E then consists of the classes [x] = {x} for x ̸∈ {0, 1} and
[0] = [1] = {0, 1}. The result is an interval with the endpoints “glued together”,

0 1

0~1 
Figure 2.5: Gluing an interval at the endpoints to obtain a circle.

sometimes written I/(0 ∼ 1) to highlight the fact that only 0 and 1 are identified. If
we parametrize the circle by

f : I → S1, t 7→ exp(2πit),

then this map is one-to-one except at the endpoints, and identifying these endpoints
gives rise to a homeomorphism (recall our convention of viewing the circle as subset
S1 ⊂ C). One also says that the map f “factors” over the quotient space, as indicated
in the following diagram:

I

I/(0 ∼ 1) S1

f
q

∼=

The above example is a special case of a more general construction. Let A ⊂ X
be a subset. Such a subset gives rise to the equivalence relation

x ∼ y ⇔ (x = y) or {x, y} ⊂ A.

The corresponding quotient space, by some abuse of notation sometimes referred to
as X/A (note that A is a subset of X , and not a subset of X ×X!), consists of classes
[x] = {x} if x ∈ X − A and [x] = [y] if x, y ∈ A. In words, X/A corresponds to
“crushing” the set A onto one point.
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A
X

Figure 2.6: The space obtained by collapsing the set A to a single point.

Exercise 2.9. Recall the set inclusion Sn−1 ⊂ Dn. Show that Dn/Sn−1 ∼= Sn. Since
[0, 1] ∼= [−1, 1] = D1 and {0, 1} ∼= {−1, 1} = S0, this generalizes Example 2.8.
Can you interpret the case n = 2 visually?

Example 2.10. Consider the disjoint union of Z copies of the interval I . Formally,
this amounts to taking the union

X =
⋃
k∈Z

I × {k}.

By gluing the endpoints, i.e., identifying {1} × {k} with {0} × {k + 1}, one obtains
a set that is homeomorphic to R (check this!)

Figure 2.7: The real line obtained by gluing together intervals.

In a similar fashion, one can build up R2 by tiling more sophisticated shapes.

Figure 2.8: The plane obtained by gluing together collections of shapes that tile the
plane.
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Example 2.11. Consider the square X = I2 = [0, 1]2. Define an equivalence relation

(x, y) ∼ (x′, y′) ⇔ (x, y) = (x′, y′) or (y = y′, {x, x′} ⊂ {0, 1}).

In words, we identify each point on the left boundary with the corresponding point on
the right boundary. The result is a space homeomorphic to a cylinder.

Figure 2.9: The cylinder

Example 2.12. Consider again the square and define an equivalence relation by

(x, y) ∼ (x′, y′) ⇔ (x, y) = (x′, y′) or (y = 1− y′, {x, x′} ⊂ {0, 1}).

We now identify each point on the left boundary with coordinate y with the point on
the right boundary with coordinate 1− y.

a a ⇒

a

Figure 2.10: The Möbius strip

The result of this construction is the famous Möbius strip, a surface with only one
side. This surface is not homeomorphic to the cylinder (try to find out why!)

Exercise 2.13. Show that
R2/Z2 ∼= T2,

where R2/Z2 is the quotient space with respect to the equivalence relation

(x, y) ∼ (x′, y′) ⇔ x− x′ ∈ Z, y − y′ ∈ Z.

The quotient map is an example of an identification map: this is a surjective
map between topological spaces, f : X → Y , such that U ⊂ Y is open if and only if
f−1(U) is open. Identification maps satisfy the following property.
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Proposition 2.14. A surjective map f : X → Y is an identification map if and only if
for every space Z and every function g : Y → Z, g ◦ f is continuous if and only if g
is continuous.

X

Y Z

f
g◦f

g

This is an example of a commutative diagram.

Exercise 2.15. Prove Proposition 2.14.

Last updated 20/09/23.
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So far we looked at the notion of homeomorphism, and considered spaces to be
“topologically equivalent” if they are homeomorphic. Intuitively, homeomorphic
spaces are the same up to “stretching” and “shrinking”, but not crushing or cutting.
Homeomorphism is a rather fine equivalence, and considering a coarser relation
such as homotopy equivalence can be useful. We begin by discussing retractions,
continuous functions of a space to a subspace, and deformation retracts, which
formalize the idea of continuously squeezing a space onto a subspace. This concept
will lead naturally to the idea of homotopy.

3.1 Retracts and Deformation Retracts

Definition 3.1. A pair of spaces (X,A) consists of a topological space X and a
subspace A ⊂ X . If A = {x0}, then we write (X,x0) and call this a pointed space.

Example 3.2. Consider the pair of spaces (R2 − {0}, S1), or the pair (S1, (1, 0)).

Figure 3.11: The pairs (R2 − {0}, S1) and (S1, (1, 0)).

Definition 3.3. A subset A ⊂ X is a retract of X if there is a map r : X → A (the
retraction) such that the restriction satisfies

r|A = IdA,

i.e., r(a) = a for a ∈ A.

Example 3.4. The set R2 − {0} retracts to S1 via r(x) = x/∥x∥.

15
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Exercise 3.5. Show that X = I does not retract to A = {0, 1}.

The following generalization is not at all trivial and we will only be able to prove
it later in the case n = 2 after discussing the fundamental group.

Theorem 3.6. (Brouwer) The disk Dn does not retract to Sn−1.

We next describe what it means to deform a space onto a subspaces in a continuous
manner.

Definition 3.7. Let (X,A) be a pair of spaces. X deformation retracts to A (and
A is called a deformation retract of X), if there exists a one-parameter family of
functions ft : X → X , t ∈ I = [0, 1], such that

f0 = IdX , f1(X) = A, ft|A = IdA, t ∈ [0, 1],

and the map X × I → X , (x, t) 7→ ft(x) is continuous.

Since f1(X) ⊂ A we can write r : X → A for the function r(x) = f1(x). It
follows from the definition of the subspace topology that the function r is a map.
Since f1(a) = a for a ∈ A we have r(a) = a for a ∈ A so the map r is a retraction
from X to A. Formally we have ι ◦ r = f1 where ι : A → X is the inclusion map.

Here is the proof that r is continuous. By definition an open set in A has the form
U ∩A where U is open in X . We need to show that r−1(U ∩A) is open in X . Now
r−1(U ∩A) = r−1(ι−1(U)) = f−1

1 (U) and this set is open since f1 is continuous.

In the literature, this notion is sometimes called a strong deformation retract, the
strong referring to the requirement that ft|A = IdA throughout.

When X deformation retracts to A this means that in some sense that X and A
have the “same shape" in some weak sense. This notion is weaker than the notion of
homeomorphism.

Example 3.8. Rn deformation retracts to 0 by means of ft(x) = (1 − t)x. This is
called the straight-line homotopy.

Exercise 3.9. Show that Rn − {0} deformation retracts to Sn−1 via ft(x) = (1 −
t)x+ tx/∥x∥.

The existence of a deformation retraction is in general stronger than the existence
of a retraction as the next two examples show.

Example 3.10. For any pointed space (X,x0) the map r : X → {x0} taking x 7→ x0
is a retraction.

Example 3.11. The circle does not deformation retract to a point.
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Figure 3.12: Deformation of a punctured plane R2 − {0} onto the circle S1.

3.2 Homotopy

The idea of a deformation retraction leads to the idea of two maps being homotopic.

Definition 3.12. Let X and Y be topological spaces and I = [0, 1]. A map

F : X × I → Y

is called a homotopy. If F (x, t) = ft(x), then F is called a homotopy from f0 to f1.
We say that two maps f, g are homotopic, written f ≃ g, if there exists a homotopy
F such that f0 = f and f1 = g.

Proposition 3.13. A homotopy F : X × I → Y induces an equivalence relation on
the set of maps from X to Y . If f , g and h are maps from X to Y then:

(i) f ≃ f ;

(ii) f ≃ g ⇔ g ≃ f ;

(iii) f ≃ g, g ≃ h ⇒ f ≃ h.

Proof of Proposition 3.13. The proofs of items (i) and (ii) are straightforward. For
(iii), assume we have homotopies F : X × I → Y and G : X × I → Y such that
f0 = f , f1 = g = g0, and g1 = h. Construct a new homotopy between f and h as

H(x, t) =

{
F (x, 2t) t ≤ 1/2,

G(x, 2t− 1) t ≥ 1/2.

The continuity of H follows from the Pasting Lemma (Lemma 1.21 in Lecture 1).

Definition 3.14. Let X,Y be topological spaces. We say X is homotopy equivalent
to Y (written X ≃ Y ), if there are maps

f : X → Y, g : Y → X,
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such that
g ◦ f ≃ IdX , f ◦ g ≃ IdY .

Homotopy equivalence allows for squeezing spaces, but not for tearing. Note that
homeomorphic spaces are homotopy equivalent, but the converse does not hold. In
particular, if we manage to show that two spaces are not homotopy equivalent, then
they cannot be homeomorphic.

Example 3.15. If A ⊂ X is a deformation retract of X then A and X are homotopy
equivalent. To see this we need to find maps between A and X . Consider the retraction
r : X → A and the inclusion ι : A → X . The definition of retraction tells us that
r ◦ ι : A → A is equal to the identity IdA. As we have seen map ι ◦ r : X → X is
equal to f1X → X . Now the definition of a deformation retraction tells us that f1 is
homotopic to f0 which is equal to IdX .

Example 3.16. Euclidean space Rn is homotopy equivalent to a point for any n,
Rn ≃ R0 since Rn deformation retracts to a point.

Definition 3.17. A topological space X is called contractible if X ≃ {pt}.

Exercise 3.18. Show that ≃ is an equivalence relation on topological spaces.

Example 3.19. For all m and n we have Rn ≃ Rm. More generally, for any
topological space X , we have X × Rn ≃ X .

Example 3.20. We have Rm − {0} ≃ Sm−1. This follows since Sm−1 is a deforma-
tion retract of Rm − {0}.

We have seen that Rn for n ≥ 1 is contractible. In general it is much more difficult
to prove that a non-contractible space is not contractible than it is to prove that a
contractible space is contractible.

The following theorem is related to Brouwer’s proof of invariance of domain
mentioned in Lecture 1.

Theorem 3.21. The sphere Sn for n ≥ 0 is not contractible.

Exercise 3.22. Prove the above Theorem for n = 0.

Theorem 3.21 is highly non-trivial. The case n = 1 will occupy a large part of
this course. The general case follows from homology theory, which is the subject of
follow-up courses in Algebraic Topology.

Remark 3.23. If X deformation retracts to a point A = {a} ⊂ X , then X is
contractible. Be careful however since the converse is not true: a space can be
contractible but not deformation retract to a point (try to think of an example!)

Last updated 6/10/23.



Lecture 4

4.1 Further examples of topological spaces

The real projective space is defined to be the quotient space RPn = Rn+1 − {0}/ ∼
where v ∼ rv when r is a non-zero scalar. We can think of RPn as the space of lines
in Rn+1.

p p

γ

γ

Figure 4.1: Cell decomposition of RP2.

The torus Tn has been defined as the product of n circles. We can also think of the
torus T 2 as a quotient of the square where we identify points on opposite boundaries.

a

a

b b ⇒
a b

If we identify points on opposite sides of the square but change the direction of
one of the edges we obtain a Klein bottle.

19
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a

a

b b

This surface cannot be embedded in R3 but it can be mapped into R3 if we allow
the mapping to identify two circles.

4.2 Paths and loops

We have seen different notions of equivalence: homeomorphism (X ∼= Y ), homotopy
of maps (f ≃ g) and homotopy equivalence of spaces (X ≃ Y ). The last of these
notions allows spaces to be identified that look superficially different, but can somehow
be deformed or “continuously collapsed” into one another. We will study paths and
loops as a way to understand the topology of spaces. Recall that a map is always
assumed to be continuous.

Definition 4.1. Let x, y ∈ X . A path from x to y is a map f : I → X with f(0) = x
and f(1) = y.

Definition 4.2. Let f, g : I → X be paths with f(1) = g(0). The path f · g : I → X ,
defined by

f · g(s) =
{
f(2s) s ≤ 1/2

g(2s− 1) s ≥ 1/2.

is called the concatenation of f and g.

Remark 4.3. It is very important to note that a path is not the same as its image!
Consider, for example, the path f : I → S1, s 7→ exp(4πis). The image of this path
is the circle S1 (considered as subset of C), but as a path it goes around the circle
twice. In particular, a path need not be injective.
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f(0)

f(1)=g(0) g(1)

Figure 4.2: The concatenation of two paths.

Definition 4.4. A topological space X is called path connected if for any two points
x, y ∈ X there exists a path f : I → X with f(0) = x and f(1) = y.

Since paths are maps between topological spaces, we can consider homotopies of
paths: given two paths f, g : I → X , a homotopy is given by a map F : I × I → X
with f0 = f and f1 = g.

Exercise 4.5. Show that if X is path connected, then every path f : I → X is
homotopic to a constant path g(s) = x.

To get more useful topological information out of paths, we consider paths with
common endpoints.

Definition 4.6. Let x, y ∈ X and let f, g : I → X be paths from x to y. Then f is

homotopic to g relative to the boundary (or relative to the endpoints), written f
∂≃ g,

if there is a homotopy
F : I × I → X

with f0 = f , f1 = g and for all t, ft(0) = x, ft(1) = y.

f

g

x

y

Figure 4.3: Two paths in the plane which are homotopic relative to endpoints.

Example 4.7. Let X = S1 ⊂ C and consider the maps f(t) = exp(πis) and
g(t) = exp(−πis). Thus f(s) moves from 1 to −1 along the top, while g(s) moves
from 1 to −1 along the bottom half of the circle.

Then f ≃ g, but not in an end-point preserving fashion. While constructing
a homotopy between these paths is easy, showing that this can not be done in an
end-point preserving way is surprisingly hard.
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Figure 4.4: Two paths in S1 that are homotopic, but for which we can show that there
is no homotopy in S1 that preserves endpoints.

Lemma 4.8. Fix any two points x, y ∈ X and consider the set of paths which have x
and y as endpoints:

{f : I → X : f(0) = x, f(1) = y}.

Relative homotopy
∂≃ is an equivalence relation on this set of paths.

Proof. It is clear that f
∂≃ f and f

∂≃ g ⇔ g
∂≃ f for paths f, g : I → X with

common endpoints. To show transitivity, let f, g, h : I → X be paths from x to y

such that f
∂≃ g and g

∂≃ h. This means that there are homotopies

F : I × I → X, G : I × I → X

such that f0 = f , f1 = g0 = g, and g1 = h. Define a new map H : I × I → X by

H(s, t) =

{
F (s, 2t) if t ≤ 1/2

G(s, 2t− 1) if t ≥ 1/2
.

s

t F

G

Figure 4.5: The homotopy H coincides with (a reparametrized version of) F on the
lower rectangle (t ≤ 1/2), and with G on the upper rectangle (t ≥ 1/2).

Clearly, h0 = f and h1 = h. Moreover, by the Pasting Lemma 1.21, H is

continuous, which shows that f
∂≃ h.

Lemma 4.9. Assume that f
∂≃ g and f ′ ∂≃ g′, where f, g : I → X are paths with

f(1) = f ′(0) and g(1) = g′(0). Then f · f ′ ∂≃ g · g′.
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f

g

f'

g'

z
y

x

Figure 4.6: Concatenated homotopies.

Proof. The proof is essentially the same as that of Lemma 4.8, but with the role of s
and t reversed. The situation can be visualized as follows.

s

t
F G

Figure 4.7: The homotopy H coincides with (a reparametrized version of) F on the
left rectangle (s ≤ 1/2), and with F ′ on the right rectangle (s ≥ 1/2). NOTE: error
in figure labelling - replace G by F’.

Formally, consider homotopies F and F ′ with f0 = f , f1 = g, f ′
0 = f ′, f ′

1 = g′.
Define a new map

H(s, t) =

{
F (2s, t) if s ≤ 1/2

F ′(2s− 1, t) if s ≥ 1/2
.

As before, this map is continuous, and satisfies h0 = f · f ′ and h1 = g · g′, thus

showing that f · f ′ ∂≃ g · g′.

In the coming lecture we will look at special types of paths, called loops, which
start and end at the same point. Using Lemma 4.8 and 4.9, we will see that the set
of equivalence classes of loops have a group structure, leading to the concept of the
Fundamental Group of a pointed topological space.

Last updated 9/10/2023.





Lecture 5

In this lecture we look at loops and will discover that there is an underlying algebraic
structure, the Fundamental Group, that allows to gain insight into the topological
features of spaces.

5.1 Loops and the Fundamental Group

We call a topological space X with a point x0 a pointed space (X,x0).

Definition 5.1. Let (X,x0) be a pointed space. A loop based at x0 is a path f : I → X
with f(0) = f(1) = x0.

Note that the concatenation of two loops based at x0 is again a loop based at x0.

In Lecture 4 we have seen that homotopy of paths with common endpoints is an
equivalence relation, we can form equivalence classes of loops

[f ] = {g : g : I → X, g(0) = g(1) = x0, g
∂≃ f}.

The set of equivalence classes of loops in (X,x0) is denoted by π1(X,x0). We
have seen that if f ≃ g and f ′ ≃ g′, then f · f ′ ≃ g · g′. From this it follows that
the equivalence class [f · f ′] only depends on the classes [f ] and [f ′], and not on the
particular choice of representative in each class. This allows us to define a product

[f ] · [g] := [f · g].

25
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Proposition 5.2. (π1(X,x0), ·) is a group, called the Fundamental Group of the
pointed space (X,x0). The unit element is the class [e] of the constant loop, and for
every [f ], the inverse [f ]−1 is the class [f ], where f(t) = f(1− t) is the inverse loop.

Remark 5.3. The proposition is concerned with the algebra of loops. Without doing
much additional work we can analyse the algebra of paths and see that in the special
case when the paths are loops we get what we want. The algebra of paths is different
from the algebra of loops in that paths cannot always be concatenated. It is also
different in that there are many identity elements. If f is a path from x0 to x1 then
let e0 and e1 be the constant paths at x0 to x1. The identity property for paths is that
e0 · f ≃ f ≃ f · e1.

Proof. (1) We first show that e0 · f ≃ f . For this, we first construct a homotopy from
e0 · f to f as follows.

s

t

x0 f

f

x0 x1

Figure 5.1: This is a picture of the homotopy between ex0 · f and f . The path
parameter is s and the homotopy parameter is t.

F (s, t) =

{
x0 0 ≤ s ≤ 1−t

2

f(2s+t−1
t+1 ) 1−t

2 ≤ s ≤ 1

Indeed, we see that

f0(s) = F (s, 0) =

{
x0 if s ≥ 1/2

f(2s) if s ≤ 1/2

which is the definition of e0 · f . Similarly, one checks that f1(s) = F (s, 1) = f(s).
By the Pasting Lemma 1.23, we get a homotopy. How does one derive this homotopy?
A simple way is to draw a diagram to visualise what is happening.

Now we show that f · e1 ≃ f .
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s

t

f x1

f

x0 x1

Figure 5.2: This is a picture of the homotopy between f · ex1 and f . The path
parameter is s and the homotopy parameter is t.

F (s, t) =

{
f( 2s

t+1)
t+1
2 ≤ s ≤ 1

x0 0 ≤ s ≤ t+1
2

(2) We next show the existence of the inverse. Let f : I → X be a loop and

f : I → X the loop with f(s) = f(1 − s). We need to show that f · f ∂≃ e and

f · f ∂≃ e. For this, we consider the diagram

s

t f

x0 x0

f

Figure 5.3: A loop concatenated with its inverse is homotopic to the constant loop.

Explicitly, this diagram suggests the homotopy

F (s, t) =


x0 s ≤ t

2 or s ≥ 2−t
2

f(2s− t) t
2 ≤ s ≤ 1

2

f(2s+ t− 1) 1
2 ≤ s ≤ 2−t

2

One verifies that f0 = f · f and that f1 = e. The same diagram with f and f

interchanged gives a homotopy f · f ∂≃ e.
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(3) To verify associativity, namely that (f · g) · h ∂≃ f · (g · h), we use the diagram

s

t
f g h

Figure 5.4: Three loops concatenated in different orders to prove associativity.

Exercise 5.4. Give a detailed expression for the homotopy suggested by Figure 5.4.

Example 5.5. π1(R2, {0}) = 0, as every loop is homotopic to the constant loop at 0.

Last updated 9/10/2023.



Lecture 6

In this lecture we discuss an important class of spaces, where any two points can be
connected by a path.

6.1 Path connected spaces

For certain spaces the homomorphism type of π1(X,x0) is actually a topological
invariant of the space itself: it does not depend on the choice of basepoint x0.

Proposition 6.1. If X is path-connected, then for any two points x0, x1 ∈ X , the
fundamental groups π1(X,x0) and π1(X,x1) are isomorphic.

Proof. Let h : I → X be a path from x0 to x1, with inverse path h. Define the map

βh : π1(X,x0) → π1(X,x1)

[f ] 7→ [h · f · h].

Note that we are using the associativity property for paths to tell us that the homotopy
class of this product is defined without making an explicit choice of which multiplica-
tion is performed first. We need to show that βh is an isomorphism of groups, with
βh = β−1

h as inverse.

(1) We first show that βh is a bijection. Note that since h · h ∂≃ ex0 (the constant

loop on x0) and h · h ∂≃ ex1 , we get that

βh ◦ βh([f ]) = [h · h · f · h · h] = [f ],

and hence βh ◦ βh = Idπ1(X,x0). Similarly, one shows that βh ◦ βh = Idπ1(X,x1), thus
showing that βh is a bijection with inverse map βh.

29
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(2) We next need to verify that βh is a group homomorphism. This is the case,
because

βh([f ] · [g]) = βh([f · g])
= [h · f · g · h]
= [h · f · h · h · g · h]
= [h · f · h] · [h · g · h]
= βh([f ]) · βh([g]).

The same argument works for βh, showing that we have an isomorphism.

For path-connected spaces X , we will often simply write π1(X) if we only care
about the structure of the group and not the basepoint.

If the fundamental group of a path connected space is Abelian then the map
βh : π1(X,x0) → π1(X,x1) is independent of the choice of the path h from x0 to
x1. If the fundamental group of a path connected space is not Abelian then different
paths can yield different isomorphisms from π1(X,x0) to π1(X,x1). In the Abelian
case it is safe to speak about the fundamental group of the space without referring to
the base point. In the non-Abelian case it is safest to pick a basepoint.

We will see that π(S1, 1) = Z and so the fundamental group of the circle is
Abelian. We will also see that the fundamental group of the Klein bottle is not
Abelian.

Last updated 12/10/2023.



Lecture 7

7.1 The Fundamental Group of the circle

It is the case that π1(S1) ∼= Z but it will take us some time to prove this. Let us
discuss why this result is true but why it is not completely obvious to prove. As usual,
we consider the circle S1 ⊂ C as subset of the complex numbers. For n ∈ Z define
the loops with basepoint 1 ∈ C by

ωn : I → S1, ωn(s) = exp(2πin · s) for s ∈ I.

Thus each ωn goes around the circle |n| times anticlockwise (if n > 0) or clockwise
(if n < 0) direction. In particular, ω0 = 1 is the constant loop taking on the value of
the basepoint which is 1. Later we will rigorously show that

ωn · ωm ∼ ωn+m.

That is to say that going around the circle n times and them m times is the same
as going around the circle n+m times. Thus we have that

[ωn] = [ω1 · . . . · ω1]
sign of n = [ω1]

n,

and we can view this collection of loops as an infinite cyclic group generated by [ω1].

The following theorem states the apparent, (but not, obvious) fact that every loop
on S1 with basepoint at 1 is of this form.

Theorem 7.1. The fundamental group π1(S
1, 1) is the infinite cyclic group generated

by [ω1], i.e.,
π1(S

1, 1) = ({[ωn] | n ∈ Z}, ·) ∼= Z.

The problem is that the fundamental group consists of homotopy classes of loops,
not loops themselves. If we only consider loops of the form above, then we have
claimed that we have a group, but how can we be sure that every loop is homotopic
to a loop of this form? Also, how can we be sure that two such loops with different
values of the parameter n are not homotopic to each other or to the constant loop? We
will get back to this example after discussing covering spaces, and formally prove (in
Lecture Notes 9) that π1(S1, x0) ∼= Z with generator ω1.
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7.2 Covering spaces

Covering spaces are an essential tool in the derivation of the fundamental group of the
circle, and also play an important role in algebraic topology and related fields. In this
lecture we introduce and study covering spaces in some detail.

Definition 7.2. A covering is a map p : X̃ → X such that there exists an open cover
{Uα} of X , such that for every α, the preimage is a disjoint union of open sets

p−1(Uα) =
⊔
β

V β
α ,

and such that the restriction p|
V β
α
: V β

α → Uα is a homeomorphism.

Example 7.3. For k ∈ Z, the maps pk : S1 → S1, z 7→ zk are covering maps. The
preimage p−1(z) of any point z = exp(2πit) ∈ S1 consists of precisely k distinct
points, namely exp(2πi(t + j)/k) for j ∈ {0, . . . , k − 1}. For z = 1, these are
precisely the k-th complex roots of unity.

z1
z2

z3

z4

z5
z6

z7

α

Figure 7.5: The preimage p−1
7 (1).

Definition 7.4. The map p∞ : R → S1 is given by t 7→ exp(2πit).

Proposition 7.5. The map p∞ is a covering map.

Proof. A basis for the topology of the circle is given by sets of the form {p∞(θ) :
t1 < θ < t2} and t2 − t1 < 1. The inverse image of such an interval has the
form

⊔
n Un where Un = (t1 + n, t2 + n). The sets Un are disjoint and each maps

homeomorphically to its image.

Definition 7.6. A covering p : X̃ → X is called an n-fold covering if for all x ∈ X ,
p−1(x) consists of precisely n points. We say that it is an infinite cover if for all
x ∈ X , p−1(x) consists of infinitely many points.
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3

2

1

0

−1

1

p∞

1

Figure 7.6: The preimage p−1
∞ (1). p∞ is an example of an infinite cover.

Definition 7.7. Two coverings p : Y → X and q : Z → X are called isomorphic, if
there exists a homeomorphism h : Y → Z such that p = q ◦ h.

It is common to visualize concepts such as the isomorphism of coverings via
commutative diagrams such as the following.

Y Z

X

p

h
∼=

q

The requirement is, that all compositions in such a diagram should coincide.

Example 7.8. The coverings p2 : S1 → S1 and p−2 : S
1 → S1 are isomorphic: the

homeomorphism h : S1 → S1, h(z) = 1/z, satisfies p−2 = p2 ◦ h.

Example 7.9. The coverings p2 : S
1 → S1 and p3 : S

1 → S1 are not isomorphic:
one is a 2-fold covering and the other is a 3-fold covering.

Definition 7.10. Let p : X̃ → X be a covering. A deck transformation is a homeo-
morphism τ : X̃ → X̃ such that p ◦ τ = p, i.e., τ gives rise to an isomorphism of a
covering to itself. The set of all deck transformations of a cover is called Deck(p).

Exercise 7.11. Show that (Deck(p), ◦), where ◦ is the composition of maps, is a
group.

Example 7.12. The map τ : S1 → S1, z 7→ −z gives a deck transformation for the
cover p2 : S1 → S1.

Exercise 7.13. Show that for m ∈ Z, the maps τm : R → R, t 7→ t+m, give a deck
transformation for the cover p∞ : R → S1. Conclude that Deck(p∞) ∼= Z.
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We next aim to construct a homomorphism from Z to the fundamental group
π1(S

1, 1). To construct this homomorphism, we need to study how to lift homotopies
from a space to a covering space.
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Lecture 8

8.1 Liftings

Definition 8.1. Given a covering p : X̃ → X , a lift of f : Y → X is a map f̃ : Y → X̃
such that f = p ◦ f̃ ,

X̃

Y X

p
f̃

f

Example 8.2. Consider a loop f : I → S1, t 7→ exp(2πint) and the covering p∞.
Then the map f̃ : I → R, t 7→ nt, is a lift of f .

Lemma 8.3. Let p : X̃ → X be a cover and f̃ , g̃ : Y → X̃ maps. Then:

(1) f̃ is a lift of p ◦ f̃ ;

(2) If f̃ ≃ g̃, then p ◦ f̃ ≃ p ◦ g̃ (“Homotopies descend”);

(3) If α, β : I → X̃ are paths with α(1) = β(0), then p ◦ (α · β) = (p ◦α) · (p ◦ β)
(“Paths descend”).

Proof. Property (1) is obvious from the definition of a lift. For property (2), observe
that any homotopy f̃t from f̃ to g̃ gives rise to a homotopy p ◦ f̃t from p ◦ f̃ to p ◦ g̃.
For property (3), note that

p ◦ (α · β)(t) =
{
p ◦ α(2t) t ≤ 1/2

p ◦ β(2t− 1) t ≥ 1/2
,

which is the same as (p ◦ α) · (p ◦ β)(t).
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8.2 Loops on S1

Recall the map ωn : I → S1 given by t 7→ exp(2πint). The map ω̃n : I → R given
by t 7→ nt is clearly a lift of ωn, i.e., it satisfies

ωn = p ◦ ω̃n. (A)

Define the deck transformation τn : R → R by t 7→ t+n, and consider the composition
ω̃m · (τm ◦ ω̃n). This composition is a path in R from 0 to m+ n, and it is therefore
homotopic to ω̃m+n,

ω̃n+m ≃ ω̃m · (τm ◦ ω̃n), (B)

as can be seen using the straight-line homotopy ft = (1− t)ω̃n+m + tω̃m · (τm ◦ ω̃n).

We now have everything in place to construct a homomorphism of Z to the
fundamental group of the circle. Define the map

Φ: Z → π1(S
1, 1)

n 7→ [ωn].

Proposition 8.4. The map Φ: Z → π1(S
1, 1), Φ(n) = [ωn], is a group homomorph-

ism.

Proof. We need to show that [ωm+n] = [ωm] · [ωn]:

Φ(m+ n) = [ωm+n]

(A)
= [p ◦ ω̃m+n]

Lemma (8.3)(2)+(B)
= [p ◦ (ω̃m · (τm ◦ ω̃n))]

Lemma (8.3)(3)
= [p ◦ ω̃m · p ◦ τm ◦ ω̃n]

= [p ◦ ω̃m] · [p ◦ τm ◦ ω̃n]

τm∈Deck(p)
= [p ◦ ω̃m] · [p ◦ ω̃n]

(A)
= [ωm] · [ωn]

= Φ(m) · Φ(n).

The philosophy of the proof is that we have shown something about loops on
S1 by considering a cover of S1, p∞ : R → S1, and working in R. Things are very
simple in R: the crucial property (B) is easy to prove and shows that the composition
of two lifts ω̃m and ω̃n (up to a reparametrization given by the deck transformation
τm) is homotopic to the lift ω̃m+n. Using the property that “homotopies descend” and
“paths descend”, we can transfer things proved “upstairs” to “downstairs”.
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What the proof does not show yet, is that the homomorphism Φ is bijective: we
don’t know whether Φ hits all the elements of π1(S1, 1), and whether two distinct
n ̸= m give rise to distinct classes [ωn] and [ωm]. The latter is equivalent to the
important statement that for all m ∈ Z, ωm ≃ e ⇔ m = 0 (where e is the constant
loop at 1). Thie proof of this statement is non-trivial, and it relies on the fact that
homotopies in the base space of a covering “lift” to homotopies in the covering space.

8.3 The homotopy lifting property

Recall the convention that for a homotopy F : Y × I → X we write ft(y) = F (y, t).

Definition 8.5. Let p : Z → X be a map. Then p has the Homotopy Lifting Property
(HLP) if given a homotopy F : Y × I → X and a lift g : Y × {0} → Z of f0, so that
f0 = p ◦ g, there exists a unique homotopy F̃ : Y × I → Z such that

(i) f̃0 = g;

(ii) p ◦ F̃ = F .

In terms of diagrams,

Y × {0} Z

Y × I X

g

ι p

F

F̃

Recall that we use the notation Y ↪→ X to denote the inclusion map of a subspace.
The diagram is required to commute, i.e., all compositions coincide (for example,
p ◦ g = F ◦ ι). The dashed line means that we require the existence of a map F̃
making the diagram commute. Note that Condition (i) above says that the upper
triangle in the diagram commutes (f̃0 = F̃ ◦ ι = g0) and Condition (ii) is equivalent
to the commutativity of the lower triangle.

An important special case is the Path Lifting Property, or homotopy lifting
property for paths.

Definition 8.6. Let p : Z → X be a map. Then p satisfies the homotopy lifting
property for paths, or the Path Lifting Property (PLP), if for any path f : I → X with
f(0) = x0 and x̃0 ∈ p−1(x0), there exists a unique path f̃ : I → Z with f̃(0) = x̃0
and p ◦ f̃ = f .

Note that the path lifting property is a special case of the HLP with Y = {pt}. In
this case, the homotopy F is simply a path

F : {pt} × I → X,
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f0 : {pt} × {0} → X is simply a point x0 ∈ X , and g : {pt} × {0} is simply a point
x̃0 ∈ Z. Denoting f(t) = F (pt, t), we recover Definition 8.6.

Last updated 27 October 2023.



Lecture 9

In this lecture we use the Homotopy Lifting Property to prove that the fundamental
group of the circle is isomorphic to Z. We will use the following result about coverings,
which is restated and proved in the next set of notes.

Proposition 9.1. Covering maps satisfy the homotopy lifting property.

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Covering

10 5 0 5 10

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Base space

Figure 9.7: The covering map C− {0} → C− {0}, z 7→ z2 with the liftings of two
paths (a vertical and a horizontal line).

9.1 The fundamental group of the circle

Theorem 9.2. The map Φ: Z → π1(S
1, 1), n 7→ [ωn], is a group isomorphism.

Proof. We already saw that Φ is a homomorphism, and only need to show that it is
bijective.

We first show that the map is surjective: if [α] ∈ π1(S
1, 1) then there exists n ∈ Z

with [α] = [ωn]. Consider again the cover p = p∞ : R → S1, t 7→ exp(2πit). Since
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the covering p satisfies the HLP by Proposition 9.1, and hence also the PLP, given a
loop α there exists a unique lift α̃ : I → R such that

(i) p ◦ α̃ = α;

(ii) α̃(0) = 0.

Since α(1) = 1 (α is a loop starting and ending at 1 ∈ S1) and p ◦ α̃ = α, we have
α̃(1) ∈ p−1(1) = Z, say α̃(1) = n.

3

2

1

0

−1

1

p∞

1

Therefore α̃
∂≃ ω̃n, since both are paths from 0 to n in R, with a homotopy given

by the straight-line homotopy ft = (1− t)α̃+ tω̃n. Since homotopies descend, we
get

α = p ◦ α̃ ∂≃ p ◦ ω̃n = ωn,

which implies [α] = [ωn].

To show injectivity, assume that Φ(n) = [ωn] = [e], i.e., ωn
∂≃ e, the constant

loop. This means that there is a homotopy of loops

F : I × I → S1

with f0 = ωn, f1 = e, and ft(0) = ft(1) = 1 for all t. Define g : I × {0} → R by
setting g(s, 0) = ω̃n. By Proposition 9.1, the covering p satisfies the HLP, and we
therefore have a homotopy F̃ : I × I → R such that f̃0 = g and p ◦ F̃ = F . The
other end of the homotopy, f̃1, satisfies p ◦ f̃1 = e, the constant loop. Therefore:

• f̃0(0) = 0 since f̃0 = ω̃n;

• f̃t(0) ∈ Z since p ◦ f̃t(0) = ft(0) = 1;

• f̃1(s) ∈ Z since p ◦ f̃1(s) = e(s) = 1;
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• f̃t(1) ∈ Z since p ◦ f̃t(1) = ft(1) = 1;

• f̃0(1) = n since f̃0 = ω̃n.

Since we consider R with the Euclidean (metric) topology, a continuous map that
only takes values in Z is constant (the continuous image of a connected topological
space is connected). Therefore,

0 = f̃0(0) = f̃t(0) = f̃1(s) = f̃t(1) = f̃0(1) = n.

This completes the proof.

Last updated 12/10/2023.





Lecture 10

In this lecture we will complete the last missing piece in the derivation of the funda-
mental group π1(S

1, 1). We restate the result.

Proposition 10.1. Covering maps satisfy the homotopy lifting property.

10.1 The local Homotopy Lifting Property

Consider the special case where p : X̃ → X is a covering such that X̃ =
⊔

β V
β , with

each V β ∼= X . Let F : Y × I → X and a lift g : Y × {0} → X̃ such that f0 = p ◦ g.
If g(Y × {0}) ⊂ V β for some β, then we can lift the homotopy F to a homotopy
F̃ that extends g by simply applying the homeomorphism qβ : X → V β to F that is
inverse to p|V β . In general, however, we can only do this construction “locally”, that
is, within an open set Uα, and need to make sure that it can be extended.

Lemma 10.2. Let p : X̃ → X be a covering and let F : Y × I → X be a homotopy.
Let g : Y × {0} → X̃ be such that p ◦ g = f0. Then for every y0 ∈ Y there exists an
open set N with y0 ∈ N ⊂ Y and a unique homotopy (depending on N )

F̃N : N × I → X̃

such that p ◦ F̃N = F |N×I and (f̃N )0 = g|N×{0}. Moreover, if M is another such
neighbourhood, with y0 ∈ M ⊂ Y , then

F̃M |(M∩N)×I = F̃N |(M∩N)×I = F̃M∩N . (10.1)

For the proof we require a special version of the Lebesgue Covering Lemma.

Lemma 10.3. Let I =
⋃

α Iα an open cover. Then there exists ε > 0 such that for
every A ⊂ I with diam(A) < ε, A ⊂ Iα for some α.

Proof of Lemma 10.2. Let p : X̃ → X be a covering map. Assume we have a ho-
motopy F : Y × I → X and “initial data” g : Y → X̃ , so that p ◦ g = f0. By
the definition of a covering, we have an open cover {Uα} of X , and for each α a
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collection of disjoint subsets {V β
α } of X̃ such that p−1(Uα) =

⊔
V β
α , and the re-

striction p|
V β
α
: V β

α → Uα is a homeomorphism. For every pair (α, β), denote by

qα,β : Uα → V β
α the inverse of this homeomorphism. Since F is continuous, for every

(y, t) ∈ Y × I there exists an open neighbourhood N × (a, b) ⊂ Y × I and an index
α such that F (y, t) ∈ Uα for (y, t) ∈ N × (a, b). For every fixed y and as t ranges
over I , we get various subsets with this property, and since I is compact, there are
finitely many such Ni × Ii covering {y} × I . Set N = ∩iNi. By Lemma 10.3 we
can choose a sufficiently fine partition 0 = t0 < t1 < · · · < tn = 1 such that every
interval (tj , tj+1) is contained in one of the Ii. Therefore, every i there is an α with
F (N × (ti, ti+1)) ⊂ Uα.

We now claim that there is a sequence of maps F̃ k
N such that

1. F̃ k
N : N × [0, tk] → X̃ is a lift of F |N×[0,tk];

2. (F̃ k
N )0 = g|N ;

3. F̃ k+1
N |N×[0,tk] = F̃ k

N .

Moreover, these three properties determine the sequence {F̃ k
N} uniquely. We then set

FN = Fn
N . We construct the sequence of maps F̃ k

N by induction. Clearly, there is
only one way to define F̃ 0

N on N × [0, 0] such that (F̃ 0
N )0 = g|N . Assume now that

we have a sequence of maps F̃ j
N up to j = k. By assumption, there is an index α such

that F (N × [tk, tk+1]) ⊂ Uα. By making N smaller, if necessary, we can assume that
F̃ k
N |N×{tk} ⊂ V β

α for some β, and that if we define

Ẽ = qα,β ◦ F |N×[tk,tk+1],

then
Ẽ|N×{tk} = F̃ k

N |N×{tk}.

Now define the extension

F̃ k+1
N (z, t) =

{
F̃ k
N (z, t), t ≤ tk

Ẽ(z, t) t ∈ [tk, tk+1].

By the Pasting Lemma, F̃ k+1
N is continuous. By construction, the resulting map

satisfies conditions (1)-(3) above.

Assume now that we have two maps, F̃N , F̃ ′
N , constructed in this fashion. It

is enough to show that, for any z ∈ N , F̃N |{z}×I = F̃ ′
N |{z}×I . As before, let

0 = t0 < t1 < · · · < tm = 1 be a partition such that F ({z} × [tj , tj+1]) ⊂ Uα. We
proceed by induction. It is clear that both maps have to coincide on {z} × [0, 0], as
both have to match g(z, 0) there. Assume that F̃ ′

N = F̃N on [0, tk]. Since [tk, tk+1] is
connected, there exists a unique β such that F̃N ({z} × [tk, tk+1]) is contained in V β

α .
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Similarly, there is a unique β′ such that F̃ ′
N ({z} × [tk, tk+1]) is in V β′

α . But since
F̃N (z, tk) = F̃ ′

N (z, tk), we have to have β = β′. By construction of the extension Ẽ,
the two maps also coincide on {z} × [0, tk+1].

The proof also shows that if we take two neighbourhoods N , M with the properties
just derived, then by uniqueness we have F̃M |(M∩N)×I = F̃N |(M∩N)×I .

Proof of Proposition 10.1. Cover Y × I with open sets N × I , as guaranteed by
Lemma 10.2. We then get a family of lifts F̃N : N × I → X̃ that coincide on
the intersection of two sets in the cover. Hence, by the Pasting Lemma, they are
continuous and therefore lift F .

We now show that this calculation of the fundamental group of the surface allows
us to prove the Fundamental Theorem of Algebra 2

Theorem 10.4. Every non-constant, complex polynomial p(z) ∈ C[z] has at least
one complex root, i.e. there exists a λ ∈ C such that p(λ) = 0.

Proof. The proof is by contradiction. Assume that there exists a polynomial

p(z) = zn + a1z
n−1 + · · ·+ an−1z + an

of degree n ≥ 1 such that p(λ) ̸= 0 for all λ ∈ C (we can without lack of generality
assume p(z) to be monic, meaning that the coefficient of zn is 1). For every real
number r > 0, such a polynomial gives rise to a loop gr on S1

gr(s) =
p(r exp(2πis))/p(r)

|p(r exp(2πis))/p(r)| ,

with basepoint gr(0) = gr(1) = 1. The strategy of the proof is to show, via two
different homotopies, that

gr
∂≃ ω0, and gr

∂≃ ωn.

As we have proved if ω0
∂≃ ωn then n = 0. This implies that p(z) is a constant

polynomial.

(1) Consider the homotopy ft = gtr. Then f1 = gr and f0 = e, and [gr] = [e].

(2) To show that gr is homotopic to ωn, the idea is to use p to construct a sequence
of polynomial pt that move continuously to zn:

pt(z) = zn + t(a1z
n−1 + · · ·+ an−1z + an).

2This celebrated result was first proved by J. Wood (1798) and C.F.Gauss (1799), but with subtle
gaps. A first correct proof was given by J-R. Argand in 1806. Nowadays, countless algebraic, topological,
geometric and analytic proofs are available.
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If we can define, for some r, loops

f̃t(s) =
pt(r exp(2πis))/pt(r)

|pt(r exp(2πis))/pt(r)|
,

then f̃1 = gr and f̃0 = exp(2πis) = ωn. To make sure that we can construct such f̃t,
we have to make sure that none of the quantities we are dividing by can be 0, or in
other words, that the polynomials pt(z) have no roots with |z| = r. We will show that
this is the case if r is big enough. More specifically, let r be such that

r > max{|a1|+ · · ·+ |an|, 1}.

Then for z ∈ C with |z| = r we have

|z|n > (|a1|+ · · ·+ |an|)|z|n−1

> |a1||z|n−1 + |a2||z|n−2 + · · ·+ |an−1||z|+ |an|
≥ |a1zn−1 + · · ·+ an|.

In particular, for t ∈ [0, 1], the polynomials pt cannot have a root with |z| = r, as the
absolute value of |z|n is always bigger than that of the rest of the terms. It follows
that the homotopy f̃t is well defined.

Last updated 9/10/2023.



Lecture 11

We computed the fundamental group of some elementary spaces, but haven’t really
seen what this means yet. For example, if we denote the closed disk in C ∼= R2 by

D2 := {z ∈ C | |z| ≤ 1},

then
π1(D2, 1) = {0}, π1(S

1, 1) ∼= Z.

What does this say about the underlying topological spaces? As we will see, this
implies (for example) that S1 cannot be a retract of D2, which in turn has other
consequences such as the Brouwer Fixed Point Theorem (a map D2 → D2 has a
fixed-point). Ultimately, we would like to show that the fundamental group is a
homotopy invariant: homotopy equivalent spaces have the same fundamental group.
We first need to study how the fundamental group reacts to continuous maps between
spaces.

11.1 Induced homomorphisms

Recall that a pair of spaces is a pair of topological spaces (X,A) with A ⊂ X .

Definition 11.1. A map of pairs

f : (X,A) → (Y,B)

is a map f : X → Y such that f(A) ⊂ B.

Example 11.2. The typical example is when A = {x0} and B = {y0}, in which case
we write f : (X,x0) → (Y, y0) to denote a map with f(x0) = y0.

Example 11.3. Consider the two-fold cover f : (S1, 1) → (S1, 1), z 7→ z2.

Definition 11.4. The induced homomorphism of f : (X,x0) → (Y, y0) is the map

f∗ : π1(X,x0) → π1(Y, y0)

[α] 7→ [f ◦ α].
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The induced homomorphism is also sometimes called a push-forward.

Lemma 11.5. The map f∗ is a group homomorphism.

Proof. We first have to verify that this is a well-defined map, i.e., that if α
∂≃ β then

f ◦ α
∂≃ f ◦ β. This is clear: if F : I × I → X is a homotopy with f0 = α and

f1 = β, then G = f ◦ F is a homotopy from f ◦ α to f ◦ β. To show that f∗ is a
homomorphism, we need to show that f∗([α] · [β]) = f∗([α]) · f∗([β]). Since

f∗([α] · [β]) = f∗([α ∗ β]) = [f ◦ (α ∗ β)]

and
f∗([α]) · f∗([β]) = [f ◦ α] · [f ◦ β] = [(f ◦ α) · (f ◦ β)],

we are left with showing that f ◦ (α · β) ∂≃ (f ◦ α) · (f ◦ β). Note that, by definition
of the concatenation of paths,

(f ◦ α) · (g ◦ β) =
{
f ◦ α(2s) s ≤ 1/2

f ◦ β(2s− 1) s ≥ 1/2
.

which is the same as the definition of f ◦ (α · β). This completes the proof.

Example 11.6. Consider the covering map p2 : (S
1, 1) → (S1, 1), z 7→ z2. Let

ωn : I → S1 be the map ωn(s) = exp(2πins). Then p2◦ωn = ω2n, and (p2)∗([ωn]) =
([ω2n]). The induced map on Z is the doubling map

π1(S
1, 1) π1(S

1, 1)

Z Z

(p2)∗

∼= ∼=
n7→2n

One similarly derives the induced map for z 7→ zd.

The next lemma shows that the fundamental group is a functor.

Lemma 11.7. The induced homomorphism satisfies the properties:

1. (Id(X,x0))∗ = Idπ1(X,x0);

2. If f : (X,x0) → (Y, y0) and g : (Y, y0) → (Z, z0), then

(g ◦ f)∗ = g∗ ◦ f∗
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Proof. The first property is obvious: if nothing happens at the topological level, then
nothing can happen at the algebraic level. For the second property, note that

(g ◦ f)∗([γ]) = [g ◦ f ◦ γ] = g∗([f ◦ γ]) = (g∗ ◦ f∗)([γ]).

An immediate consequence is that the fundamental group maps homeomorphic
spaces to isomorphic groups. This allows us to distinguish spaces: if two spaces X
and Y have different fundamental group, they cannot be homeomorphic.

Theorem 11.8. If f : (X,x0) → (Y, y0) is a homeomorphism, then f∗ : π1(X,x0) →
π1(Y, y0) is a group isomorphism.

Proof. We apply Lemma 11.7(1) and (2) with g = f−1. Then

Idπ1(X,x0) = (Id(X,x0))∗ = (f−1 ◦ f)∗ = (f−1)∗ ◦ f∗,

and similarly (reversing the role of f−1 and f ) Idπ1(X,x0) = f∗◦(f−1)∗, which shows
that (f−1)∗ = f−1

∗ .

Example 11.9. Since π1(D2, 1) = {0} and π1(S
1, 1) ∼= Z, (D2, 1) ̸∼= (S1, 1).

In the following lectures we will see that this extends to homotopy equivalence.

11.2 Categories and functors

A category C consists of objects obj(C), for any ordered pair of objects (a, b) a set

HomC(a, b) whose elements are called morphisms or arrows (often written, a
f→ b)

and composition maps HomC(a, b) × HomC(b, c) → HomC(a, c), (f, g) 7→ g ◦ f ,
such that

1. (associativity) if f ∈ HomC(a, b), g ∈ HomC(b, c) and h ∈ HomC(c, d), then
h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

2. (identity) for every a ∈ obj(C) there exists ida ∈ HomC(a, a) such that f ◦
ida = idb ◦ f = f for any f ∈ HomC(a, b).

In applications, the objects are often sets with a certain structures (vector spaces,
topological spaces, groups) and the morphisms are structure-preserving maps between
them (linear maps, continuous functions, group homomorphisms). While in these
examples the objects are denoted by V , X , or G, the lower-case notation for objects
in an arbitrary category indicates that there is no a priori requirement for these to be
sets.
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Let C, D be two categories. A functor F : C → D assign to every object
a ∈ obj(C) an object F (a) ∈ obj(D), and to every morphism f ∈ HomC(a, b)
a morphism F (f) ∈ HomD(F (a), F (b)), in such a way that

1. F (ida) = idF (a);

2. if f ∈ HomC(a, b) and g ∈ HomC(b, c), then F (g ◦ f) = F (g) ◦ F (f).

Example 11.10. Let Top0 denote the category whose objects are pointed topological

spaces (X,x0), and whose morphisms are maps of pairs (X,x0)
f→ (Y, y0). Let G

be the category of groups, whose morphisms are group homomorphisms. Then the
fundamental group π1 is a functor:

π1 : Top0 → G.

1. Every object (X,x0) is assigned to a group π1(X,x0);

2. Any map (X,x0)
f→ (Y, y0) gives rise to a group homomorphism π1(X,x0)

f∗→
π1(Y, y0), where we write f∗ = π1(f);

3. The identity gets mapped to the identity: (Id(X,x0))∗ = Idπ1(X,x0);

4. We have the property that (g ◦ f)∗ = g∗ ◦ f∗.

A functor as defined here is also called a covariant functor, because it preserves
the direction of arrows. A contravariant functor is one that reverses the direction.

The language of categories and functors is useful language in higher level math-
ematics. It forms the basis of the modern treatment of many fields of mathematics,
including algebraic geometry, number theory, and algebraic topology. It allows the
study of structural similarities between mathematics concepts in an elegant way, and
in particular it allows to transfer topological ideas to other fields of mathematics. You
will see more examples of the role that category theory plays in the two topology
courses following this one.

Last updated 27/10/2023.



Lecture 12

In the previous lecture we saw that the fundamental group is a functor: maps between
pointed topological spaces get assigned to group homomorphisms in a way that
preserves the identity map and compositions. We also saw that homeomorphisms
correspond to isomorphisms in the category of groups. In this lecture we will study
the effect of retractions, and deformation retracts, on the fundamental group.

12.1 Retractions

Let (X,A) be a pair of topological spaces, witht A ⊂ X . Recall (from Chapter 3,
which you might like to review) that a retraction is a map r : X → A such that
r|A = IdA.

Example 12.1. The map C− {0} → S1, z 7→ z/|z|, is a retraction.

A kind of converse to a retraction is the inclusion ι : A ↪→ X . We have the
composition r ◦ ι = IdA, and the reverse composition ι ◦ r : X → X . In diagrams,

A A

X X

ι

IdA

ιr

ι◦r

where the arrow with hook ↪→ is used to emphasize that the map is injective, while
the arrow with two tips ↠ is used to emphasize that the map is surjective, or onto. A
retract r is called a deformation retract, if

ι ◦ r A≃ IdX ,

which means that there is a homotopy from ι ◦ r to the identity IdX that does nothing
on A. You may wish to check that this definition of a deformation retract is the same
as the one we had in Chapter 3 of these notes (though in slightly different language).

Proposition 12.2. Let A ⊂ X , r : X → A a retraction, and ι : A ↪→ X the inclusion.
Let x0 ∈ A and let r∗ : π1(X,x0) → π1(A, x0) and ι∗ : π1(A, x0) → π1(X,x0) be
the induced (push-forward) maps between the fundamental groups. Then:
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1. r∗ is surjective and ι∗ is injective;

2. If r is a deformation retract, then r∗ and ι∗ are isomorphisms.

Note that, in particular, for a deformation retract r, the map

(ι ◦ r)∗ : π1(X,x0) → π1(X,x0)

is an isomorphism (though it may not be the identity, as is the case with (r ◦ ι)∗).

Proof. The first claim is clear: since Idπ1(A,x0) = (r ◦ ι)∗ = r∗ ◦ ι∗, ι∗ has to be
injective (otherwise the composition couldn’t be injective) and r∗ has to be surjective
(otherwise the composition couldn’t be surjective).

To show that r∗ is an isomorphism if r is a deformation retract, it is enough to show
that r∗ is injective. Let [γ] ∈ π1(X,x0) and assume that r∗([γ]) = [r ◦ γ] = [eA], or

equivalently r ◦ γ ∂≃ eA, where eA is the constant loop at x0 in A. We need to show

that in this case, [γ] = [eX ], or γ
∂≃ eX , where eX is the constant loop at x0 in X .

As r ◦ γ is a loop in A ⊂ X , ι ◦ r ◦ γ it is a loop in X , and ι ◦ r ◦ γ ∂≃ eX by the
same homotopy that takes r ◦ γ to eA. By the transitivity of homotopy, it is therefore
enough to show that

ι ◦ r ◦ γ ∂≃ γ.

This follows by simply applying the homotopy from ι ◦ r to IdX to the loop γ. More
precisely, let F : X×I → X be the homotopy from ι◦r to IdX , so that f0 = ι◦r and
f1 = IdX . Construct a new homotopy G : I×I → X by setting G(s, t) = F (γ(s), t).
Then g0 = ι ◦ r ◦ γ and g1 = γ. This concludes the proof.

Last updated 27/10/2023.



Lecture 13

The first obvious application of the fact that retractions induce surjective homomorph-
isms in the fundamental group is the following.

Proposition 13.1. There is no retract D2 → S1.

Proof. The existence of a retraction would imply a surjection π1(D2, 1) ↠ π1(S
1, 1),

but the fundamental group of the disk is π1(D2, 1) = {0}, and the fundamental group
of the circle is π1(S1, 1) ∼= Z.

An important consequence of this “no retract theorem” is the celebrated Brouwer
Fixed Point Theorem.

13.1 The Brouwer Fixed Point Theorem

The following important result generalizes the fact that a continuous function f : I →
I has a fixed point, i.e., a point x ∈ I such that f(x) = x. In the case of the interval,
this is an easy consequence of the intermediate value theorem. The generalization to
maps from I × I to itself, or equivalently, from D2 to itself, is surprisingly non-trivial.
A proof was found by Luitzen Egbertus Jan (Bertus) Brouwer in 1910.

Theorem 13.2. (Brouwer Fixed Point Theorem) Every map f : D2 → D2 has a fixed
point.

Proof. The proof is by contradiction. Assume that the statement is wrong, and
that there is a map f : D2 → D2 such that f(x) ̸= x for all x ∈ D2. For every
x ∈ D2, there is a unique line joining through x and f(x), parametrized by Lx(t) =
(1− t)f(x) + tx for t ∈ R. This line intersects the boundary circle S1 in exactly in
two points, one for which t > 0. Denote this point by r(x).

We thus get a map r : D2 → S1 such that r(x) = x for x ∈ S1. We next show
that this map is continuous, and thus gives a retraction. Indeed, the function r is given
by r(x) = Lx(t∗), where t∗ is the positive solution to the quadratic equation

|(1− t)f(x) + tx|2 = 1.
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x

f(x)

r(x)

Writing this out, we get a quadratic equation with precisely two solutions, only one of
which is positive. From the explicit expression for the solution of a quadratic equation,
it follows that such a t∗ depends continuously on the coefficients of the equation,
which in turn depend continuously on x and f(x). It follows that r : D2 → S1 is
continuous.

Exercise 13.3. Show that Theorem 13.2 still holds if we replace (D2, S1) with a pair
of spaces (X,A) such that A ⊂ X , X ∼= D2, and A ∼= S1. Hence, Theorem 13.2 also
holds for maps f × I2 → I2 (where I2 = I × I is the square).

Last updated 27/10/2023.



Lecture 14

Another important application is the Borsuk-Ulam Theorem, which often goes hand-
in-hand with the Brouwer Fixed Point Theorem.

14.1 The Borsuk-Ulam Theorem

Theorem 14.1. (Borsuk-Ulam) Let f : S2 → R2 be a map. Then there exists a point
x ∈ S2 with f(x) = f(−x).

The theorem thus states that for any continuous function from the sphere to R2

there are two antipodal points for which the function has the same value. One can
interpret this as saying, for example, that there are always two antipodal points on the
earth’s surface with equal temperature and equal pressure (assuming these two are
continuous functions). The theorem, which also holds in dimension n ≥ 2, was first
proven by Karol Borsuk, who in turn attributes the problem formulation to Stanislaw
Ulam. It has remarkable ramifications and applications, an overview of which can be
found in the book “Using the Borsuk-Ulam Theorem” by Jiři Matoušek.

To prove the Borsuk-Ulam Theorem we need a series of auxiliary results, which
are interesting in their own right. These relate to the concepts of even and odd maps,
and null homotopy.

An involution is a map h : X → X such that h(h(x)) = x. In this case, we often
write h(x) = −x. Typical examples of spaces with involution are the spaces Dn, Sn

or Rn, with −x just the additive inverse of x.

Definition 14.2. Let X,Y be spaces with involution. A map f : X → Y is called
odd if f(−x) = −f(x), and even if f(−x) = f(x) for all x ∈ X .

Clearly, a map does not need to be either odd or even.

Example 14.3. The map p2 : S
1 → S1, z 7→ z2 is even. The sine function is odd,

while the cosine function is even. The identity map IdRn is odd.
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Exercise 14.4. Show that the composition of odd maps is odd and that the composition
of even maps with either even or odd maps is even.

Definition 14.5. A map f : X → Y is called null-homotopic if f is homotopic to a
constant map. A pointed map f : (X,x0) → (Y, y0) is called null-homotopic relative
to the basepoint if there is a homotopy f : X× I → Y such that f0 = f and f1 = ey0 ,
with ft(x0) = y0.

If f is null-homotopic relative to the basepoint, we write f
x0≃ e. If a map

f : X → Y is homotopic to a constant map ey0 , and if x0 is such that f(x0) = y0,
then this does not necessarily mean that the pointed map f : (X,x0) → (Y, y0) is
null-homotopic. The added requirement is that each map ft in the homotopy should
map x0 to y0.

We will first show that odd maps from S1 to S1 cannot be null-homotopic. We
will then use this to show that any odd map from S2 to R2 has to have a root, and
finally use this to establish Borsuk-Ulam Theorem, by noting that for a function
f : S2 → R2, the function f(x)− f(−x) is odd. Before we begin, we state a lemma
that will be useful on several occasions.

Lemma 14.6. Let p : X̃ → X be a covering and let γ : I → X be a loop such that

γ
∂≃ ex0 . Let x̃0 ∈ p−1(x0) and γ̃ the lift of γ with γ̃(0) = x̃0. Then γ̃

∂≃ ex̃0 .

Proof. Let F : I × I → X be a homotopy with f0 = γ and f1 = ex0 . By the
homotopy lifting property, there is a unique homotopy F̃ : I × I → X̃ with f̃0 = γ̃.

ex0

x0 x0

γ

F

ex̃0

x̃0x̃0

γ̃

F̃

The paths F (0, t) = x0 (left boundary), F (1, t) = x0 (right boundary) and
F (s, 1) = x0 (upper boundary) are all constant paths. By Problem (4.7) (or the path
lifting property), constant paths lift to constant paths, which implies that γ̃ is a loop at
x̃0 that is is homotopic to the constant loop ex̃0 via F̃ .

Proposition 14.7. If f : S1 → S1 is odd, then f is not null-homotopic.
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Proof. Assume that f is odd and that f is null-homotopic to a constant map, which
without loss of generality we can assume to be e1 (exercise: why?), via a homotopy
F : S1 × I → S1. Consider the cover p : R → S1, s 7→ exp(2πis). We proceed in
two steps.

(1) Use the oddity of f to construct a loop γ : I → S1 based at 1 in such a way
that γ lifts to a path γ̃ from 0 to an odd endpoint 2n+ 1.

Set g = f/f(1). Clearly, this is again odd and has the property that g(1) = 1. We
can thus define a loop γ : I → S1 by setting γ(s) = g(e2πis). Since

eiπ = −1,

we get that γ(s + 1/2) = g(exp(2πis + πi)) = −γ(s) for s ∈ [0, 1/2], where we
used the fact that g is odd. In particular, γ(1/2) = −1. By applying path-lifting to
γ, we get a curve γ̃ : I → R with γ̃(0) = 0 and γ̃(1/2) = n+ 1/2 for some n ∈ Z,
since γ(1/2) = −1 and p−1(−1) = {m + 1/2: m ∈ Z}. We would like to show
that, as we wind on up that road, we arrive at γ̃(1) = 2n+ 1.

2n+ 1

n+ 1/2

0

1−1

p

Consider the two paths α, β : I → R given by α(s) = n + 1/2 + γ̃(s/2) and
β(s) = γ̃((s+ 1)/2). We then have

• p ◦ α(s) = −γ(s/2) = γ((s+ 1)/2) = p ◦ β;

• α(0) = β(0) = n+ 1/2.

By the uniqueness of lifts, it follows that α = β, and hence

2n+ 1 = α(1) = β(1) = γ̃(1).

This establishes the first part.

https://www.youtube.com/watch?v=iYYRH4apXDo
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(2) Show that the lifted path γ̃ is a loop that is homotopic to the constant loop at 0.

Using the fact that F is null-homotopic, we construct a homotopy from γ to ex0

as follows:

Γ: I × I → S1

(s, t) 7→ F (e2πis, t)

F (1, t)
,

where we use the division over the complex numbers. Clearly, at the boundaries

Γ(s, 0) = γ(s), Γ(s, 1) = 1, Γ(0, t) = Γ(1, t) = 1.

e1

1 1

γ

Γ

Thus Γ is a homotopy from γ to the constant loop at 1, and by Lemma 14.6, γ̃ is a
null-homotopic loop. Therefore,

0 = γ̃(0) = γ̃(1) = 2n+ 1,

which is not possible if n ∈ Z. We get a contradiction to the assumption that f is
null-homotopic, completing the proof.

Corollary 14.8. If f : S2 → R2 is odd, then there exists x ∈ S2 such that f(x) = 0.

Proof. Assume that f is odd, and that f(x) ̸= 0 for all x ∈ S2. The idea is to
use f to define maps g : S1 × I → S2 and p : S2 → S1, such that the composition
H = p◦g : S1×I → S1 is a homotopy from an odd to a constant map, in contradiction
to Proposition 14.7.

S1 × I S1

S2

H

g p
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Define the map

p : S2 → S1,

x 7→ f(x)

∥f(x)∥ .

Since p(−x) = f(−x)/∥f(−x)∥ = −f(x)/∥f(x)∥, p is again odd. Define the upper
hemisphere

U = {(x, y, z) ∈ S2 : z ≥ 0},
and a map g : S1 × I → U by setting

g(eiθ, t) = (t cos(θ), t sin(θ),
√
1− t2).

It follows that g0 is constant and g1 embeds the circle S1 into the equator E =
S1 × {0} ⊂ S2 (note that here, as usual, we identify C with R2 and eiθ with
(cos(θ), sin(θ)), and freely alternate between these representations). Finally, consider
the homotopy

H : S1 × I → S1, H(eiθ, t) = p ◦ g.
Then h0 = p ◦ g0 is a constant map and h1 = p ◦ g1 is odd: this follows from the
fact that both p and g1 are odd. We therefore have a homotopy from an odd map to a
constant map, in contradiction to Proposition 14.7.

Proof of Theorem 14.1. Define the map

g(x) = f(x)− f(−x).

By definition, this is an odd map, so by Corollary 14.8 this has a zero, i.e., there exists
an x such that f(x)− f(−x) = 0.

Last updated 27/10/2023.





Lecture 15

In this lecture we will compute the fundamental group of the torus (in any dimension)
and of the n-dimensional sphere, for n ≥ 2. As a consequence, we will see that

Tn ̸≃ Sn.

15.1 Product spaces

The proof of the following is left as an exercise. The main ingredient is the observation
that a map f : Z → X × Y is continuous if and only if the compositions pX ◦ f
and pY ◦ f are continuous, where pX : X × Y → X and pY : X × Y → Y are the
projections onto X and Y , respectively.

Proposition 15.1. Let (X,x0) and (Y, y0) be pointed spaces. Then

π1(X × Y, x0 × y0) ∼= π1(X,x0)× π1(Y, y0).

Example 15.2. Consider the torus T2 = S1 × S1. Then

π1(T2, (1, 1)) = Z× Z.

There are two types of "simple" loops in the embedded torus: that the fundamental
group of the torus is Z2 should therefore not be surprising. Consider for example a
loop that winds around one circle of the torus three times, and two times around the
other. The resulting path is the trefoil knot, one of many torus knots.

Figure 1: Examples of knots

1
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Example 15.3. Consider the torus Tn = S1 × S1 × ...× S1. Then

π1(Tn, (1, 1, . . . , 1)) = Z× Z× ...× Z.

Another way of saying this is that the fundamental group of Tn is the free abelian group
on n generators, so elements of the group can be labelled with words ai11 a

i2
2 . . . ainn

where this corresponds to the homotopy equivalence class of loops that go ij times
(for each j) round the jth direction on the torus.

Exercise 15.4. Convince yourself, with the aid of diagrams, that in the case n = 2
(where the torus can be represented as a square with appropriate identification of
sides) that if you pick a and b as two generating elements for the fundamental group,
then ab = ba.

15.2 The fundamental group of the sphere Sn

The computation of the fundamental group of Sn for n ≥ 2 uses the stereographic
projection. Fix a point on Sn, for example the “north pole” N = (0, . . . , 0, 1).

x

y

z

N

ϕ(x)

S

1

The stereographic projection is a continuous map φ : Sn − {N} → Rn, by
mapping a point x to the intersection of the line joining N and x with the hyperplane
perpendicular to N touching the south pole S = −N .

Exercise 15.5. Derive the precise form of φ and its inverse φ−1, and show that these
are continuous maps.

Proposition 15.6. For n ≥ 2 and x0 ∈ Sn, π1(Sn, x0) ∼= {0}.

Proof. As the stereographic projection gives a homeomorphism from the open set
U1 = Sn − {N} to Rn, and similarly from U2 = Sn − {S} to Rn, we see that the
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sphere can be written as a union of open sets

Sn = U1 ∪ U2,

with U1
∼= Rn and U2

∼= Rn. In addition, also using the stereographic projection,
we see that U1 ∩ U2

∼= Rn − {0}, which is path-connected. Assume without lack of
generality that x0 ∈ U1 ∩ U2 (as Sn is path-connected, the fundamental groups with
different basepoints are all isomorphic).

Given a loop γ : I → Sn, we have a cover I = γ−1(U1) ∪ γ−1(U2). By the
Lebesgue covering lemma, we can find a subdivision 0 = t0 < t1 < · · · < tm = 1
such that for every subinterval we have γ([ti−1, ti]) ⊂ U1 or γ([ti−1, ti]) ⊂ U2. Set
γi := γ|[ti−1,ti] for 1 ≤ i ≤ m. Then

γ = γ1 · γ2 · . . . · γm.

If γ([ti−1, ti]) ⊂ Uj and γ([ti, ti+1]) ⊂ Uk for j, k ∈ {1, 2} (the possible cases are
that j = k or j ̸= k), then there exists a path αi in Uj ∩ Uk (which may just be U1 or
U2 if the indices are equal) connecting γ(ti) to x0 (since that space is path-connected).
Consider now the new path

β = (γ1 · α1) · (α1 · γ2 · α2) · . . . · (αm−1 · γm).

Since each of the αi−1 · γi · αi is a loop, β is a concatenation of loops. Moreover,
each of these loops is contained in one of U1 or U2 (or both), and since these spaces
are homeomorphic to Rn, each of these loops is homotopic to the constant loop ex0 .
Therefore,

β
∂≃ ex0 .

But we also have that
γ

∂≃ β,

using a homotopy that moves each αi · αi to ex0 . It follows that [γ] = [e0], and hence
the fundamental group is the trivial group.

Exercise 15.7. Find out where the argument breaks down for n = 1.

Corollary 15.8. The n-torus Tn is not homotopic to the sphere Sn.

15.3 Homotopy invariance

So far we have seen that deformation retracts give rise to isomorphic fundamental
groups. We next show that this holds more generally for homotopy equivalence.

Proposition 15.9. Let f : X → Y be a homotopy equivalence. Then for any x0 ∈ X ,
the induced map f∗ : π1(X,x0) → π1(Y, f(x0)) is an isomorphism.
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Proof. Let g : Y → X be a homotopy inverse, so that g ◦ f ≃ IdX and f ◦ g ≃
IdY . Set y0 = f(x0) and x1 = g(y0). The composition g ◦ f thus gives rise to a
homomorphism of fundamental groups

(g ◦ f)∗ : π1(X,x0) → π1(X,x1)

[γ] 7→ [g ◦ f ◦ γ].

x0

x1

y0

f

g

h

Let K : X×I → X be a homotopy from IdX to g◦f , and define a path h : I → X
from x0 to x1 by h(t) = K(x0, t). By Proposition 6.1 (Lecture 6), this path induces
an isomorphism of fundamental groups

βh : π1(X,x0) → π1(X,x1)

[γ] 7→ [h · γ · h],

where h(t) = h(1− t) is the inverse path, from x1 to x0. We claim that βh = (g ◦f)∗.
To show that these homomorphisms coincide, for any [γ] ∈ π1(X,x0) we will
construct a homotopy between h · γ · h and g ◦ f ◦ γ.

Define first a homotopy

ht(s) = H(t, s) =

{
h(s) if s ≥ t

h(t) if s ≤ t
,

so that h1(s) = h(1) = x1 and h0(s) = h(s). In addition, define the homotopy

γt(s) = K(γ(s), t),

which consists in applying the homotopy from IdX to g ◦f to the loop γ. In particular,
γ0 = γ and γ1 = g ◦ f ◦ γ. Finally, consider the homotopy

αt(s) = ht ∗ γt ∗ ht(s).

One checks directly from the definition that the endpoints of each of the concatenated
paths coincide, and that α0 = h · γ · h and α1 = g ◦ f ◦ γ. We therefore have a

homotopy h · γ · h ∂≃ g ◦ f ◦ γ and hence

βh([γ]) = [h · γ · h] = [g ◦ f ◦ γ] = (g ◦ f)∗([γ]).
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In particular, (g ◦ f)∗ = g∗ ◦ f∗ is an isomorphism, and therefore f∗ is injective and
g∗ is surjective. Repeating the proof in the other direction (roles of f and g reversed),
shows that f∗ is surjective and g∗ is injective, thus finishing the proof that we have an
isomorphism.

Last updated 3/11/2023.





Lecture 16

16.1 The Galois correspondence

In this lecture we look at the relationship between isomorphism classes of covers
and subgroups of the fundamental group. This is what is also known as Galois
correspondence, due to its analogy to Galois theory, where one has field extensions
instead of coverings and the Galois group instead of the fundamental group.

Proposition 16.1. Let p : X̃ → X be a covering, x0 ∈ X , and x̃0 ∈ p−1(x0). Then:

(a) The induced homomorphism p∗ : π1(X̃, x̃0) → π1(X,x0) is injective;

(b) If [α] ∈ π1(X,x0) and α̃ is the lift of α with α̃(0) = x̃0, then α̃ is a loop (i.e.,
α̃(1) = x̃0) if and only if [α] ∈ p∗(π1(X̃, x̃0)).

Proof. (a) Assume that [α̃] ∈ π1(X̃, x̃0) maps to [ex0 ], i.e., that p ◦ α̃(0) ∂≃ ex0 . Then

by Lemma 14.6 (Lecture 14) we have that α̃
∂≃ ex̃0 .

(b) Clearly, if α̃ is a loop, then [α] = p∗([α̃]), which shows the “only if” direction.
For the “if” direction, assume that [α] = p∗([γ̃]) for some [γ̃] ∈ π1(X̃, x̃0). This

means α = p ◦ α̃
∂≃ p ◦ γ̃ = γ. Just as in the proof of Proposition 14.6, we get a

homotopy from α to γ that fixes endpoints, and that lifts to a homotopy from α̃ to γ̃.

As the left and right boundaries, F (0, t) and F (1, t), are constant (x0), these lift
to constant paths. Since the upper boundary F (s, 1) = γ̃(s) is a loop at x̃0, this means
that the whole left and right boundaries are x̃0, and therefore that α̃ is a loop.

The proposition shows that the image p∗(π1(X̃, x̃0) is a subgroup of π1(X,x0)
that is isomorphic to π1(X̃, x̃0). This may seem counterintuitive at first, as covering
maps are (generally) surjective.

Example 16.2. Consider the d-fold covering pd : S
1 → S1. Identifying the funda-

mental groups with Z, the induced map is n 7→ d · n. Hence, (pd)∗(π1(S1, 1) ∼= dZ.
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γ

x0 x0

α

F

γ̃

x̃0x̃0

α̃

F̃

Recall that if G is a group and H ≤ G a subgroup, the index of H in G, [G : H],
is the number of right-cosets G/H = {Hg}g∈G.

Definition 16.3. Let p : X̃ → X be a covering and assume that X̃ and X are path-
connected. Then for any x ∈ X ,

deg(p) := |p−1(x)|

is called the degree of the covering.

Exercise 16.4. Show that this is well-defined. Verify whether the conditions of
path-connectedness and the connectedness of X̃ can be relaxed.

Proposition 16.5. Let p : X̃ → X be a covering and assume that X̃ and X are
path-connected. Let x0 ∈ X and x̃0 ∈ p−1(x0). Then

deg(p) = [π1(X,x0) : p∗(π1(X̃, x̃0))].

Proof. Set G = π1(X,x0) and H = p∗(π1(X̃, x̃0)). Let [α] ∈ G and α̃ a lift of α,
starting at x̃0 and ending at x̃1 ∈ p−1(x0). If β is another loop with [α] = [β], then
by the same argument as in the proof of Proposition 16.1(b) (see the figure), β lifts to
a path β̃ with the same endpoint x̃1, so that the endpoint only depends on the class of
the loop, and not the representative.

Let [h] ∈ H . Then by Proposition 16.1(b), h lifts to a loop h̃ in X̃ , and h ∗ α lifts
to a path h̃ ∗ α̃ from x̃0 to x̃1. From this we get a map from the set of right-cosets
H[α] to the endpoints of lifts α̃:

Φ: G/H → p−1(x0)

H[α] 7→ α̃(1).

We need to show that this map is injective and surjective.
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β

x0 x0

α

F

β̃

x̃1x̃0

α̃

F̃

For the injectivity, assume that Φ(H[α]) = Φ(H[β]). Then α̃(1) = β̃(1), and
hence α̃ ∗ β̃ is defined and is a loop at x̃0 in X̃ . It follows that

p∗([α̃ ∗ β̃]) = [p ◦ α̃ ∗ β̃] = [p ◦ α̃ ∗ p ◦ β̃] = [α] • [β] ∈ H,

from which we get that

H[α] = H[α][β][β] = H[β].

For the surjectivity, we see that since X̃ is path connected, there exists a path
from x̃0 to any other point in p−1(x0). Each such path projects to a loop α in X ,
and Φ maps the corresponding element H[α] in G/H to α̃(1). Therefore, Φ is a
bijection.

Lasted updated 3/11/2023.





Lecture 17

In this lecture we will study free products of groups, a construction that is important
in the study of the fundamental group of various spaces.

Consider for example the figure-eight

b a

Definition 17.1. Let {(Xα, xα)}α be a collection of pointed topological spaces. The
wedge sum of this collection is defined as∨

α

(Xα, xα) =
⊔
α

Xα/(xα ∼ xβ),

that is, the disjoint union of the Xα with the points xα all identified.

Example 17.2. The figure-eight is S1 ∨ S1 (we omit the basepoints from the notation
when it is not important). The set bouquet is given by S1 ∨ S1 ∨ S1.

S1 ∨ S1 ∨ S1
(S1 ∨ S1) ∨ S1

Note that S1 ∨ S1 ∨ S1 is not the same as (S1 ∨ S1) ∨ S1! We should really be
more careful specifying base-points, though the figure makes clear what we intend by
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the second expression. (First we take the wedge sum of two copies of S1; then we
choose a new base point on the resulting figure 8 that is different from the base-points
used in the first operation, and a base-point on a third copy of S1, and construct a new
wedge sum of these two topological spaces.)

If we denote the two loops in the figure-eight S1∨S1 by a and b, and their inverses
at a and b, then intuitively, every loop can be written as a “word”, for example

aaabbbaaabb

This means: go around a 3 times, then around b, around b backwards and again around
b, etc. One can also see that a loop described like this can be “reduced” to a homotopic
loop: loops of the form bb are homotopic to the constant loop, so we can replace them
with e, and we can then remove the constant loops from the expression. It follows that
the loop above is homotopic to a reduced loop of the form

a3bab2 or a3ba−1b2

From this observation one can conjecture the form of the fundamental group of the
figure-eight: take two circles A = S1 and B = S1, joint them at a point x0, take
generators a and b of the fundamental groups of A and B (which are isomorphic to
Z), and describe the fundamental group of the figure-eight as the set of reduced words
on a and b, where the inverse of a word is the word obtained by changing the order of
letters and replacing every letter with its inverse (for example, the inverse of aba2b−3

is b3a−2b−1a−1), and taking as multiplication the concatenation of words, followed
by a reduction. We formalize this process next, using the concept of free product.

17.1 The free product of groups

Definition 17.3. Let {Gα}α be a collection of groups. A word on these groups is a
finite sequence g1 · · · gm of elements of the gi ∈ Gαi , and m is the length of the word.
The empty word is denoted by ϵ. The product of two words is the concatenation,

(g1 · · · gm) ∗ (h1 · · ·hn) = g1 · · · gmh1 · · ·hn.

Definition 17.4. A word g = g1 · · · gm is called reduced if gi ̸= eαi (the unit element
of the group Gαi) and for any two consecutive letters gi, gi+1, αi ̸= αi+1 (that is,
consecutive letters are not from the same group).

Given any word g on the groups {Gα}α, we can reduce it to a reduced word g′ as
follows.

(a) If gi = eαi , then remove it from g;
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(b) If αi = αi+1, then replace gigi+1 with the group element gi · gi+1 from Gαi .

As every such operation reduces the length of the word by one, the process has to
terminate. Moreover, a word is reduced if and only it can’t be reduced further by the
above two operations.

Remark 17.5. A word g can be reduced to a word g′ in different ways, depending on
the order in which the operations are applied. It is not yet obvious that every word
reduces to a unique reduced word.

On the set of reduced words we can define a multiplication as follows. Given
reduced words g = g1 . . . gm and h = h1 · · ·hn, construct a new reduced word g • h
by taking the concatenation g ∗ h, and then reducing the word recursively as follows:

g • h =


g ∗ h if gm, h1 not in same group,
g1 · · · gm−1(gm · h1)h2 · · ·hn if gm, h1 ∈ Gα and gm · h1 ̸= eα

g1 · · · gm−1 • h2 · · ·hn if gm · h1 = eα.

where ∗ is the concatenation of words.

This process eventually leads to a reduced word, denoted by g • h. Define the set

∗αGα = { reduced words on {Gα}α}

Theorem 17.6. The pair (∗αGα, •) is a group, called the free product of {Gα}α.
The unit element is the empy word ϵ = [], and the inverse of an element g1 · · · gm is
g−1
m · · · g−1

1 .

Checking that the inverse has the given form is straight-forward. Checking
associativity of the operation requires some work.

Proof. The verification that g • h is again a reduced word follows from the definition:
if the concatenation g ∗ h is not reduced, then it is replaced by a shorter word. As
words have finite length, this process has to terminate in a reduced word. That the
empty word is the unit element follows from the definition of the product •. That
the inverse element has the given form is obvious, but can be shown formally by
induction: if m = 1, then g1 •g−1

1 = ϵ (by the definition of the product) and assuming
the statement holds for m− 1, then

g1 · · · gm−1gm • g−1
m g−1

m−1 · · · g−1
1 = g1 · · · gm−1g

−1
m−1 · · · g−1

1 = ϵ.

To have a group structure, what remains is to show associativity, namely that for
reduced words g, h, k we have

(g • h) • k = g • (h • k).
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To prove this, set W = ∗αGα for the set of reduced words, and consider the group
of bijections Sym(W ). We will “embed” W into Sym(W ) via an injective map L
that is compatible with multiplication, i.e., L(g • h) = L(g) ◦L(h), and from this the
associativity in Sym(W ) will naturally lead to the associativity of the product • in W .

To start with, for every element g ∈ Gα we have a map Lg, the left multiplication,
such that Lg(h) = g • h for a word h ∈ W . If g1, g2 ∈ Gα and h = h1 . . . hm, then
one easily verifies that

Lg1 ◦ Lg2 = Lg1g2 , (17.1)

and hence that Lg−1 = L−1
g , so that Lg ∈ Sym(W ). For any word g = g1 · · · gm, the

map

L : W 7→ Sym(W )

g 7→ Lg1 ◦ · · · ◦ Lgm =: Lg1···gm

is injective, since for any g ∈ W , Lg(ϵ) = g, hence if g ̸= h in W , Lg ̸= Lh in
Sym(W ).

Note that, by (17.1), the composition Lg ◦Lh obeys the same rules as the product
•: if g = g1 · · · gm and h = h1 · · ·hn are reduced words, then

Lg◦Lh =


Lg∗h if g1, hm not in same group,
Lg1 ◦ · · · ◦ Lgm−1 ◦ Lgmh1 ◦ L2 ◦ · · · ◦ Ln if gm, h1 ∈ Gα and gmh1 ̸= eα

Lg1 ◦ · · · ◦ Lgm−1 ◦ Lh2 ◦ · · · ◦ Ln if gm · h1 = eα.

From this it follows that Lg•h = Lg ◦ Lh.

The associativity now follows from

L(g•h)•k = Lg•h ◦ Lk

= (Lg ◦ Lh) ◦ Lk

= Lg ◦ (Lh ◦ Lk)

= Lg ◦ Lh•k

= Lg•(h•k).

By the injectivity of L, (g • h) • k = g • (h • k).

A consequence of the associativity is that the order of reduction does not affect
the end result: every word reduces to a unique reduced form.

Example 17.7. Consider two copies of the group Z2 = Z/(2Z), with generators
a and b, respectively. Since a2 = e and b2 = e, all the reduced words consist of
alternating sequences of a and b, for example ababab or babab. The inverse of ab is
ba, and therefore the set of words of even length forms a cyclic subgroup G ∼= Z
generated by ab. If H ∼= Z2 is the subgroup generated by a, then Z2 ∗Z2 = GH; that
is, Z2 ∗ Z2

∼= Z ⋊ Z2, the semi-direct product of these two subgroups.
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Lecture 18

Note that every group Gα is a subgroup of ∗αGα, via the inclusion that maps g to the
word consisting only of g for g ̸= e, and e to the empty word. Let

ια : Gα ↪→ ∗αGα

denote this inclusion. The free product of a collection of groups {Gα}α satisfies the
following universal property.

Lemma 18.1. Let {φα}α be a collection of group homomorphisms φα : Gα → G.
Then there exists a unique map

∗αφα : ∗α Gα → G

such that (∗αφα) ◦ ια = φα.

Proof. Define
(∗αφα)(g1 · · · gm) = φα1(g1) · · ·φαm(gm), (18.1)

where we assumed that gi ∈ Gαi . This clearly satisfies the property ∗αφα ◦ ια = φα.
Moreover, since every φα is a group homomorphism, for gi, gi+1 ∈ Gα we get
φα(gi)φα(gi+1) = φα(gigi+1) and φ(eα) = e, so that ∗αφα is compatible with the
operations bringing a word into reduced form. Therefore, ∗αφα(g •h) = φα(g)φα(h)
and we have a group homomorphism. The requirement that the restriction to the
Gα satisfies ∗αφα ◦ ια = φα leaves one with no other choice than to define the
homomorphism as in 18.1.

18.1 The Seifert-van Kampen Theorem

We now apply the free product to topology. The goal is to reduce the computation of
the fundamental group of an open cover to the fundamental groups of the individual
sets in the cover.

Let X =
⋃

αAα be an open cover and denote the inclusion maps by ια : Aα ↪→ X .
Assume that x0 ∈

⋂
αAα. The inclusion maps induce maps

(ια)∗ : π1(Aα, x0) → π1(X,x0)
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of the fundamental groups with base x0. By Lemma 18.1, these maps induce a map

Φ = ∗α(ια)∗ : ∗α π1(Aα, x0) → π1(X,x0),

and these maps are compatible with the inclusion iα : π1(Aα, x0) ↪→ ∗απ1(Aα, x0),
in that ∗α(ια)∗ ◦ iα = (ια)∗.

It is relatively easy to show that if the pairwise intersections Aα ∩ Aβ are path-
connected, then the induced map Φ is surjective. In general, however, it will not be
injective: the reason is that loops in Aα∩Aβ are accounted for twice in ∗απ1(Aα, x0),
once as an element of π1(Aα, x0) and once as an element of π1(Aβ, x0). To remedy
this, we have to factor such loops out, and for this we need to study the inclusion

ιαβ : Aα ∩Aβ → Aα,

with the induced maps (ιαβ)∗ of fundamental groups. The whole setup is summarised
in the following “Seifert-van Kampen” commutative diagram:

π1(Aα, x0)

π1(Aα ∩Aβ, x0) ∗απ1(Aα, x0) π1(X,x0)

π1(Aβ, x0)

(ια)∗

(ιαβ)∗

(ιβα)∗

Φ

(ιβ)∗

(18.1)

Note that every ω ∈ π1(Aα∩Aβ, x0) is represented in ∗απ1(Aα, x0) as (ιαβ)∗(ω),
and as (ιβα)∗(ω). Define the set

Uαβ = {(ιαβ)∗(ω)(ιβα)∗(ω)−1 : ω ∈ π1(Aα ∩Aβ, x0)},

and let U be the union of all the Uαβ . Now let N be the normal closure of U , i.e.,
the smallest normal subgroup of ∗απ1(Aα, x0) containing U . Recall that a subgroup
H ⊂ G is called normal if it is closed under conjugation: gHg−1 = H for g ∈ G.
We can now formulate the Seifert-van Kampen Theorem.

Theorem 18.2. (Seifert-van Kampen) Let X =
⋃

αAα be a cover with open sets and
assume x0 ∈

⋂
Aα. Then:

(I) If for all α, β, Aα ∩Aβ is path-connected, then the map

Φ = ∗α(ια)∗ : ∗α π1(Aα, x0) → π1(X,x0)

is surjective.
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(II) If in addition for every α, β, γ the intersection Aα∩Aβ∩Aγ is path-connected,
then kerΦ = N , and hence

π1(X,x0) ∼= ∗απ1(Aα, x0)/N.

Example 18.3. Consider the sphere Sn and the cover U1, U2 consisting of the open
sets by removing the north and the south pole, respectively. The intersection U1 ∩ U2

is path-connected, so we have a surjective map

Φ: π1(U1, x0) ∗ π1(U2, x0) → π1(S
n, x0).

Since U1 and U2 are contractible, the fundamental groups are the trivial group, and it
follows that π1(Sn, x0) is also the group with one element. The argument does not
extend to S1, since U1 ∩ U2 is disconnected.

Example 18.4. Let X =
∨

αXα =
⊔

αXα/(xα ∼ xβ) be the wedge product of
pointed topological spaces (Xα, xα). Assume that for every α there exists an open
neighbourhood Uα of xα in Xα that is contractible, i.e., deformation retracts to xα. For
every α, define Aα = Xα ∨∨β ̸=α Uβ . Every Aα is an open set in X and x ∈ ⋂αAα,
where x = [xα] is the point at which the Xα are “glued together” (formally, the
equivalence class containing the base points xα). The intersection of any two distinct
Aα is the set

∨
α Uα, which deformation retracts to x. 3 The fundamental groups of

the intersections Aα ∩ Aβ is thus the trivial group, and by the Seifert-van Kampen
Theorem, it follows that the fundamental group of X is isomorphic to the free product
of the fundamental groups of the Xα:

π1

(∨
α

Xα, x

)
∼= ∗απ1(Xα, xα).

In particular, the fundamental group of the figure-eight, S1 ∨ S1, is isomorphic to the
free group generated by two elements a and b.

Before proving this theorem, we discuss a bit what it means. Any collection of
loops [γi] ∈ π1(Aαi , x0) gives rise to a loop (ιαi)∗([γi]) = [ιαi(γi)] in π1(X,x0),
and omitting the inclusion map we can simply denote it by [γi] ∈ π1(X,x0). The
induced map from the free product then looks as follows:

Φ: ∗α π1(Aα, x0) → π1(X,x0)

[γ1] · · · [γm] 7→ (ια1)∗([γ1]) · · · (ιαm)∗([γm]) = [γ1 ∗ · · · ∗ γm],

3This is not as obvious: it is not a priori clear that a homotopy in the disjoint union
⊔

Uα implies a
homotopy in the quotient.
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where in the last line we consider γi as a loop in X . Thus for the first part, the
surjectivity, we need to derive that every loop in X based at x0 “factors” as a concat-
enation of loops γ1, . . . , γm, with each of these in one Aα. This is reminiscent of the
derivation of the fundamental group of Sn for n ≥ 2.

The fact that this map is not injective has to do with the fact that such a factorization
is not unique: if γ is a loop in Aα ∩ Aβ , then it is represented in π1(Aα, x0) as
(ιαβ)([γ]), and in π1(Aβ, x0) as (ιβα([γ]). Each of these can appear as a letter in a
word in ∗απ1(Aα, x0), and replacing one with the other in this word will not change
the image of the word under Φ: the quotient (ιαβ)([γ])(ιβα)([γ])−1 is therefore in the
kernel of Φ. The second part of the Seifert-van Kampen Theorem thus tells us that
“factoring out” this kernel gives an isomorphism.

Example 18.5. Let X = Aα ∪Aβ and consider the setting of (18.1). Take X = R2,
Aα = X − {(1, 0)}, Aβ = X − {(−1, 0)} and x0 = (0, 0) ∈ Aα ∩ Aβ . Let
ω = [γ] ∈ π1(Aα ∩Aβ, x0) be a loop that winds around (1, 0).

γ

The loop γ gives rise to different elements in each of the groups considered:

• Aα ∩ Aβ ≃ S1 ∨ S1 and the fundamental group π1(Aα ∩ Aβ, x0) is the free
group on two generators a and b, with [γ] = a one of them;

• Aα ≃ S1, and (ιαβ)∗([γ]) is a generator of π1(Aα, x0) ∼= Z;

• Aβ ≃ S1, but (ιβα)∗([γ]) = e, the constant loop in π1(Aβ, x0);

• Aα ∪Aβ = R2 and the image of γ under both (ια)∗ ◦ (ιαβ)∗ and (ιβ)∗ ◦ (ιβα)∗
is the unit element in the trivial group π1(R2, x0).

• In π1(Aα, x0) ∗ π1(Aβ, x0), the concatenation of elements of π1(Aα, x0) with
elements of π1(Aβ, x0) does not reduce, unless at least one of these is the unit
element. In our case:

(ιαβ)∗([γ]) • (ιβα)∗([γ])−1 = (ιαβ)∗([γ])eβ = (ιαβ)∗([γ]).

Note that even if the image of [γ] in π1(Aα, x0) and in π1(Aβ, x0) “looks the same”,
we could still not cancel out concatenations of such elements in the free product
π1(Aα, x0) ∗ π1(Aβ, x0), because as subgroups of this free product, these groups
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have only the empty word in common. In the free product, one can only concatenate
elements from different groups, combining adjacent elements only if they come from
the same group.

Last updated 3/11/2023.





Lecture 19

We first discuss the proof of part I of the Seifert-van Kampen theorem (Theorem 18.2,
repeated below as Theorem 19.1).

19.1 The proof of the Seifert-van Kampen Theorem I

Recall, we let X =
⋃

αAα be an open cover and denote by ια : Aα ↪→ X and
ιαβ : Aα ∩Aβ ↪→ Aα the inclusion maps. Assume that x0 ∈

⋂
αAα. Then the inclu-

sion maps induce maps between fundamental groups, as illustrated in the following
commutative diagram:

π1(Aα, x0)

π1(Aα ∩Aβ, x0) ∗απ1(Aα, x0) π1(X,x0)

π1(Aβ, x0)

(ια)∗

(ιαβ)∗

(ιβα)∗

Φ

(ιβ)∗

Explicitly, each element of ∗απ1(Aα, x0) is a reduced word [γ1] · · · [γm], with
[γi] ∈ π1(Aαi , x0), no γi the trivial loop, and αi ̸= αi+1 for 1 ≤ i < m. The induced
map Φ is defined by

Φ([γ1] · · · [γm]) = (ια1)∗([γ1]) • · · · • (ιαm)∗([γm]) = [γ1 ∗ · · · ∗ γm],

where in the last line we consider γi as a loop in X (formally, ιαi ◦ γi). Recall that
the subgroup N ≤ ∗απ1(Aα, x0) was defined as the normal subgroup generated by
elements of the form (ιαβ)∗([ω])(ιβα)∗([ω])

−1.

Theorem 19.1. (Seifert-van Kampen) Let X =
⋃

αAα be a cover with open sets and
assume x0 ∈

⋂
Aα. Then:
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(I) If for all α, β, Aα ∩Aβ is path-connected, then the map

Φ = ∗α(ια)∗ : ∗α π1(Aα, x0) → π1(X,x0)

is surjective.

(II) If in addition for every α, β, γ the intersection Aα∩Aβ∩Aγ is path-connected,
then kerΦ = N , and hence

π1(X,x0) ∼= ∗απ1(Aα, x0)/N.

The first part is a consequence of the following lemma, which was already used in
the derivation of the fundamental group of the sphere Sn for n ≥ 2.

Lemma 19.2. Let X =
⋃

αAα be an open cover of a topological space, assume that
Aα ∩Aβ is path connected for all α, β and that x0 ∈

⋂
Aα. Then every loop γ in X

factors as
[γ] = [γ1] • · · · • [γm],

with γi a loop in Aαi .

Proof. Let γ : I → X be given, and consider the open cover I =
⋃

α γ
−1(Aα). Each

of the γ−1(Aα) is the union of open intervals, giving a cover of I by open intervals.
By the Lebesgue Covering Lemma, there is a sequence

0 = t0 < t1 < · · · < tm = 1

such that γ([ti−1, ti]) ⊂ Aαi for some Aαi and 1 ≤ i ≤ m. In particular, for every
end-point ti we have that γ(ti) ∈ Aαi ∩ Aαi+1 for 1 ≤ i < m. It follows that for
every i ∈ {1, . . . ,m− 1} there exists a path βi from γ(ti) to x0 in Aαi ∩Aαi+1 , with
inverse path βi. We can then consider the modified path

γ̃ = γ1 ∗ · · · ∗ γm,

where the γi are loops based at x0, defined as

γi =


γ|[t0,t1] ∗ β1 if i = 1

βi−1 ∗ γ|[ti−1,ti] ∗ βi if i ∈ {2, . . . ,m− 1}
βm−1 ∗ γ[tm−1,tm] if i = m

Since the combinations βi ∗ βi are the trivial loop, we have γ
∂≃ γ̃, and hence

[γ] = [γ̃] = [γ1] • · · · • [γm].

Proof of Theorem 19.1 (I). For part (I), let [γ] ∈ π1(X,x0). By Lemma 19.2, we can
write [γ] = [γ1] • · · · • [γm], with each γi a loop in one specific Aαi . Moreover, we
can assume that every γi is not the trivial loop, and that αi ̸= αi+1 for 1 ≤ i < m− 1



19.1. THE PROOF OF THE SEIFERT-VAN KAMPEN THEOREM I 85

(otherwise we can just join γi and γi+1 to one loop). This means that when considering
[γi] as elements of π1(Aαi , x0), the word

[γ1] · · · [γm]

is a reduced word in ∗απ1(Aα, x0). By definition,

Φ([γ1] · · · [γm]) = (ια1)∗([γ1]) • · · · • (ιαm)∗([γm]) = [γ1 ∗ · · · ∗ γm] = [γ],

which shows that the map is surjective provided the pairwise intersections are path-
connected.
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Lecture 20

In this lecture, we prove part II of the Seifert-van Kampen theorem (Theorem 18.2 =
Theorem 19.1, and repeated again as Theorem 20.1 below).

20.1 The proof of the Seifert-van Kampen Theorem II

Recall again that we let X =
⋃

αAα be an open cover and denote by ια : Aα ↪→ X
and ιαβ : Aα ∩ Aβ ↪→ Aα the inclusion maps. Assume that x0 ∈ ⋂αAα. Then
the inclusion maps induce maps between fundamental groups, as illustrated in the
following commutative diagram:

π1(Aα, x0)

π1(Aα ∩Aβ, x0) ∗απ1(Aα, x0) π1(X,x0)

π1(Aβ, x0)

(ια)∗

(ιαβ)∗

(ιβα)∗

Φ

(ιβ)∗

Explicitly, each element of ∗απ1(Aα, x0) is a reduced word [γ1] · · · [γm], with
[γi] ∈ π1(Aαi , x0), no γi the trivial loop, and αi ̸= αi+1 for 1 ≤ i < m. The induced
map Φ is defined by

Φ([γ1] · · · [γm]) = (ια1)∗([γ1]) • · · · • (ιαm)∗([γm]) = [γ1 ∗ · · · ∗ γm],

where in the last line we consider γi as a loop in X (formally, ιαi ◦ γi). Recall that
the subgroup N ≤ ∗απ1(Aα, x0) was defined as the normal subgroup generated by
elements of the form (ιαβ)∗([ω])(ιβα)∗([ω])

−1.

Theorem 20.1. (Seifert-van Kampen) Let X =
⋃

αAα be a cover with open sets and
assume x0 ∈

⋂
Aα. Then:
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(I) If for all α, β, Aα ∩Aβ is path-connected, then the map

Φ = ∗α(ια)∗ : ∗α π1(Aα, x0) → π1(X,x0)

is surjective.

(II) If in addition for every α, β, γ the intersection Aα∩Aβ∩Aγ is path-connected,
then kerΦ = N , and hence

π1(X,x0) ∼= ∗απ1(Aα, x0)/N.

We outline a the proof of Part (II) of the Seifert-van Kampen Theorem. This
follows from another lemma on the composition of loops. Assume again that X =⋃

αAα is an open cover with x0 ∈ ⋂αAα. Let [f ] ∈ π1(X,x0). A factorization of
[f ] is a sequence

[f1] · · · [fm]

such that [fi] ∈ π1(Aαi , x0) and f
∂≃ f1 ∗ · · · ∗ fm. If αi ̸= αi+1 for 1 ≤ i < m

and [fi] ̸= eαi for all i, then such a factorization simply gives a reduced word in
∗απ1(Aα, x0). We consider the following operations on such words:

• Reduction/expansion: If [fi], [fi+1] ∈ π1(Aα, x0), then

[f1] · · · [fi][fi+1] · · · [fm] ↔ [f1] · · · [fi ∗ fi+1] · · · [fm]

• Exchange: If [fi] = (ιαβ)∗([ω]) and [gi] = (ιβα)∗([ω]) for [ω] ∈ π1(Aα ∩
Aβ, x0), then

[f1] · · · [fi] · · · [fm] ↔ [f1] · · · [gi] · · · [fm]

We call two factorization equivalent if they can be related a sequence of reductions,
expansions or exchanges. Note that in contrast to the reduction of a word, we allow to
exchange elements of π1(Aα, x0) with element from π1(Aβ, x0) that arise from the
same element in π1(Aα ∩Aβ, x0).

Lemma 20.2. Any two factorizations [f1] · · · [fk] and [f ′
1] · · · [f ′

ℓ] of [f ] ∈ π1(X,x0)
are equivalent.

Proof. Since f
∂≃ f1 ∗ · · · ∗ fk and f

∂≃ f ′
1 ∗ · · · ∗ f ′

ℓ, there exists a homotopy
G : I × I → X with g0 = f1 ∗ · · · ∗ fk and g1 = f ′

1 ∗ · · · ∗ f ′
ℓ. Using an approach

similar to the proof of Part (I), we aim to decompose the homotopy by finding
intermediate paths γ0, . . . , γN : I → X such that γ0 = g0, γN = g1, and each γi has
a factorization in such a way that the factorization of γi+1 arises from that of γi by a
reduction, expansion, or exchange operation.
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(1) We first decompose I × I into rectangles. Consider the open cover I × I ⊂⋃
αG

−1(Aα). By the product topology on the square, every open set G−1(Aα) can
be written as the union of open rectangles, and since I×I is compact, we have finitely
many such rectangles. The closure of these rectangles covers I×I , and after a common
refinement (or using the Lebesgue Covering Lemma, Section 6 in Week 3-4 Additional
Material), we can assume that we have a decomposition 0 = s0 < s1 < · · · < sm = 1
and 0 = t0 < t1 < · · · < tn = 1 such that for each such rectangle [si, si+1]×[tj , tj+1]
there exists an α with G([si, si+1]× [tj , tj+1]) ⊂ Aα. Since G−1(Aα) is open, there
exists an ϵ > 0 such that the small horizontal displacement [si+ϵ, si+1+ϵ]×[tj , tj+1]
remains in G−1(Aα). By shifting the rectangles in this way to the left or right, we can
ensure that no point lies in more than three rectangles (see Figure 20.8).

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 20.8: The subdivision of I × I and the path γ6

(2) We next define paths along the rectangles. Let γi be the path from the
left boundary to the right boundary that separates the rectangles R1, . . . , Ri from
Ri+1, . . . , RN . In particular, γ0 is the lower boundary and γN the upper boundary,
and γi and γi+1 only differ on the boundary of Ri+1 (γi goes under it, and γi+1 above
it). The homotopy from g0 to g1 gives a homotopy from γi to γi+1, by “pushing γi
across Ri+1”, i.e., applying G to a homotopy from the left-and-lower boundary of
Ri+1 to the right-and-upper boundary.

(3) We next associate a loop to every edge of a rectangle. Since every ver-
tex v is in the intersection of at most three rectangles, it has the property that
G(v) ∈ Aα ∩Aβ ∩Aγ for some α, β, γ. By the assumption of path-connectedness,
there exists a path hv from G(v) to x0 in Aα ∩ Aβ ∩ Aγ . If Ri and Ri+1 are
adjacent rectangles with G(Ri) ⊂ Aα and G(Ri+1) ⊂ Aβ , then their common bound-
ary µ defines a path G ◦ µ ∈ Aα ∩ Aβ with endpoints v and w, and also a loop
hv ∗ (G ◦ µ) ∗ hw ⊂ Aα ∩Aβ . If follows that every γi factors as a product of loops.
Note however that the factorizations of γi and γi+1 have common loops ω, but that
these give rise to different elements [ω], depending on which fundamental group these
classes are taken in.

(4) We can now move from a factorization of γi to one of γi+1 as follows. Let
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Ri Ri+1

γi+1

γi

[ω] ∈ π1(Aα, x0) be an element in the factorization of γi that arises from a loop that
also corresponds to a boundary of Ri+1. Replace this element with the corresponding
class in π1(Aβ, x0) (exchange operation). Then replace the loops corresponding to the
left and lower boundary with loops corresponding to the upper and right boundaries
(reduction, replacement by homotopic loop, and expansion).

(5) The “boundary cases” may need to be treated separately. Altogether, we see
that we can get from a factorization of g0 to a factorization of g1 by a sequence
of exchanges, reductions, and expansions, thus showing that homotopic loops are
equivalent in this sense.

Proof of Seifert-van Kampen, Part (II). Let w = [f1] · · · [fm] be a reduced word
in ∗απ1(Aα, x0). If [ω] ∈ π1(Aα ∩ Aβ, x0) and [fi] = (ιαβ)∗([ω]) and [gi] =
(ιβα)∗([ω]), then replacing [fi] with [gi] (performing an exchange operation, and
possibly reducing if necessary) gives a word v such that w • v−1 ∈ N . The same
is true if the word is expanded before the exchange and reduced after it. Therefore,
if w = [f1] · · · [fk] and v = [f ′

1] · · · [f ′
ℓ] are two elements in ∗απ1(Aα, x0) that arise

from each other by exchanges, expansions and reductions, we have w • v−1 ∈ N .

If Φ(w) = [e], then e
∂≃ f1 ∗ · · · ∗ fk, so that w constitutes a factorization of e.

Moreover, this factorization is equivalent to the empty factorization ϵ in the sense that
they can be transformed into one another by a sequence of exchanges, expansions
and reductions. It follows that w ∈ N , and hence kerΦ ⊂ N . The other inclusion is
easy.

Last updated 3/11/2023.



Lecture 21

In this lecture we discuss a few applications of the Seifert-van Kampen Theorem. We
then introduce the notion of CW complex that allows us to describe topological spaces
more effectively.

Example 21.1. Let X =
∨

n∈NCn be the wedge product of pointed topological
spaces (Cn, x0 = (0, 0)), where each Cn is a circle centered at (1/n, 0) of radius 1/n
in R2. Each such circle is homeomorphic to S1. In Lecture 18 (Example 18.4) we
saw that

π1

(∨
n∈N

Cn, x0

)
∼= ∗απ1(S1, x0),

which is isomorphic to the free group generated by copies of Z. Using the fact that
products of countable sets are countable, and countable unions of countable sets are
countable, it can be shown that the fundamental group π1(X,x0) is countable.

Example 21.2. Consider now the “earring space” defined as

X =
⋃
n∈N

Cn,

with the subspace topology induced from R2.

One might think that this set is the same as an infinite wedge product of Ex-
ample 21.1, but we will see that this is not the case. To see this, consider, for each
n ∈ N, the retraction rn : X → Cn that maps all Ci, i ̸= n, to (0, 0) and is the identity
on Cn. This induces a sequence of surjective maps

(rn)∗ : π1(X,x0) → π1(Cn, x0) ∼= Z.
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The product of these maps gives rise to a surjective map

ρ : π1(X,x0) → Πn≥1Z,
[ω] 7→ ((r1)∗([ω]), (r2)∗([ω]), . . . ),

where we identified elements in π1(Cn, x0) with their image in Z. This map is
surjective, since for every sequence of integers {kn}n∈N we can construct a loop in
π1(X,x0) that wraps around Cn kn times in the time interval [1−1/n, 1−1/(n+1)]
and whose image is {kn}n∈N. Such a loop φ : I → X is clearly continuous in
each interval [1 − 1/n, 1 − 1/(n + 1)]. It is also continuous at 1, since every open
neighbourhood U of x0 ∈ X contains all but finitely many circles Cn, and hence its
preimage φ−1(U) is the complement of a finite union of closed sets, and as such is
open. The product Πn≥1Z is uncountable (we can represent every real number as
an infinite sequence of integers), so that π1(X,x0) also has to be uncountable. The
fundamental group of the wedge product of the Cn, however, is the free product of the
groups π1(Cn, x0). This is the set of all finite (reduced) words that can be assembled
from elements in the individual groups, and this set is countable (prove this!). The
fundamental group π1(X,x0) turns out to be rather complicated.

Exercise 21.3. Find where the construction of a surjection π1(X,x0) → Πn≥1Z in
Example 21.2 breaks down if we define X =

∨
n≥1Cn instead of taking the union.

Example 21.4. In some areas of topology, such as knot theory, one is interested
in the complement of certain sets in R3. Let S1 ⊂ R3. Then one can show that
X = R3 − S1 is homotopy equivalent to a wedge product S1 ∨ S2. The Seifert-van
Kamplen Theorem then implies that π1(X,x0) ∼= Z. If X = R3 − (A ∪B), where
A ∼= S1 and B ∼= S1 are two circles, then the fundamental group of X differs
depending on whether the circles are linked or not! For example, if the circles are
not linked, then one can show that X is homotopy equivalent to S2 ∨ S2 ∨ S1 ∨ S1,
and hence π1(X,x0) ∼= Z ∗ Z. If, on the other hand, the circles are linked, then X is
homotopy equivalent to S2 ∨ (S1 × S1), the wedge product of a sphere and a torus,
and hence Seifert-van Kampen implies that π1(X,x0) ∼= Z× Z.

To be able to compute with, and compare, common topological spaces more
effectively, we introduce the concept of a CW complex. CW complexes are topological
spaces that can be assembled from simpler spaces by “glueing” cells together. Many,
but not all, interesting topological spaces have the structure of a CW complex.

21.1 CW complexes

Definition 21.5. A CW complex is a topological space X that is built up inductively
as follows.

1. The zero-skeleton X0 is a discrete set;
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2. Given Xn−1, a collection of closed disks {Dn
α} with Dn

α
∼= Bn, and Sn−1

α =
∂Dn

α, with attaching maps

φα : S
n−1
α → Xn−1,

define
Xn = (Xn−1 ⊔

⊔
α

Dn
α)/ ∼,

where ∼ is the equivalence relation x ∼ φα(x) for all x ∈ Sn−1
α .

3. Define X =
⋃

nX
n, equipped with the weak topology: a set A ⊂ X is open

if and only if A ∩Xn is open in Xn for every n.

The disks Dn
α are called n-cells, and their interiors enα = Dn

α − Sn−1
α are the open

n-cells. The set Xn is called the n-skeleton of the CW complex. A CW complex is
called finite-dimensional if X = Xn for some n, and the largest n for which there
are cells in the complex is called the dimension of the complex. A CW complex is
called finite if it has only finitely many cells.

Example 21.6. A one-dimensional CW complex is called a (topological) graph. It
consists of X0 (the vertices), with X1 arising by attaching the endpoints of intervals
D1

α to the vertices.

a

b c

d e

Figure 21.9: A graph.

A graph need not be finite. We can take, for example, as nodes X0 = Z, as
edges copies of the unit interval I , and attaching maps φn defined by φn(0) = n and
φn(1) = n+ 1. The resulting CW complex is homeomorphic to R.

Exercise 21.7. Show that every connected graph is homotopic to a wedge of spheres
∨αS

1. [A previous version of these notes asked for homeomorphic rather than
homotopic - the stronger claim is of course false - try to find a simple counterexample.]

Example 21.8. We can fill in some of the closed areas of a graph, which gives rise
to a two-dimensional CW complex. Other examples are polyhedra (the cube, the
tetrahedron, etc.). The space Rn can be expressed as a CW complex in many different
ways. The CW structure of a topological space is clearly not unique.
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Example 21.9. The torus is an example of a two-dimensional CW complex. The
ingredients are: one point X0 = {x}, two line segments {I1, I2}, and one square D2

(homeomorphic to the ball B2).

Glue each of the line segments to the point by means of a map φi : ∂I → X0

(there is only one way of doing this).

⇒

We then attach the square to the resulting graph by a map φ : ∂D2 → X1, mapping
the upper and lower boundaries to one circle, and the left and right boundaries to the
other circle. This is often visualized by drawing the square and labelling the edges in
a way that indicates which edges are identified in which way:

a

a

b b ⇒
a b

Exercise 21.10. Show that the torus defined in this way is homeomorphic to T2 =
S1 × S1.

Exercise 21.11. Show that the sphere Sn is a CW complex with one 0-cell and one
n-cell.

Last updated 3/11/2023.



Lecture 22

Recall the definition of a CW complex. We will discuss a few interesting examples of
CW complexes and see how to compute the fundamental group using the Seifert-van
Kampen Theorem.

22.1 The Möbius strip and projective space

So far we have basic examples, such as graphs, the torus, and the sphere Sn. In
this section we will revisit the projective plane RP2, and show that it can be charac-
terized by glueing a disk to the boundary of a Möbius strip. We will then use this
characterization as an alternative way of computing the fundamental group of RP2.

Example 22.1. The Möbius strip M can be defined as I × I by identifying (0, x)
with (1, 1− x) for x ∈ I .

a a ⇒

a

Figure 22.10: The Möbius strip

There is one obvious CW complex structure on the Möbius strip: take 0 cells (the
end points of a), three 1-cells (the line segment a and the upper and lower boundaries
of the rectangle), and one 2-cell, a rectangle itself. This is not the only way to describe
the Möbius strip.

The Möbius strip has a circle at its centre, namely the image of I × {1/2} (since
(0, 1/2) ∼ (1, 1/2)). The Möbius strip deformation retracts to this circle by taking
the homotopy on the rectangle,

F̃ : (I × I)× I → I × I, ((x, y), t) 7→ (x, (1− t)(y − 1/2) + 1/2).
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Since 1 − [(1 − t)(y − 1/2) + 1/2] = (1 − t)(1 − y − 1/2) + 1/2, the homotopy
carries over to a homotopy in the quotient. It follows that π1(M) ∼= Z. The Möbius
strip also has only one circle at its boundary, the image of (I × {0}) × (I × {1})
under the quotient map.

Example 22.2. Real projective space RPn. Recall that

RPn = Sn/(x ∼ −x),

the n-sphere with antipodal points identified (equivalently: the set of lines, that is,
Rn+1 with x ∼ y if x = λy for some λ ∈ R). Let q : Sn → RPn, x 7→ [x], be
the quotient map. We can define a CW structure on RPn recursively as follows.
Consider the open set U0 = {[(x0, x1, . . . , xn)] : x0 ̸= 0}. The set RPn − U0 =
{[(0, x1, . . . , xn)]} is homeomorphic to RPn−1. Moreover, since q is a two-sheeted
covering map, and the preimage q−1(U0) consists of the disjoint union of the sets
{x0 > 0} and {x0 < 0}, each of which is the interior of an n-ball that maps
homeomorphically to U0, and hence U0

∼= en, an open disk. Setting Dn = {x0 ≥ 0}
and Sn−1 = ∂Dn = {(0, x1, . . . , xn)}, we get the two-fold covering

φ : Sn−1 → RPn−1

as attaching map (where we identified RPn−1 = RPn − U0), with RPn arising as

RPn−1 ⊔Dn/(x ∼ φ(x)).

We can continue this process recursively with RPn−1. As each step adds one open
n-cell to the construction, we get a characterization of real projective space as

RPn = {pt} ∪ e1 ∪ e2 ∪ · · · ∪ en,

with one open n-cell in each dimension.

In low dimensions, we have RP0 = {pt}, RP1 = RP0 ⊔ D1/(0 ∼ 1), which
characterizes RP1 as a circle. For RP2, we attach a 2-cell by taking a disk D2 and
attaching the boundary circle S1 to RP1 via the two fold covering S1 → RP1.

One way of thinking about RP2 is to take the closed upper hemisphere of a sphere
S2. Each point there corresponds to a a unique point in RP2, except at the boundary,
where we have to identify antipodal points. But this makes the boundary an RP1. One
can visualize the cell decomposition of RP2 as follows:
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p p

γ

γ

Figure 22.11: Cell decomposition of RP2.

The figure shows a 2-dimensional disk whose boundary disk is subdivided into
cells that are identified (the lines being identified along the arrow direction). [See also
Figure 26.3 and the explanation that follows it.]

Example 22.3. (RP2 meets the Möbius strip). Consider the cell decomposition of
RP2 as given in Figure 22.11, and let X be the space obtained by removing a closed
disk from the interior of RP2.

p p

γ

γ

Formally, we can describe X as

X = S1 × I/(x, 1) ∼ (−x, 1),

as S1 × I describes the annulus, and the identification simply identifies antipodal
points on one boundary of the annulus, but not on both. We claim that X ∼= M , the
Möbius strip. Visually, this can be seen by first “detaching” the annulus (keeping
track of where the identifications happen),
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p p

γ

γ

a1 a2 ⇒

γ

γ

a1 a2

a1 a2

and then “reattaching” along γ, where we flip the upper rectangle around and
rotate the lower rectangle by 180 degrees:

γ

γ

a1 a2

a1 a2

⇒
γa1 a2

a2 a1

If we denote the concatenation a = a1∗a2, then we get exactly the characterization
of Figure 22.10, with γ the circle at the centre. As a consequence of this example, we
see that we can obtain the projective plane by glueing a 2-cell D2 to the boundary of
a Möbius strip.

Exercise 22.4. Describe the homeomorphism X → M described above explicitly.

Given the above examples, we can compute the fundamental group of RP2 as
follows. Recall the characterization of of RP2 from Figure 22.11, and denote by e2

the interior of the disk. Consider a cover of RP2 as follows. Consider an open disk
B ⊂ e2 in RP2 and a closed disk C ⊂ B, and define A = RP2−C (see Figure 22.12).
Then RP2 = A ∪B.
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p p

γ

γ

ω

x0

Figure 22.12: An open cover of RP2

Fix a base point x0 ∈ A ∩B. Clearly, π1(B, x0) = 1, the trivial group, since B
is just an open disk. The intersection A ∩B is homotopic to a circle, represented by
a loop ω, so that π1(A ∩B, x0) = ⟨[ω]⟩ ∼= Z. The set A, in turn, is the interior of a
Möbius strip, as seen in Example 22.3, with γ representing the inner circle. As seen in
Example 22.1, A deformation retracts to γ (or, more precisely, to a circle homotopic
to γ but with basepoint x0, see the figure), so that π1(A, x0) ∼= ⟨[γ]⟩ ∼= Z.

Since the fundamental group π1(B, x0) is trivial, the free group π1(A, x0) ∗
π1(B, x0) is generated by [γ]. To get the fundamental group of RP2 using Seifert-van
Kampen, we have to factor out elements that are multiples of

(ιA∩B)∗([ω]),

where ιA∩B is the inclusion of A ∩B in A. We can think of ω as the outer circle of a
Möbius strip, and γ as the inner circle. Going around ω once corresponds to going
around γ twice, so that

(ιA∩B)∗([ω]) = [γ]2.

By the Seifert-van Kampen Theorem,

π1(RP2, x0) ∼= ⟨[γ]⟩/⟨[γ]2⟩ ∼= Z/2Z.

Last updated 3/11/2023.





Lecture 23

23.1 Properties of CW complexes

Recall that we denoted closed cells of dimension n by Dn
α, their boundary by Sn−1

α ,
and enα = Dn

α − Sn−1
α the open cell. To simplify notation, we will call the 0-cells, the

points in X0, e0α.

Given a CW complex X , for every closed cell Dn
α we have an inclusion map into

the disjoint union of Xn−1 with n-cells, that gives rise to a map into Xn ⊂ X by
applying the quotient map q to it,

Xn−1 ⊔⊔αD
n
α

Dn
α Xn X

qι

where Xn arises by identifying x ∼ φn
α(x) for points x ∈ Sn−1

α . This gives rise to a
characteristic map

Φn
α : D

n
α → X,

and the restriction of Φn
α to enα is a homeomorphism to its image, also denoted by enα.

We can therefore characterize a CW complex as disjoint union of cells enα.

Exercise 23.1. Show that the weak topology on X can be characterized by saying
that A ⊂ X is closed if and only if for each n, α, (Φn

α)
−1(A) is closed in Dn

α.

Definition 23.2. A subcomplex of a CW complex X is a space A that is a union of
cells eαn in X such that for every cell it also contains its closure.

We now study some important properties of CW complexes.

Proposition 23.3. A compact topological subspace of a CW complex X is contained
in a finite subcomplex.

Proof. Let C ⊂ X be a compact set, and assume that C intersects infinitely many
cells enα. Then there exists a sequence of points S = {x1, x2, . . . } ⊂ C so that each
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xi lies in a different cell. Using the characterization of the weak topology via the
characteristic map one can show that S is closed in X . Moreover, as every subset
of S is closed, the topology on S is the discrete topology. As a closed subset of C,
S is compact, but any compact set in the discrete topology is finite, so S is finite.
It follows that C is contained in finitely many cells. It remains to show that that a
finite union of cells is contained in a finite subcomplex. This can be seen by induction
on n. The statement is clearly true for n = 0, since a finite union of 0-cells is just
a finite set of points. If n ≥ 1, then for every enα, the image of the attaching map
φn
α : S

n−1
α → Xn−1 is compact, hence contained in finite union of cells of dimension

at most n− 1, which by induction hypothesis are contained in a finite subcomplex A.
Attaching Dn

α to this subcomplex gives a finite complex containing enα.

The letter ‘C’ in CW complex means closure finiteness: the closure of every open
cell meets only finitely many other cells. The ‘W’ stands for weak topology.

Definition 23.4. A topological space is called normal if any two disjoint closed
subsets have disjoint open neighbourhoods. A topological spaces is called a Hausdorff
space, if any two distinct points have disjoint open neighbourhoods.

Proposition 23.5. A CW complex is normal (and hence Hausdorff).

Definition 23.6. A topological space is called locally contractible if for every x and
open neighbourhood U with x ∈ U ⊂ X there exists an open set V with x ∈ V ⊂ U
such that V is contractible.

Example 23.7. Any open subset of Rn is contractible.

Example 23.8. Consider the Warsaw circle, defined as

W = {(x, sin(1/x) : x ∈ (0, 1]} ∪ ({0} × [−1, 1]) ∪ L,

where L is a curve jointing the first to sets in the union, with the subspace topology.

The Warsaw circle is not locally contractible. If it were, then it would be locally
path connected (if V is a contractible neighbourhood of a point x, then any two points
in V can be connected by a path via the homotopy between the identity on V and the
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retraction to a point in V ). It is, however, not locally path connected. To see this, take
any point on the piece {0} × I , say x = (0, 0). Then every open neighbourhood of x
of diameter less than 1 has infinitely many disconnected points. More precisely, if
V = {y ∈ W : ∥y∥ < ε} for ε < 1, then the points (1/nπ, 0) for integers n > 1/επ
are all in V , but are not connected by a path. Note however that W is path-connected!

Proposition 23.9. CW complexes are locally contractible.

Corollary 23.10. The Warsaw circle is not a CW complex.

Last updated 3/11/2023. Corrections please to j.smillie@warwick.ac.uk





Lecture 24

24.1 More Properties of CW complexes

Proposition 24.1. If A ⊂ X is a subcomplex of a CW complex X , then there exists
an open set U ⊂ X with A ⊂ U , and such that U deformation retracts to A.

An important application is that we can apply the Seifert-van Kampen Theorem
to decompositions X = A ∪B into subcomplexes A and B such that A ∩B is again
a subcomplex. For example, if A ⊂ U and B ⊂ V , then π1(U, x0) = π1(A, x0),
π1(V, x0) = π1(B, x0), and π1(U ∩ V, x0) = π1(A ∩B, x0).

In the following, we will derive an important property of the fundamental group
of CW complexes, namely that it depends only on the 2-skeleton! Whilst we could
derive this as a consequence of Proposition 24.1, we instead outline a proof from
scratch, based on the Seifert-van Kampen Theorem.

Theorem 24.2. For a path-connected CW-complex X with x0 ∈ X2, the inclusion
X2 ↪→ X induces an isomorphism of fundamental groups π1(X2, x0) ∼= π1(X,x0).

The statement can be interpreted intuitively as saying that by studying loops, we
cannot distinguish higher-dimensional topological properties. Recall, for examples,
the fundamental groups of the spheres and of projective spaces:

π1(RPn) =

{
Z for n = 1,

Z/2Z for n ≥ 2
, π1(S

n) =

{
Z for n = 1,

1 for n ≥ 2

That is, the fundamental group does not give us more information on higher-
dimensional spheres other than that any loop on it is null-homotopic. There are various
ways to get higher-dimensional information. One could study higher-dimensional
homotopy groups, arising by considering maps Sn → X instead of loops (which
can be considered as maps S1 → X). A different approach is via homology and
cohomology, which is the subject of more advanced courses in algebraic topology.
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We begin with an observation. Note that if X is a topological space and φα : S
1
α →

X is a map that attaches a 2-cell D2
α to X , then φα defines a loop fα : I → X on

X based at φα(1) by setting fα(t) = φα(exp(2πit)). While this loop may not be
null-homotopic in X , it is null-homotopic in

Y := X ⊔D2
α/(x ∼ φα(x)),

after attaching the cell. If X is path-connected, we can choose a basepoint x0 ∈ X
and a path h : I → X with hα(0) = x0, hα(1) = φα(1), and thus get a loop
γα = hα ∗ fα ∗ hα. In this way, every attaching map gives rise to a loop in Y . The
inclusion X ↪→ Y gives rise to a map of fundamental groups π1(X,x0) → π1(Y, y0),
and the class of every such loop, [γα], is contained in the kernel of this map.

Proposition 24.3. Let X be a path-connected topological space and for fixed n, let
φn
α : S

n−1
α → X be a collection of attaching maps, and set

Y = X ⊔
⊔
α

Dn
α/(x ∼ φn

α(x)).

Let x0 ∈ X be a point. Then

• If n = 2, then
π1(Y, x0) ∼= π1(X,x0)/N,

where N is the normal subgroup generated by [γα], as defined above.

• If n > 2, then
π1(Y, x0) ∼= π1(X,x0).

Proof. (Sketch) The proof is an application of the Seifert-van Kampen Theorem to a
space Ỹ that deformation retracts to Y . Specifically, for each attached cell Dn

α consider
a square Sα = I×I , a small path segment pα : I → Dn

α with pα(0) = hα(1) ∈ Sn−1
α

and pα(1) ∈ enα, and a map

µα : (I × {0}) ∪ ({1} × I) → Y, (x, 0) 7→ hα(x), (1, y) 7→ pα(y).

Define Ỹ = Y ⊔⊔Sα/ ∼, where the relation ∼ is defined by setting x ∼ µα(x) if
x is in the lower-and-right boundary of Sα, and (0, y) ∼ (0, y′) if (0, y) ∈ Sα and
(0, y′) ∈ Sβ . The effect of this operation is to “lengthen” the paths from the base-point
x0 to the cells by turning them into stripes. The deformation retract of the rectangle
to the lower boundary I × {0} induces a deformation retract of Ỹ to Y .

Choose points yα in each cell enα (and such that they do not lie on the path pα).
We now define the following subsets of Ỹ :

• A = Ỹ −⋃α{yα};
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• B = Ỹ −X .

Since B consists of the cells enα with the attached paths, it is contractible and we have
π1(B, x0) = 1. By the homotopy that retracts the interior of a ball Bn without a point
to its boundary, we see that A ≃ X . It follows that

π1(Y, x0) ∼= π1(Ỹ , x0) ∼= π1(X,x0)/N,

where N is the normal subgroup generated by the images in π1(A, x0) of elements of
π1(A∩B, x0). If n > 2, then the cells Dn

α without a point yα are still contractible, so
A ∩B is contractible and π1(A ∩B, x0) = 1, from which the claim follows in this
case. In the case n = 2, one gets a loop for every attached cell D2

α that is homotopic
to a loop γα (after a basepoint change, where the original basepoint x0 ∈ X is moved
up the line segment to a basepoint that is in A ∩B).

Proof. (of Theorem 24.2) If X is a finite-dimensional CW complex, then the statement
follows from proposition 24.3 by induction: X = Xn is constructed from Xn−1 by
attaching n-cells, and Proposition 24.3 tells us that this process does not alter the
fundamental group if n > 2. If X is not finite-dimensional, we can still apply the
proposition by noting that a loop γ in X is a compact subset, and therefore contained
in a finite subcomplex in some Xn. Since π1(X

2, x0) ∼= π1(X
n, x0), every such

loop is homotopic to a loop in X2, and therefore the map π1(X
2, x0) → π1(X,x0)

is surjective. To see that this is injective, let γ be a loop in X2 that is homotopic,
in X , to the constant loop via a homotopy F : I × I → X . As the image of F in
X is compact, it is contained in a finite subcomplex Xn, and we can assume that
n > 2. If follows that [γ] = 0 in π1(X

n, x0), and we can use the injectivity of
π1(X

2, x0) → π1(X
n, x0) to conclude that γ is null-homotopic in X2.

Note that we can get this result as a consequence of Proposition 24.1. For this,
consider X = Xn, A = Xn−1 and B =

⋃
αΦα(D

n
α). Then A∩B =

⋃
αΦα(S

n−1
α ).

Applying the Seifert-van Kampen Theorem to this CW decomposition, and using the
fact that π1(B) = 1, we get

π1(X
n) ∼= π1(X

n−1)/N,

with N the normal subgroup generated by loops coming from A ∩B. Any such loop
is in Φα(S

n−1
α ), and therefore null-homotopic if n > 2, but not necessarily if n = 2.
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Lecture 25

25.1 Generators and relations

In this lecture we introduce a way of describing groups using generators and relations,
and we explain how to interpret generators and relations in the case of the fundamental
group of a topological space. We begin by illustrating an example: the torus. Recall
that the torus, T2 = S1 × S1, has fundamental group isomorphic to Z × Z. This
was derived by noting that the fundamental group of a product is the product of
fundamental groups. We now discuss a different way of describing this fundamental
group. The starting point is the characterization of the torus as a rectangle with
opposite sides identified by gluing them together.

a

a

b b ⇒
a b

In this characterization, the torus is defined as

T2 = I × I/ ∼,

with (s, 0) ∼ (s, 1) and (0, t) ∼ (1, t). Let p = (1/2, 1/2) be the centre of I × I and
consider the open sets

Ã = {x ∈ I × I : ∥x− p∥ > 1/3}
B̃ = {x ∈ I × I : ∥x− p∥ < 2/3}.

Let q : I × I → T2 be the quotient map and A = q(Ã), B = q(B̃). Thus A∩B is an
annulus and T2 = A∪B. We would like to derive the fundamental group of T2 using
the Seifert-van Kampen theorem. (Recall that we already know this fundamental
group, so this is only to get a more insightful description.) For this, choose a basepoint
x0 ∈ A ∩B. See Figure 25.13 for an illustration.
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a

a

b b

ω

x0

Figure 25.13: An open cover of the torus.

As usual, we denote by ιA, ιB the inclusions of A and B in T2, and by ιAB, ιBA

the inclusions of A ∩B in A and B, respectively.

π1(A, x0)

π1(A ∩B, x0) π1(A, x0) ∗ π1(B, x0) π1(T2, x0)

π1(B, x0)

(ιA)∗

(ιAB)∗

(ιBA)∗

(ιB)∗

The set A ∩B is an annulus, that retracts to a circle. The fundamental group is
generated by a loop ω at x0. Since B is a disk, it is contractible, π1(B, x0) = 1 and

π1(A, x0) ∗ π1(B, x0) = π1(A, x0).

Moreover,
(ιBA)∗([ω]) = [ιBA ◦ ω] = eπ1(B,x0),

so that the normal subgroup N of π1(A, x0) is generated by

ιAB([ω])∗ιBA([ω])
−1
∗ = (ιAB)∗([ω]).

This is where things become interesting: what is π1(A, x0), and how is (ιAB)∗([ω])
represented in this group? Notice that A is homotopy equivalent to a torus with
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a missing point in the middle (use the straight-line homotopy), and by a previous
exercise this deformation retracts onto the figure-eight S1 ∨ S1. Moreover, the
fundamental group of this figure-eight is the free group generated by the loops a and
b, that is, it consists of words in the letters [a] and [b]. To get an explicit representation
with respect to the basepoint x0, choose a path h from x0 to the intersection y0 of
a and b and define the loops γa = h · a · h and γb = h · b · h. We then have the
basepoint-change isomorphism

βh : π1(A, x0) → π1(A, y0),

that maps [γa] to [a] and [γb] to [b], as shown in a previous lecture. Inside A, the loop
ω can now be factored as follows:

ω
∂≃ γa · γb · γ−1

a · γ−1
b ,

which leads to a representation

(ιAB)∗([ω]) = [ιAB ◦ ω] = [γa] · [γb] · [γa]−1 · [γb]−1.

If, by abuse of notation, we denote a = [γa] and b = [γb], then we can say that the
fundamental group of T2 is presented as

π1(T2) = ⟨a⟩ ∗ ⟨b⟩/⟨⟨aba−1b−1⟩⟩.

The elements a, b are the generators and aba−1b−1 is a relation. Setting aba−1b−1 =
1 amounts to requiring ab = ba, so that imposing this relation makes the group abelian.
The resulting group is isomorphic to Z× Z.

The torus is just a special case of a whole class of surfaces. Consider the surface
Sg with g “handles”. For example, the double torus:

This surface can be represented by identifying sides on an octagon:
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b

c

d

c

d

a

b

a

Identifying the edges as indicated shows that the boundary is homotopic to a
wedge of four spheres, S1 ∨ S1 ∨ S1 ∨ S1, and in particular that all the corner points
are identified with the same point. More generally, given a polygon with 4g edges,
identifying the edges gives a boundary that is a wedge of 2g circles, and the resulting
surface is called Mg, with g the genus of the surface. Using exactly the same proof as
with the torus, we arrive at a fundamental group that is given by generators ai, bi for
1 ≤ i ≤ g, and relations by the products of the elements [ai, bi] := aibia

−1
i b−1

i , the
commutators. A group with this structure is said to have the presentation

⟨a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]⟩.

In general, a group G has a presentation

⟨S | R⟩,

where S is a set of generators and R is a set of relators, is G is the free group
generated by the elements of S modulo the normal subgroup generated by R,

G = ⟨S⟩/⟨⟨R⟩⟩.

Example 25.1. The group Z2 := Z/2Z has the presentation ⟨a | a2⟩.

A group is called finitely generated if it has a finite set S of generators, and
finitely presented, if both S and R are finite sets.

Example 25.2. Just as there are different ways of describing a topological space as a
CW complex, there are different ways to “present” the fundamental group. We discuss
this using an illustrative example, the Klein bottle K.
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The image shows an attempted embedding of the Klein bottle into R3; this is not
possible without self-intersections. As a CW complex, the Klein bottle is usually
described like a Möbius strip, but with the top and bottom sides identified as well.

a

a

b b

The underlying 1-skeleton X1 consists of two loops, a and b, while there is
only one vertex (by following the identification of the boundaries of the rectangle as
indicated by the arrows, one sees that all the corners are collapsed to a single point).
Therefore, the generators are the classes corresponding to the cycles a and b (which
we will also denote by a and b). The single relation is the loop that forms the boundary
of the rectangle and is given by baba−1 (formally, the class in the fundamental group
of X1 that is generated by the loop b ∗ a ∗ b ∗ a). We therefore get a presentation

⟨a, b | baba−1⟩.

In other words, all the elements in this group are words in a and b (or equivalently,
binary sequences), where every occurrence of baba−1 is replaced with the empty
word.

One might, of course, ask whether this group looks like a more familiar group,
or whether it can be described in a simpler way. One way to arrive at such a simpler
representation is to use a different CW-complex representation.
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a

a

b bc ⇒

a a

b

cc

In this case, we can add an additional cycle c and then remove the cycle b. The
resulting picture can then be visualized as follows.

c

a

c a

The resulting group presentation is then

⟨a, c | a2c2⟩.

This is easier to interpret. Of course, simply setting c := b−1a−1 = a−1b we see that
we can represent every word in a and b as a word in a and c, and that c2 = a−2, so we
can just get the alternative presentation on a purely group-theoretic level. Each such
presentation corresponds to a different way of describing a topological space.
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Lecture 26

Consider a graph X = X1 consisting of a set of vertices V = X0 and edges
(D1

α, φα), where φα : S
0
α → X0 is the attaching map that assigns to each interval D1

α

its endpoints in the graph. Recall the characteristic map Φα : D
1
α → X1 that maps

each 1-cell to its image in the graph. We use the term edge for both a pair (D1
α, φα),

which records combinatorial information (e.g., which are the endpoints), and for the
image Φα(D

1
α) as a topological subspace of the graph.

In the following we use the convention that an edge-path in a graph is a path that
can be written as a concatenation of edges:

γ = e1 ∗ · · · ∗ em,

where each ei is an edge (in the subspace-sense). Similarly, an edge-loop is an
edge-path that ends where it starts.

26.1 From CW complexes to groups and back

Given a CW complex X and x0 ∈ X , we can compute a presentation of the funda-
mental group π1(X,x0). As the path-components that do not contain x0 do not enter
the fundamental group, we may replace X with the path component containing x0. In
addition, we can move the basepoint to lie in X1 (or even X0), as this does not change
the structure of the fundamental group. Finally, we can restrict to the 2-skeleton,
and hence assume without lack of generality that X = X2 is a path-connected,
two-dimensional CW complex. To compute the fundamental group we proceed as
follows:

1. Find a spanning tree of T ⊂ X1. This can be done, for example, using Dijkstra’s
algorithm. Let A be the set (not union!) of edges that are not in the tree. Pasting
such an edge to the graph T gives a subgraph that is homotopic to a circle S1,
i.e., an edge-cycle. As shown in the exercises, we can describe the fundamental
group of X1 as generated by these edge-cycles.

π1(X
1, x0) ∼= ∗e∈AZ.
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Every edge not in T gives a loop when adding it to T , and conversely every loop
in X1 based at x0 is homotopic to a combination of such edge-cycles (loops
that consist of traversing a cycle that arises by adding a ∈ A along edges).

2. Let e2α ⊂ X2 (here we identify the open 2-cells with their images in X2) be a
2-cell and

φα : S
1
α → X1

the attaching map. Recall that γα(t) = φα(exp(2πit)) is a loop, and hence
homotopic to an edge-loop (a loop consisting of edges). Let x1 ∈ φα(S

1
α) and

let gα : I → X1 be a path with gα(0) = x0 and gα(1) = x1. Then

ωα = [gα ∗ γα ∗ gα] ∈ π1(X
1, x0)

and therefore corresponds to a reduced word uα in A. Set U = {uα}α.

We claim that

π1(X,x0) ∼= π1(X
1, x0)/⟨⟨U⟩⟩,

or in other words, that the fundamental group of X with base x0 is presented as ⟨A|U⟩.
In fact,

• The union of the cells e2α together with the paths joining them to x0 form a
contractible subcomplex: π1(A, x0) ∼= 1.

• Choose points yα ∈ e2α inside each of the cells e2α and define the subset
B = X2 −⋃α{yα}. Then B retracts to X1 (we poke a “hole” into each of the
2-cells attached to X1), and π1(B, x0) ∼= π1(X

1, x0).

• We have X2 = A∪B and A∩B consists of precisely those edge-cycles starting
at x0 that make up loops homotopic to the boundaries of 2-cells, or in other
words, the images of S1

α under the attaching maps. Therefore, each element of
π1(A ∩B, x0) represents a word in U .

• The fundamental group of X is therefore given as

π1(X,x0) ∼= π1(X
2, x0) ∼= π1(A, x0)∗π1(B, x0)/⟨⟨U⟩⟩ ∼= π1(X

1, x0)/⟨⟨U⟩⟩.
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x0

Figure 26.14: The graph X2

x0

A

x0
≃

B

x0

x0

A ∩B

Figure 26.15: The subcomplexes A, B and A ∩B

The construction is best visualized as in Figures 26.14 and 26.15. In summary:

• Every cycle in the underlying graph X1 corresponds to a loop based at x0 that
moves along edges from x0 to the cycle, around the cycle, and back to x0. Every



118 CONTENTS

such cycle corresponds to a generator of the fundamental group π1(X
2, x0);

• Every loop in X2 can be represented as a combination of such cycles-paths
along edges. This corresponds to a reduced word in the generators of π1(X2, x0);

• A loop is null-homotopic if it is homotopic to the boundary of a 2-cell in X2.
Such loops corresponds to a relation on the set of words in π1(X

2, x0).

Using the Seifert-van Kampen Theorem merely provides a means of formalizing the
above intuitive procedure.

Example 26.1. Recall the characterization of real projective space as a CW complex.
Recall the cell decomposition of RP2 into one 0-cell, one 1-cell and one 2-cell, which
can be visualized as follows.

p p

γ

γ

Figure 26.16: Cell decomposition of RP2.

Even though we see two points and two arcs labelled with γ, the points are
identified to make one point, and the lines are identified (glued together) along the
direction of the arrow. The 1-skeleton X1 of this is just a loop consisting of a single
edge, and a spanning tree consists of the only vertex in this graph. The generator of

p γ

the fundamental group is thus this one cycle, whose class we denote by a (say). For
the relation, we look at the loop that bounds the 2-cell: as seen in the image, this loop
consists of going around the cycle twice, so it is represented by a2. Therefore, the
fundamental group is presented by ⟨a | a2⟩, and the corresponding group is isomorphic
to Z/2Z.
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By now we should have an idea of how to get a group out of a CW complex.
Conversely, any group presentation leads to a topological space (in fact, a surface)
whose fundamental group is isomorphic to the given group.

Theorem 26.2. For every group G there exists a path-connected two-dimensional CW
complex XG such that

π1(XG) ∼= G.

Proof. Consider a presentation of the group (generators and relators). Construct the
one skeleton X1 of XG as a wedge (one point union) of circles S1, with one circle
per generator. Every relator describes a loop in X1: for example if ab−1c2 is a relator,
then the loop is given by going around a once, around b once in the opposite direction,
and then twice around c. For each such relator take a 2-cell D2

α with boundary S1
α and

define an attaching map
φα : S

1
α → X1

that maps the circle onto the loop specified by the relators. The resulting CW-complex
X = X2 is then a two-dimensional CW complex whose fundamental group is, by
construction, isomorphic to G.

Example 26.3. Consider the group G = ⟨a | an⟩ for some integer n. This
is isomorphic to the additive group Z/nZ of integers modulo n. To construct a
corresponding topological space, we begin with one copy of a circle, X1 = S1, and
set a = [ω], where ω : I → S1 is the map ω(t) = exp(2πit). We then attach a
2-cell D2 via the map φ : S1 → X1 in such a way that the loop γ(t) = φ(exp(2πit))
satisfies [γ] = an. This is achieved by setting

φ(z) = zn,

which is precisely the usual n-fold covering map S1 → S1. The case n = 2 gives rise
to RP2, but for n > 2 we cannot embed the resulting space in R3.
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