Please let me know if any of the problems are unclear, have typos, or have mistakes. Please turn in your solution to Exercise 4.5 on Friday (2022-03-04) by noon, on Moodle. Below, if coefficients are not given, they are assumed to be \mathbb{Z} .

Exercise 4.1. Give Δ -complex structures for the following surfaces: S^2 (the two-sphere), P^2 (the real projective plane), T^2 (the two-torus), and K^2 (the Klein bottle). (Finding the smallest possible structure in each case will greatly simplify the next five exercises.)

Exercise 4.2. For each surface M in Exercise 4.1 use its Δ -complex structure, and the Seifert-van Kampen theorem, to compute the fundamental group $\pi_1(M)$.

Exercise 4.3. Suppose that $R = \mathbb{Z}$ is the coefficient ring. For each surface M in Exercise 4.1 give the simplical chain complex associated to its Δ -complex structure. Compute the resulting homology groups $H_k(M)$ as well the Euler characteristic $\chi(M)$.

Exercise 4.4. For each surface M in Exercise 4.1 give the simplical cochain complex associated to its Δ -complex structure, using $Q = R = \mathbb{Z}$ as the coefficient module. Compute the resulting cohomology groups $H^k(M; \mathbb{Z})$.

Exercise 4.5. For each surface M in Exercise 4.1 compute the cup product structure (and thus the \mathbb{Z} -algebra structure) on $H^*(M;\mathbb{Z})$.

Exercise 4.6. Let $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$. For each surface M in Exercise 4.1 compute the cup product structure (and thus the \mathbb{F}_2 -algebra structure) on $H^*(M; \mathbb{F}_2)$.

Exercise 4.7. In this exercise, all modules are \mathbb{Z} -modules, and all tensor products are over \mathbb{Z} . Recall that if $a \in A$ and $b \in B$ are elements, then the equivalence class $a \otimes b \in A \otimes B$ is called a *pure tensor*.

- Find a pair of modules A and B and an element $c \in A \otimes B$ which is not pure.
- Find a pair of modules A and B and distinct elements $a, a' \in A$ and $b, b' \in B$ so that $a \otimes b = a' \otimes b'$.

Exercise 4.8. In this exercise, all modules are \mathbb{Z} -modules, and all tensor products are over \mathbb{Z} .

- Show that $A \otimes B \cong B \otimes A$.
- Show that $(\bigoplus_i A_i) \otimes B \cong \bigoplus_i (A_i \otimes B)$.
- Show that $(A \otimes B) \otimes C \cong A \otimes (B \otimes C)$.
- Show that $A \otimes \mathbb{Z} \cong A$.
- Show that $A \otimes \mathbb{Z}/n\mathbb{Z} \cong A/nA$.

- Show that if $f: A \to A'$ and $g: B \to B'$ are homomorphisms then there exists a unique homomorphism $f \otimes g: A \otimes B \to A' \otimes B'$ so that $(f \otimes g)(a \otimes b) = f(a) \otimes g(b)$.
- Show that if $\phi: A \times B \to C$ is bilinear then there exists a unique homomorphism $\bar{\phi}: A \otimes B \to C$ so that $\bar{\phi}(a \otimes b) = \phi(a, b)$.

Exercise 4.9. Suppose that R is a commutative ring (with unit).

- 1. Prove that $R \otimes_R R \cong R$ as *R*-modules.
- 2. Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$ as \mathbb{Z} -modules.
- 3. Suppose that $R = \mathbb{Q}(\sqrt{2})$. What is $R \otimes_{\mathbb{Q}} R$ as a \mathbb{Q} -module?
- 4. [Harder.] Prove that $\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}$ as \mathbb{Z} -modules.