Please let me know if any of the problems are unclear, have typos, or have mistakes. Please turn in your solution to Exercise 3.4 on Friday (2022-02-18) by noon, on Moodle. Below, if coefficients are not given, they are assumed to be \mathbb{Z}.

Exercise 3.1. Suppose that F is a vector space, over \mathbb{R}. Suppose that $\pi: E \rightarrow B$ is a vector bundle with fibre F. Compute the (co)homology groups of E in terms of those of B.

Exercise 3.2. [Challenge] Here is a hands-on definition of $\operatorname{UT}\left(S^{n}\right)$, the unit tangent bundle to the n-sphere.

$$
\operatorname{UT}\left(S^{n}\right)=\left\{(u, v) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}:|u|=|v|=1,\langle u, v\rangle=0\right\}
$$

Here $\langle\cdot, \cdot\rangle$ is the usual inner product on \mathbb{R}^{n+1}. Compute the homology groups $H_{*}\left(\mathrm{UT}\left(S^{n}\right)\right)$.
Exercise 3.3. A natural transformation $\delta: F \rightarrow G$ is called a natural isomorphism if there is another natural transformation $\epsilon: G \rightarrow F$ so that both $\delta \circ \epsilon$ and $\epsilon \circ \delta$ are identities. Now suppose that (X, Y) is a pair of spaces and Q is an R-module. Fix $k \in \mathbb{Z}$. Show that there is a natural isomorphism between the functors C and D where

$$
(X, Y) \stackrel{C}{\mapsto} C^{k}(X, Y ; Q)=\operatorname{Hom}_{R}\left(C_{k}(X, Y) ; Q\right)
$$

and

$$
(X, Y) \stackrel{D}{\mapsto} D^{k}(X, Y ; Q)=\operatorname{ker}\left(C^{k}(X ; Q) \rightarrow C^{k}(Y ; Q)\right)
$$

Exercise 3.4. Suppose that X is a space and R is a commutative ring with unit. Let $\epsilon \in C^{0}(X ; R)$ be the augmentation homomorphism: for all singular zero-simplices σ^{0} we have $\epsilon\left(\sigma^{0}\right)=1_{R}$. Now prove that the cup product at the level of cochains is:

- R-linear in both coordinates,
- associative, and
- has $\epsilon \in C^{0}(X ; R)$ as its identity element.

Show, by means of an example, that the cup product at the level of cochains is not graded commutative.

Exercise 3.5.

- Prove that $H_{2}\left(S^{1} ; \mathbb{Z}\right) \cong 0$.
- Let $\omega \in H^{1}\left(S^{1} ; \mathbb{R}\right)$ be the (class of the) winding cocycle. Prove that $\omega \cup \omega=0$.
- [Challenge] Give direct proofs of the above: that is, from the definitions.
- [Challenge] More generally, give a direct proof that $H_{k}\left(S^{1}, \mathbb{Z}\right)$ vanishes for $k>1$.

Exercise 3.6. Suppose that $(A, C),(B, D) \subset(X, Y)$ are pairs of spaces. Suppose that X is contained in the union of the interiors of A and B; similarly suppose that Y is contained in the union of the interiors of C and D. We call $\mathcal{U}=\{(A, C),(B, D)\}$ an excisive cover of the pair (X, Y). We define $C_{k}^{\mathcal{U}}(\cdot)$ to be the R-module of (relative) singular chains in the given (pair of) space(s) subordinate to the cover \mathcal{U}. We define $C_{k}^{\mathcal{U}}(X, Y)$ to be the cokernel of the inclusion $C_{k}^{\mathcal{U}}(Y) \rightarrow C_{k}^{\mathcal{U}}(X)$.

Fix Q, an R-module. Define $C_{\mathcal{U}}^{k}(\cdot)=\operatorname{Hom}_{R}\left(C_{k}^{\mathcal{U}}(\cdot) ; Q\right)$.

- Show that $C_{\mathcal{U}}^{k}(X, Y ; Q)$ is naturally isomorphic to $D_{\mathcal{U}}^{k}(X, Y ; Q)=\operatorname{ker}\left(C_{\mathcal{U}}^{k}(X ; Q) \rightarrow\right.$ $\left.C_{\mathcal{U}}^{k}(Y ; Q)\right)$.
- Show that $H_{\mathcal{U}}^{*}(X, Y ; Q) \cong H^{*}(X, Y ; Q)$.
- Prove the relative version of Meyer-Vietoris; that is, the following sequence is exact:

$$
\ldots H^{k}(X, Y ; Q) \rightarrow H^{k}(A, C ; Q) \oplus H^{k}(B, D ; Q) \rightarrow H^{k}(A \cap B, C \cap D ; Q) \rightarrow H^{k+1}(X, Y ; Q) \ldots
$$

