
Lecture 23: 01/03/2022

38. Projective Spaces

Note that Definition (4) of Pn shows that Pn has a CW structure with exactly one cell in each dimension.

Exercise: The attaching map ϕk : BDn Ñ P k´1{P k´1 has degree 1` p´1qk. [Hint: antipodal map is the
composition of k reflections in Rn.]

Thus, over Z we obtain

CCW
‚ pPnq : 0 Ñ ZÑ . . .Z 0

ÝÑ Z 2
ÝÑ Z 0

ÝÑ ZÑ 0,

where the leftmost nonzero term is in degree n. With coefficients in F2 “ Z{2Z we have

CCW
‚ pPn;F2q : 0 Ñ F2

0
ÝÑ . . .

0
ÝÑ F2 Ñ 0.

Thus

HCW
k pPn;F2q “

#

F2 k “ 0, 1, . . . , n

0 else
.

Dualising, we get

Hk
CWpP

n : F2q “

#

F2 k “ 0, 1, . . . , n

0 else
.

Exercise: The inclusion P i ãÑ Pn induces a surjection ι˚ : H˚pPn;F2q� H˚pP i;F2q. [Hint: Use LES of
pairs.]

Remark/Definition (5): Take P8 “
Ť8

n“0 P
n.

Question: What is the CW structure on P8?

Answer: It is the structure obtained by declaring pP8qpkq “ P k.

Definition: Define

R8fin :“ tx P R8 | all but finitely many entries of x are 0. u,

and
S8fin :“ tx P R8fin | ‖x‖ “ 1u,

also define

P8 :“
S8fin

x „ ´x
.

Exercise: S8fin is contractible.

Question: Which norm are we using in the definition of S8fin?

Answer: Since x has only finitely many nonzero terms, the L2 norm is defined and we will use that. But it
should not matter.

Theorem 3.19: We have
H˚pPn;F2q – F2rxs{px

n`1q,

with x in degree 1. Also,
H˚pP8;F2q – F2rxs,
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also with x in degree 1. A similar result for Pn
C and Pn

H holds, though with Z coefficients and x in degree 2
(resp. 4).

Question: Why P8? What does it do for us?

Answer: (Bad reason) It is a relatively nontrivial but computatble example: we do not need spectral
sequences.

(Better reason) It is a first example of what is called classifying spaces: i.e. if we are given a real manifold
M , then homotopy classes of maps M Ñ P8 parameterises real line bundles on M . Also the fact that its
cohomology ring is a polynomial ring shows that there should be some polynomial invariants of line bundles.
(Chern classes/characters?)

Reference: Characteristic Classes by Milnor.

Question: Why R8fin and not R8`2 (say)?

Answer: Eek!

Proof of 3.19: We induct on n. The base cases n “ 0, 1, 2 have already been computed by hand. For the
inductive step, suppose that Pn´1 is done. Set αii to be the generator of HnpPnq (the coefficient field will
be suppressed from now on).

Since we have the surjection ι˚ : H˚pPnq � H˚pPn´1q, we can deduce that αi ! αj “ αi`j whenever
i` j ă n. We are thus only left with the case i` j “ n. For this, consider the giant diagram.

HipPnq HjpPnq HnpPnq

HipPn, Pn ´ P jq HjpPn, Pn ´ P iq HnpPn, Pn ´ P 0q

HipRn,Rn ´ Rjq HjpRn,Rn ´ Riq HnpRn,Rn ´ R0q

HipRi ˆ Rj , pRi ´ R0q ˆ Rjq HjpRi ˆ Rj ,Ri ˆ pRj ´ R0qq HnpRn,Rn ´ R0q

HipRi,Ri ´ R0q HjpRj ,Rj ´ R0q HnpRn,Rn ´ R0q

HipIi, Ii ´ I0q HjpIj , Ij ´ I0q HnpIn, In ´ I0q

HipIi, BIiq HjpIj , BIjq HnpIn, BInq

Ś

Ś

Ś

Ś

Ś

Ś

Ś

!

!

!

!

b

b

b

q˚

i˚

“

i˚ p˚
i

i˚

i˚

q˚

i˚

“

i˚

i˚

i˚ p˚
j

q˚

i˚

“

id

i˚

i˚
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The second vertical arrow on each row is an isomorphism by excision. I have used b to indicate the relative
cross product since ˆ has been used too many times (and because its definition looks oddly reminiscent
to the context in which this symbol is actually used). If we assume for the moment that the first vertical
arrow in each row is an isomorphism, and that the entire diagram commutes, then chasing the images of
pαi, αjq down to the last row we see that their relative cross product gives the generator for HnpIn, BInq,
which would suffice to prove the theorem.

To finish the proof we would need to show that the q˚ are isomorphisms, and that the diagram commutes.
The only tricky bit of the second part has to do with the second row – all others are clear by ‘naturality’ of
our constructions. The proof would most likely be finished the next lecture.
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