Lecture 16
Cone wheel
Suppose that X is a topological space, R a commutative ring is) I_{R}.
Define $H^{k}(X ; R) \times H^{2}(X ; R) \rightarrow H^{k+L}(X ; R)$

$$
([\varphi],[\psi]) \longmapsto[\varphi \cup \psi]
$$

this is the Cup Product on Cohomology.
Lemmas
The Cup Product on H^{*} is
(i) well - def;
ii) R-bilinear;
iii) associative;
iv) $[\varepsilon]$ is a unit for U.

Pref - exercise (simple).
Le Lemma 3.10: Suppose
$f: x \rightarrow y$ is continuous.
Then for $[\varphi],[\psi]$ in $H^{k}\left(H^{k}(b x)\right.$ resp., we have

$$
f^{*}([\varphi] \cup[\psi])=f^{*}([\varphi]) \cup f^{*}([\psi])
$$

Pref

$$
\begin{aligned}
f^{\operatorname{roef}}([\varphi] \cup[\psi]) & =f^{*}([\varphi \cup \psi]) \quad(\text { def of } U) \\
& =\left[f^{*}(\varphi \cup \psi)\right] \quad\left(\text { def of } f^{*} \text { in } H^{*}\right) \\
& =\left[(\varphi \cup \psi) f_{*}\right] \quad\left(\text { def of } f^{*} \text { on } C^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\left(\varphi f_{*}\right) \cup\left(\psi f_{*}\right)\right] \quad\left(\text { def of } \cup \text { on } C^{*}\right) \\
& =\left[\left(f^{*} \varphi\right) \cup\left(f^{*} \psi\right)\right] \quad\left(\text { def of } f^{*} \text { on } C^{*}\right) \\
& =\left[f^{*} \varphi\right] \cup\left[f^{*} \psi\right] \quad\left(\text { def of } U \text { on } H^{*}\right) \\
& \left.=f^{*}[\varphi] \cup f^{*}[\psi] \quad \text { (deft of } f^{*} \text { on } H^{*}\right)
\end{aligned}
$$

(27) R-algebras

Suppose A is a ring (net neccesesarily commutative), w/ $\left.\right|_{A,} A$ an R-module. Then we call A an R-algebra.

Rok The image of R in A under

$$
r \longmapsto A_{1} \longmapsto I_{A}
$$

is cent rad.

$$
\left(\left.r\right|_{A}\right) \cdot a=\left.r\right|_{A} \cdot a=a \cdot\left(r \cdot I_{A}\right)
$$

Example $\mathbb{Z} / 2 \mathbb{Z}$ is a \mathbb{Z}-algebra
Example polynomial rings.

$$
R[x], R[x, y]
$$

Definition Suppose $X \neq \varnothing$.
Define $H^{*}(X ; R)=\oplus_{k=1}^{\infty} H^{k}(X ; R)$
We call $H^{*}(X ; R)$ the Cchomdogy Ring w) coeffs in R.

Rok If $X=\varnothing$ then $H^{*}=0$ so the ?
Lemma $H^{*}(X ; R)$ is cur R-algetora.

Also: $H^{*}(X ; R)$ is given wi a Algebra Structure:

Examples:

$$
\text { i) } \begin{aligned}
H^{*}(p t ; R) & \cong R \\
\text { i.) } H^{k}\left(S^{\prime} ; R\right) & \cong R \oplus R \cdot \omega \\
& \cong R[\omega] / \omega^{2}
\end{aligned}
$$

where ω is the winding cocyle (careful! what is CO when $R=\mathbb{Z}$?)
iii) $\begin{aligned} & H^{*}\left(\pi^{2} ; R\right) \approx R \Theta R \alpha \Theta R \beta \oplus R(\alpha \cup \beta) \\ & \text { where } \alpha, \beta \text { are the windaling closes } \\ & \text { \& } \alpha \cup \beta=-\beta \cup \alpha\end{aligned}$
(t)

$$
\alpha U_{\beta}=-\beta U_{\alpha},
$$

(28) Graded Commutativity

Tho Suppose $\alpha \in H^{k}, \beta \in H^{L}$, then 3.11 $\beta \cup_{\alpha}=(-1)^{k l}\left(\alpha \cup_{\beta}\right)$.

- Question: Is there an intuitive explanation for (t) ?
Ansower ifor $x U_{\beta}=-p \cup \alpha$ we com thin ak of moving the "h part (t) 1-simplex past β, which snake I swap the 1 -simp 1 multiplication by -1 .
For $x \cup \alpha=\& U \beta=0$, then is not a lunges true, so there is nt one.

Corollary of 3.11 :
S'pase $\alpha \in \mathrm{H}^{k}$. If $h e$ is even,

$$
x \cup_{\alpha}=(-1)^{h^{2}} \alpha \cup_{\alpha}=\alpha \cup_{\alpha} .
$$

If k is x odd.

$$
U_{\alpha}=(-1)^{h^{2}} \alpha+U_{\alpha}=-\alpha U_{\alpha}
$$

$$
\text { so } 2 \cdot(v \cup x)=0 \text {, }
$$

\& so either $2=0$ or $k U_{x}=0$ or αU_{α} is 2 -torsion.
Assurer to
In a polynomial ring, sey $R[x]$, everything is generated by x.
Similar things are net in general tarrue for other graded ring s:
Example: F ix k, l wo l $k \neq l, k, l>0$, $k<l$ say.
Then

$$
\begin{aligned}
H^{*}\left(S^{k} \times S^{l} ; R\right) & \cong H^{*}\left(S^{k} ; R\right) \otimes H^{*}\left(S^{2} ; R\right) \\
& \cong R[x] / x^{2} \otimes R[y] / y^{2} \\
& \cong R \oplus R x \oplus R y \oplus R(x \cup y)
\end{aligned}
$$

where $\operatorname{deg}(x)=h, \operatorname{deg}(y)=h$
(the degree of $x, \operatorname{deg}(x)$, is just the degree of the cohomology gp that contains it).

We will come back to this when ne get to the Kiunneth formula.

Sketch Preen of The. 3.11:
Given $\sigma: \Delta^{k} \rightarrow X$,
who we have vertices v_{0}, \ldots, v_{k} for Δ^{k}.
Let $P_{P_{k}}: \Delta^{k} \rightarrow \Delta^{k}$ be the linear map thelehet reverses the order of the v :

Note that APP. is the product of $\left(\mathrm{k}_{2}\right)$ reflections, of

$$
k+1+k+k-1+\ldots+1 .
$$

Define $\bar{\sigma}=\sigma 0 p, \varepsilon_{k}=(-1)^{\left(k_{2}\right)}$
$\& \quad \rho_{k}(\sigma)=\varepsilon_{k} \bar{\sigma}$
Lemma (i) $P_{+}: C_{+}^{\text {sing }} \rightarrow C_{+}^{\text {sing }}$ is c Main map Leman (2) p_{*} is chain hemeftopic to 1
So dualise to get ρ^{*}.
Now compute $p^{*}(\varphi \cup \psi)(0)$ \&

$$
p^{*}(\psi \cup \varphi)(\gamma)
$$

\& examine signs.
[Reading Exeercise - See Hatcher]
(29) Coraphs

Define a graph ir pe to be a 1 -dim (counected) CW complex. TSSN
A sumbcomplaex $T \subseteq \Gamma$ is a Spanning Tree iff $\Gamma^{(0)} S T$ \& T has nocycles.
Excercise Thi's is exequivalent o to T being contractable.
Exerise [Suppose Γ is finite if you like]

$$
H^{h}(\Gamma ; R) \cong \begin{cases}R & \text { if } k=0 \\ \Pi_{e \in \Gamma-T} R e^{*} & \text { if } k=1 \\ 0 & 0 / w\end{cases}
$$

Chech $e^{+} U f^{*}=0$ for non-tree edges.

