Lecture 3
10. R-Modules

Suppose R is a commutative ring with identity 1_{R}.
Def: An R-modube M is a quadruple $(M, t, \cdot, O M)$ such. that $(M, t, 0)$ is an abelian group and : $R \times M \rightarrow M$ B an R-action (with usual axioms) eng
e.g. for $r, s \in R \quad m, n \in M$ we have

$$
\begin{aligned}
& 1_{R} \cdot m=m \\
& (r+s) m=r m+s m \\
& r(m+n)=r m+r n .
\end{aligned}
$$

Examples: if R is a field then R-modules are vector spaces. If $R=\mathbb{Z}$ then R-modules ar abelian groups. Hence the notation $\underline{A b}=\operatorname{Mod} \mathbb{Z}$.

Def: An R-module is free if it has a basis B.
So: $M \cong \bigoplus_{b \in B} R$. But this isomorphism depends $b \in B$ on the basis chosen so is not "natural". This flitting may be "unnatural".

Example: $\mathbb{Z} / 2 \mathbb{Z}$ is fie as a $\mathbb{Z} / 2 \mathbb{Z}$-module bat not as a. \mathbb{Z}-module.

Exerise \mathbb{Q} is not a free \mathbb{Z}-module.
Exerix. supper find R and M a free R-module such that there is $N \subset M$ (N a submodule of M) scaler which is not free.

Pop: Suppose R is a PID (prolucipal ideal domain). Then submodules of V free R-modules are again tree. \qquad
In fact we have
Rum (Classification of modules over SIDs): If R is a $P I D$ and M is finitely generated then M is a direct suns of cycle modules

$$
M \cong \bigoplus_{k} R / I_{k} .
$$

11. R-homomorphisms

Def: Suppose M, N we R-modules. Say $f: M \rightarrow N$ is Rehear R-linear of $f\left(r m+s_{n}\right)=r f(m)+s f(n)$ for all $r, s \in R \quad m, n \in M$.
Define Hod_{R} to be the category of R-modules and R-linear mops.
Exerix: Show that $\overline{M o d} R$ is Rared a category.
Notation: $\operatorname{Mor}(M, N)=\operatorname{Hom}_{R}(M, N)=R$-linear maps

$$
f: M \rightarrow N \text {. }
$$

Note: $\operatorname{Hom}_{R}(M, N)$ is given the structure of an R-module as follows:

$$
(f+g)(m)=f(m)+g(m)
$$

$(r . f)(m)=f(r m) \quad(R$ commentative).
$O_{\text {How }}=$ wustant function $f(m)=O_{N}$.
Exeris' Show that $\operatorname{Hom}_{R}(M, N)$ is indeed an R-module.
Exercise: Fix $P \in M d R$. Define a map

$$
N \longmapsto F \operatorname{Hom}_{R}(P, N) \text {. }
$$

This extends to morphisuns: Given $f: M \rightarrow N$ then

$$
\begin{aligned}
F(f): \operatorname{Hom}_{R}(P, M) & \longrightarrow \operatorname{Hom}_{R}(P, N) \\
g & \longmapsto f \circ g .
\end{aligned}
$$

Then $F:$ Mod $_{R} \rightarrow$ Mod$_{R}$ is a functor.
Exeris: If $P=R$ the ymir R-module R not R wot the $n \operatorname{lig} R$) then F is naturally is omorphic to I $X_{\underline{M_{0 d}} R}$.
That is, $\operatorname{Hom}_{R}(R, N) \cong N$ and the isomorphism is natural.

Exeris: Note that fixing Q we also have M \rightarrow Hooked $M \mapsto \operatorname{Hom}_{R}(M, Q)$. This is more interesting!
12. Contravariant

Def: Soy $F: b \rightarrow D$ is a contravariant functor if $F(f \circ g)=F(g) \circ F(f)$ and $F\left(I d_{x}\right)=I d_{F(x)}$.
Exercise
$M \longmapsto \operatorname{Hom}_{R}(M, Q)$ is contravariant.
Here's the man example:
Nutation Fix Q. Define F_{Q} as before and write

$$
F_{Q}: \operatorname{Mod}_{R} \rightarrow \operatorname{Mod}^{R}, M \longmapsto M^{*}=\operatorname{Hom}_{R}(M, Q) \text {. }
$$

W_{e} call M^{*} the dual of M with coefficients in Q.
(Most of the time well have $Q=\mathbb{Z}$).

Define Komi R as follows:
$C^{*}=\left(C^{k}, \delta^{k}\right)_{k \in \mathbb{Z}}$, where C^{k} is an R-module and $\delta^{k}: C^{k-1} \rightarrow C^{k}$ such that stikth $\delta^{k+1} \circ \delta^{k}=0$, is a cochar complex, and Komi $K^{R} D^{\prime}$ the category of much.
Depme Grad ${ }^{R}$ to be the category of graded R-modules. So G rad R is equivalent to Grad $_{R}$ as a category.
13. Cohomology

First a review
Singular homology:

$$
\begin{aligned}
& \text { Top } \longrightarrow \text { Mom }^{2} \longrightarrow \text { Grad }_{R} \\
& x \longmapsto C_{*}^{s m g} \\
& H_{*}^{\text {sing }}
\end{aligned}
$$

Here $H_{k}=\frac{Z_{k}}{B_{k}}=\frac{\text { cycles }}{\text { boundaries }}$ for $Z_{k}=\operatorname{ker}(\partial w)$ $B_{k}=\operatorname{in}(2 k)$. $2 k+1$

$$
\begin{aligned}
& T_{o p} \rightarrow K_{o m} K_{R} \longrightarrow K_{o m}^{R} \longrightarrow \text { Grad }^{R} \\
& x \longrightarrow C_{*}^{\text {sing }} \xrightarrow{F_{Q}} C_{\text {sing }}^{*} \longrightarrow H_{\text {sing }}^{*}=\frac{Z^{*}}{Q^{*}}
\end{aligned}
$$

for $z^{k}=\operatorname{ler}\left(\delta^{k+1}\right), B^{k}=\operatorname{im}\left(\delta^{k}\right)$
Notation $\cdots \cdots C_{k+1} \xrightarrow{\partial_{k+1}} C_{k} \xrightarrow{\partial_{k}} C_{k-1} \xrightarrow{\partial_{k-1}} \ldots$ a chan complex
dualiting

$$
\cdots \stackrel{d^{k+1}}{\leftarrow \delta_{k+1} C^{k} \delta_{u} C^{k-1} \delta_{k-1} \cdots \cdot}
$$

Now take (colnomology to get $H^{*}(c)$.
Moral: The operations "take homology" and "dualise" do not commute:

