Please let me know if any of the problems are unclear or have typos. Also, please let me know if you have suggestions for exercises. For some of the problems I have given a (very vague) level of difficulty.

For all of the problems we use the following notation. Suppose that K is a knot in the three-sphere. Let $N(K)$ be a small closed product neighbourhood of K (Thus $N(K)$ is homeomorphic to a solid torus $S^{1} \times D^{2}$.) Let $n(K)$ be the interior of $N(K)$. We define $X_{K}=S^{3}-n(K)$ to be the knot complement for K.

Exercise 10.1. Let $K \subset S^{3}$ be the figure-eight knot. Let $T=\partial X_{K}$.

- Show that T is essential: that is, $\pi_{1}-$ injective.
- Show that X_{K} is geometrically atoroidal.

Exercise 10.2. Suppose that L and L^{\prime} are knots, in the three-sphere, distinct from the unknot. Let $K=L \# L^{\prime}$ be their connect sum. Show that X_{K} is toroidal.

Exercise 10.3. Suppose that K is a knot in the three-sphere, distinct from the unknot. Show that K is a torus knot if and only if X_{K} is

- geometrically atoroidal but
- cylindrical

Exercise 10.4. [Hard.] Suppose that K is a knot in the three-sphere, distinct from the unknot. Show that K is a torus knot if and only if $\pi_{1}\left(X_{K}\right)$ has non-trivial centre.

