Please let me know if any of the problems are unclear or have typos. Also, do let me know if you have suggestions for exercises. For some of the problems I have given a (very vague) level of difficulty. Finally, if you want to do just part of a problem, let me know.

Exercise 7.1. Suppose that M is a compact connected oriented three-manifold, not homeomorphic to the three-sphere. Let M_{n} be the manifold obtained by taking the connect sum of of n copies of M. Prove that $c\left(M_{n}\right)$ (the Matveev complexity) is bounded above and below by linear functions of n.

Exercise 7.2. Suppose that S_{g} is a closed connected oriented surface of genus g. Set $M_{g}=S_{g} \times S^{1}$.

- Prove that M_{g} is irreducible.
- Prove that $c\left(M_{g}\right)$ is bounded above and below by linear functions of g.

Exercise 7.3. [Hard.] We call a three-manifold M an integral homology three-sphere if the homology groups of M, over \mathbb{Z}, are isomorphic to those of S^{3}. We call a three-manifold M atoroidal if its fundamental group has no subgroups ismorphic to \mathbb{Z}^{2}.

Give an example of a sequence of closed, connected, oriented manifolds M_{n} so that

- each M_{n} is irreducible and atoroidal,
- each M_{n} is an integral homology three-sphere, yet
- the Matveev complexity $c\left(M_{n}\right)$ grow linearly with n.

Exercise 7.4. Suppose that M is a closed, connected, oriented three-manifold. Suppose that S is a closed, connected, transversely oriented, embedded surface in M. Suppose that γ is a closed, connected, oriented, embedded loop in M. We define the algebraic intersection number $\langle S, \gamma\rangle$ as follows: isotope S to be transverse to γ and count the points of $S \cap \gamma$ with sign.

- Show that $\langle S, \gamma\rangle$ depends only on the homology classes of γ and S.

Fix M and S as above. Define the function $\sigma: H_{1}(M ; \mathbb{Z}) \rightarrow \mathbb{Z}$ by $\sigma([\gamma])=\langle S, \gamma\rangle$.

- Show that σ is well-defined.
- Show that if σ is non-zero then it is surjective. [Hint: we have assumed that S is connected.]
- Suppose that σ is non-zero. Show that, for any triangulation K of M, the homology class $[S]$ contains a normal surface.

Exercise 7.5. Define the $\operatorname{map} f_{n}: \mathbb{C} \rightarrow \mathbb{C} \times \mathbb{R}$ by $f_{n}(z)=\left(z^{n}, \operatorname{Imag}(z)\right)$.

- [Easy.] Sketch the image of f_{2}. This is the local model for a simple branch point.
- Sketch the image of f_{n}. This is a local model for an n-fold branch point.
- Suppose instead that the first coordinate is $z^{n}-n \epsilon^{n-1} z$ for ϵ real and very small. Sketch the image; count the number and kind of its branch points.

