Please let me know if any of the problems are unclear or have typos. Please let me know if you have suggestions for exercises.

Exercise 6.1. Suppose that P is a planar surface, properly embedded in the three-ball B^{3}. Suppose that P has at least two boundary components. Show that there is a disk D, embedded in the interior of B^{3}, so that

- $D \cap P=\partial D$ and
- ∂D separates ∂P in P.

Exercise 6.2. Suppose that T is a model tetrahedron.

- A simple closed curve $\alpha \subset \partial T$ is normal if it is transverse to $T^{(1)}$ and its intersection with any face is a collection of normal arcs.
- A normal curve α doubles back if there is an $\operatorname{arc} \beta$, strictly contained in an edge of $T^{(1)}$, so that $\beta \cap \alpha=\partial \beta$.
- The length of a normal curve α is $\left|\alpha \cap T^{(1)}\right|$.

Show that a normal curve $\alpha \subset \partial T$ doubles back if and only if it has length at least five.
Exercise 6.3. Set $X=S^{2} \times S^{2}$ Prove that X is irreducible (in the sense that any locally flat three-sphere in X bounds a homotopy four-ball). Note that $\pi_{3}(X) \cong \mathbb{Z}^{2}$. Deduce that the "obvious" generalisation of the sphere theorem to dimension four does not hold.

