Please let me know if any of the problems are unclear or have typos. Please let me know if you have suggestions for exercises. For some of the problems I have given a (very vague) level of difficulty. Finally, if you want to do just part of a problem, let me know.

Exercise 5.1. Suppose that $K \subset S^{3}$ is a knot. Suppose that $n(K)$ is a small open regular neighbourhood of K. Define the knot exterior to be $X_{K}=S^{3}-n(K)$. Show that X_{K} is irreducible.

Exercise 5.2. Suppose that Δ is a model tetrahedron with vertices labelled by 0,1 , 2 , and 3 . Let ϕ be the pairing taking the face 012 to the face 123 (in that order). Let $T=\{\Delta, \phi\}$ be the resulting triangulation. Let $M=|T|$.

- Prove that M is a three-manifold with boundary.
- Prove that $M \cong S^{1} \times D^{2}$.
- Draw the resulting triangulation of \widetilde{M}, the universal cover of M.
- Realise a meridian disk of M as a normal surface.

Exercise 5.3. Suppose that Δ is a model tetrahedron with vertices labelled by $0,1,2$, and 3 . Let ϕ_{0} be the pairing taking the face 012 to the face 123 (in that order). Let ϕ_{1} be the pairing taking the face 013 to the face 023 (in that order). Let $T=\left\{\Delta, \phi_{j}\right\}$ be the resulting triangulation. Let $M=|T|$.

- Prove that M is a three-manifold.
- Prove that $M \cong S^{3}$.
- [Medium.] Note that the two edges of the one-skeleton $T^{(1)}$ each give a loop (and thus a knot) in S^{3}. Identify these knots.
- [Hard.] By removing a point from the interior of Δ we may realise $T^{(1)}$ as a graph in \mathbb{R}^{3}. Draw this graph.

Exercise 5.4. Suppose that F is a surface. Show that an I-bundle T over F is determined (up to bundle isomorphism) by the associated monodromy homomorphism $\rho_{T}: \pi_{1}(F) \rightarrow \mathbb{Z}_{2}$. [This was only claimed in lecture; give the details.]

Exercise 5.5. Let M be the result of removing a small open ball from the real projective three-space. Prove that M is homeomorphic to the orientation I-bundle over P^{2}, the real projective plane.

Exercise 5.6. [Medium.] Suppose that U and V are copies of the orientation I-bundle over K^{2}, the Klein bottle. Suppose that $\phi: \partial U \rightarrow \partial V$ is a homeomorphism. Set $M_{\phi}=U \cup_{\phi} V$. Determine how the Thurston geometry of M_{ϕ} depends on ϕ. In particular, find all \mathbb{E}^{3} manifolds that have this form.

Exercise 5.7. [Medium.] Enumerate all triangulations consisting of one tetrahedron. Decide which of these are three-manifolds and determine their homeomorphism type.

Exercise 5.8. [Open.] Determine the Matveev complexity (minimal triangulation number) of the lens spaces $L(p, q)$.

