Please let me know if any of the problems are unclear or have typos. Please let me know if you have suggestions for exercises. For some of the problems I have given a (very vague) level of difficulty. Finally, if you want to do just part of a problem, let me know.

The first two exercises focus on details, omitted in lecture, of the proof of Alexander's theorem. For these exercises we adopt the following notation. Suppose that $S \subset S^{3}$ is a smoothly embedded two-sphere. Let $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the projection onto the third coordinate. For $c \in \mathbb{R}$, the level set $L_{c}=h^{-1}(c)$ is a horizontal plane. Define $H=h \mid S$ and suppose that H is Morse. Thus S is transverse to the foliation $\left\{L_{t}\right\}_{t}$ except at finitely many critical points, all at distinct heights. These critical points are locally modelled on those of quadratic polynomials. Set $S_{c}=H^{-1}(c)=S \cap L_{c}$. We define the slabs between a and b in \mathbb{R} as follows.

$$
L_{[a, b]}=h^{-1}([a, b]) \quad \text { and } \quad S_{[a, b]}=H^{-1}([a, b])
$$

Exercise 4.1. Suppose that c is a regular value of H. Suppose that ϵ is sufficiently small. Take $a=c-\epsilon$ and $b=c+\epsilon$. Show that every component A of $S_{[a, b]}$ is an annulus properly embedded in $L_{[a, b]}$. Show that A cuts a three-ball off of $L_{[a, b]}$.
Exercise 4.2. Suppose that c is a critical value of H. Suppose that ϵ is sufficiently small. Take $a=c-\epsilon$ and $b=c+\epsilon$. Classify the possible homeomorphism types components A of $S_{[a, b]}$, including how they embed in $L_{[a, b]}$. Show that A cuts a three-ball or a solid torus off of $L_{[a, b]}$.
Exercise 4.3. Suppose that $S \subset S^{3}$ is a smoothly embedded two-sphere. Find an ambient isotopy of S to the equatorial two sphere. [Finding a diffeotopy is harder.]
Exercise 4.4. Prove that every smooth curve in S^{2} is ambient isotopic to the equator. [Hint: Copy the proof of Alexander's theorem.]
Exercise 4.5. [Hard.] Compute the homotopy type of $\operatorname{Emb}\left(S^{2}, S^{3}\right)$, the space of smooth embeddings of the two-sphere into the three-sphere.
Exercise 4.6. Suppose that $T \subset S^{3}$ is a smoothly embedded two-torus. Show that T bounds a solid torus on at least one side.
Exercise 4.7. Give an example of a (smooth) genus two surface F embedded in S^{3} so that neither component of $S^{3}-F$ is homeomorphic to a genus two handlebody.
Exercise 4.8. Suppose that M is a three manifold and suppose that $p: \widetilde{M} \rightarrow M$ is the universal covering. Show that if \widetilde{M} is irreducible then so is M. Deduce that $\mathbb{T}^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3}$ is irreducible.
Exercise 4.9. [Alexander trick.] Suppose that $h: \mathbb{B}^{3} \rightarrow \mathbb{B}^{3}$ is a homeomorphism. Suppose that $h \mid S^{2}=\mathrm{Id}$. Show that h is isotopic to the identity on \mathbb{B}^{3}, relative to the boundary.
Exercise 4.10. Suppose that M is a three-manifold. Prove that $M \# S^{3} \cong M$.
Exercise 4.11. Supose that M is prime. Prove that M either is irreducible or is a two-sphere bundle over the circle.

