Please let me know if any of the problems are unclear or have typos. Please let me know if you have suggestions for exercises. For some of the problems I have given a (very vague) level of difficulty. Finally, if you want to do just part of a problem, let me know.

**Exercise 3.1.** Find all covering maps amongst the seven manifolds with  $S^2 \times \mathbb{R}$  geometry.

**Exercise 3.2.** Fix a commutative ring R, with identity. The *Heisenberg group* over R, denoted H(R), is the group of three-by-three upper triangular matrices with ones on the diagonal and elements of R above the diagonal. Show that the torus bundle with monodromy

$$A = \left(\begin{array}{cc} 1 & 1\\ 0 & 1 \end{array}\right)$$

is homeomorphic to the quotient  $H(\mathbb{R})/H(\mathbb{Z})$ .

**Exercise 3.3.** Prove that  $\operatorname{Isom}(\mathbb{H}^2 \times \mathbb{R}) = \operatorname{Isom}(\mathbb{H}^2) \times \operatorname{Isom}(\mathbb{R})$ .

**Exercise 3.4.** [Hard.] Suppose that M is a closed, connected three-manifold with  $\mathbb{H}^2 \times \mathbb{R}$  geometry. Prove that there is

- a closed, connected, oriented surface F,
- a periodic homeomorphism  $f: F \to F$ , and
- a finite cover M' of M (of degree at most four)

so that M' is homeomorphic to the surface bundle  $M_f$ .

**Exercise 3.5.** [Medium.] Suppose that M is a closed, connected, oriented three-manifold. Suppose that  $\mathcal{F}$  is a one-dimensional foilation of M where all leaves are circles. Prove that for every leaf  $\ell \in \mathcal{F}$  there is

- a pair of integers p, q and
- a neighbourhood  $V = V(\ell)$

so that  $(V, \mathcal{F}|V)$  is homeomorphic to the foliated solid torus  $V_{p,q}$ 

We call  $\ell$  a *critical* leaf if p > 1. Prove that  $\mathcal{F}$  has only finitely many critical leaves.

**Exercise 3.6.** Prove that  $PSL(2, \mathbb{R}) \cong Isom^+(\mathbb{H}^2) \cong UT(\mathbb{H}^2) \cong interior(D^2) \times S^1$ .

Exercise 3.7. [Hard.] Prove that the following manifolds are homeomorphic.

- 1. The trefoil knot exterior  $X_T = S^3 T$ .
- 2. The surface bundle with fiber a once-punctured torus  $S_{1,1}$  and with monodromy

$$A = \left(\begin{array}{rr} 1 & -1 \\ 1 & 0 \end{array}\right)$$

- 3.  $\operatorname{SL}(2,\mathbb{R})/\operatorname{SL}(2,\mathbb{Z}).$
- 4. The unit tangent bundle to the hyperbolic orbifold  $S^2(2,3,\infty)$ .

Finally, show that  $X_T$  is a deformation retract of  $\mathbb{C}^2 - \{z^2 = w^3\}$ .

Exercise 3.8. [Hard.] Prove that the following manifolds are homeomorphic.

- 1. The figure-eight knot exterior  $X_K = S^3 K$ .
- 2. The surface bundle with fiber a once-punctured hexagonal torus  $S_{1,1}$  and with monodromy

$$A = \left(\begin{array}{cc} 2 & 1\\ 1 & 1 \end{array}\right)$$

3. The ideally triangulated manifold shown in Figure 3.9.

Finally, show that  $X_K$  is a twelve-fold cover of  $\mathbb{H}^3/\operatorname{PSL}(2,\mathbb{Z}[\omega])$ . Here  $\omega$  is a primitve sixth root of unity.



Figure 3.9: Two ideal tetrahedra, with face pairings as indicated by the arrowed edges.

**Exercise 3.10.** Suppose that M is a three-manifold with boundary. Let  $B = \mathbb{B}^3$  be a copy of the three-ball. Fix closed disks  $D \subset \partial M$  and  $E \subset \partial B$  as well as a homeomorphism  $\phi: D \to E$ . Prove that  $M \cup_{\phi} B$ , the boundary connect sum, is homeomorphic to M. [You will need the fact that  $\partial M$  has a collar neighbourhood  $\partial M \times I \subset M$ .]