Please let me know if any of the problems are unclear or have typos. Please let me know if you have suggestions for exercises. For some of the problems I have given a (very vague) level of difficulty. Finally, if you want to do just part of a problem, let me know.

Exercise 3.1. Find all covering maps amongst the seven manifolds with $S^{2} \times \mathbb{R}$ geometry.
Exercise 3.2. Fix a commutative ring R, with identity. The Heisenberg group over R, denoted $H(R)$, is the group of three-by-three upper triangular matrices with ones on the diagonal and elements of R above the diagonal. Show that the torus bundle with monodromy

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

is homeomorphic to the quotient $H(\mathbb{R}) / H(\mathbb{Z})$.
Exercise 3.3. Prove that $\operatorname{Isom}\left(\mathbb{H}^{2} \times \mathbb{R}\right)=\operatorname{Isom}\left(\mathbb{H}^{2}\right) \times \operatorname{Isom}(\mathbb{R})$.
Exercise 3.4. [Hard.] Suppose that M is a closed, connected three-manifold with $\mathbb{H}^{2} \times \mathbb{R}$ geometry. Prove that there is

- a closed, connected, oriented surface F,
- a periodic homeomorphism $f: F \rightarrow F$, and
- a finite cover M^{\prime} of M (of degree at most four)
so that M^{\prime} is homeomorphic to the surface bundle M_{f}.
Exercise 3.5. [Medium.] Suppose that M is a closed, connected, oriented three-manifold. Suppose that \mathcal{F} is a one-dimensional foilation of M where all leaves are circles. Prove that for every leaf $\ell \in \mathcal{F}$ there is
- a pair of integers p, q and
- a neighbourhood $V=V(\ell)$
so that $(V, \mathcal{F} \mid V)$ is homeomorphic to the foliated solid torus $V_{p, q}$
We call ℓ a critical leaf if $p>1$. Prove that \mathcal{F} has only finitely many critical leaves.
Exercise 3.6. Prove that $\operatorname{PSL}(2, \mathbb{R}) \cong \operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right) \cong \mathrm{UT}\left(\mathbb{H}^{2}\right) \cong \operatorname{interior}\left(D^{2}\right) \times S^{1}$.
Exercise 3.7. [Hard.] Prove that the following manifolds are homeomorphic.

1. The trefoil knot exterior $X_{T}=S^{3}-T$.
2. The surface bundle with fiber a once-punctured torus $S_{1,1}$ and with monodromy

$$
A=\left(\begin{array}{rr}
1 & -1 \\
1 & 0
\end{array}\right)
$$

3. $\operatorname{SL}(2, \mathbb{R}) / \operatorname{SL}(2, \mathbb{Z})$.
4. The unit tangent bundle to the hyperbolic orbifold $S^{2}(2,3, \infty)$.

Finally, show that X_{T} is a deformation retract of $\mathbb{C}^{2}-\left\{z^{2}=w^{3}\right\}$.
Exercise 3.8. [Hard.] Prove that the following manifolds are homeomorphic.

1. The figure-eight knot exterior $X_{K}=S^{3}-K$.
2. The surface bundle with fiber a once-punctured hexagonal torus $S_{1,1}$ and with monodromy

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

3. The ideally triangulated manifold shown in Figure 3.9.

Finally, show that X_{K} is a twelve-fold cover of $\mathbb{H}^{3} / \operatorname{PSL}(2, \mathbb{Z}[\omega])$. Here ω is a primitve sixth root of unity.

Figure 3.9: Two ideal tetrahedra, with face pairings as indicated by the arrowed edges.

Exercise 3.10. Suppose that M is a three-manifold with boundary. Let $B=\mathbb{B}^{3}$ be a copy of the three-ball. Fix closed disks $D \subset \partial M$ and $E \subset \partial B$ as well as a homeomorphism $\phi: D \rightarrow E$. Prove that $M \cup_{\phi} B$, the boundary connect sum, is homeomorphic to M. [You will need the fact that ∂M has a collar neighbourhood $\partial M \times I \subset M$.]

