Please let me know if any of the problems are unclear or have typos. Please let me know if you have suggestions for exercises. For some of the problems I have given a (very vague) level of difficulty.

Exercise 2.1. Suppose that M, N, and P are compact, connected surfaces. Verify the following properties of the connect sum.

- a) $M \# S^2 \cong M$
- b) $M \# N \cong N \# M$
- c) $(M \# N) \# P \cong M \# (N \# P)$

[You may simplify the exercise by assuming that the surfaces are oriented.]

Exercise 2.2. Suppose that M and N are compact, connected surfaces. We denote the connect sum of n copies of M by nM. Verify the following properties of the connect sum.

- a) $K^2 \cong 2P^2$
- b) $T^2 \# P^2 \cong 3P^2$
- c) $\chi(M \# N) = \chi(M) + \chi(N) 2$

Exercise 2.3. Equip S^3 with the round metric. Prove that the induced homomorphism from O(4) to $\text{Isom}(S^3)$ is an isomorphism.

Exercise 2.4. [Medium.] Suppose that $M = M^3$ is a connected elliptic manifold. (That is, M admits a complete (G, S^3) structure where G is the pseudo-group obtained by restricting elements of $\text{Isom}(S^3)$.) Give a direct proof that M is a manifold quotient of S^3 by some finite subgroup $\Gamma < \text{Isom}^+(S^3)$. Deduce that M is orientable.

Exercise 2.5. Let L(p,q) denote the (p,q)-lens space. Let S^k and P^k denote the sphere and the projective space, respectively. Let SU(n) denote the special unitary group. Let UT(M) denote the unit tangent bundle to the manifold M. Verify the following homeomorphisms.

- a) $L(1,1) \cong S^3 \cong SU(2)$
- b) $L(2,1) \cong P^3 \cong SO(3) \cong UT(S^2) \cong Isom^+(S^2)$
- c) $L(4,1) \cong \mathrm{UT}(P^2)$

Exercise 2.6. Suppose that L = L(p,q) and L' = L(p',q') are lens spaces.

- a) Suppose that $L \cong L'$. Prove that p = p'.
- b) Give necessary and sufficient conditions on q and q' to ensure that $L \cong L'$.
- c) [Hard.] Give necessary and sufficient conditions on q and q' to ensure that L is homotopy equivalent to L'.

Exercise 2.7. Suppose that L = L(p,q) is a lens space equipped with its usual round metric. Fix $x \in L$. We define $\mathcal{D}_x \subset L$, the *Dirichlet domain* about x, as follows.

 $\mathcal{D}_x = \{ y \in L \mid \text{there is a unique shortest path from } y \text{ to } x \}$

The complement $C_x = L - D_x$ is called the *cut locus*.

- a) Find a point $x \in L$ so that \mathcal{D}_x is a *lens*: a three-ball bounded by two spherical caps.
- b) [Hard.] Describe, for generic $x \in L$, the combinatorics of \mathcal{D}_x .
- c) [Open.] Suppose that $x \in L$ is generic. The dual of the Dirichlet domain \mathcal{D}_x , denoted \mathcal{T}_x , is the *Delaunay triangulation* at x. Show that \mathcal{T}_x is *minimal* in the following sense: it has the smallest number of tetrahedra amongst all combinatorial triangulations of L.

Exercise 2.8. [Medium.] Any elliptic manifold is covered (at most 60–fold) by a lens space.

Exercise 2.9. Let *D* be a dodecahedron. For each k = 1, 3, 5, we can form a topological space M_k by gluing opposite faces of *D* with a $2\pi k/10$ twist. For each *k*,

- a) verify that M_k is a three-manifold,
- b) give a presentation of $\pi_1(M_k)$, and
- c) realise M_k as a geometric manifold.

Exercise 2.10. Give an explicit example of a (pseudo-)Anosov map $f: F \to F$. Sketch its singular foliations; compute its stretch factor $\lambda = \lambda_f$.