Please let me know if any of the problems are unclear or have typos. Please let me know if you have suggestions for exercises. For some of the problems I have given a (very vague) level of difficulty.

Exercise 2.1. Suppose that M, N, and P are compact, connected surfaces. Verify the following properties of the connect sum.
a) $M \# S^{2} \cong M$
b) $M \# N \cong N \# M$
c) $(M \# N) \# P \cong M \#(N \# P)$
[You may simplify the exercise by assuming that the surfaces are oriented.]
Exercise 2.2. Suppose that M and N are compact, connected surfaces. We denote the connect sum of n copies of M by $n M$. Verify the following properties of the connect sum.
a) $K^{2} \cong 2 P^{2}$
b) $T^{2} \# P^{2} \cong 3 P^{2}$
c) $\chi(M \# N)=\chi(M)+\chi(N)-2$

Exercise 2.3. Equip S^{3} with the round metric. Prove that the induced homomorphism from $O(4)$ to $\operatorname{Isom}\left(S^{3}\right)$ is an isomorphism.

Exercise 2.4. [Medium.] Suppose that $M=M^{3}$ is a connected elliptic manifold. (That is, M admits a complete $\left(G, S^{3}\right)$ structure where G is the pseudo-group obtained by restricting elements of $\operatorname{Isom}\left(S^{3}\right)$.) Give a direct proof that M is a manifold quotient of S^{3} by some finite subgroup $\Gamma<\operatorname{Isom}^{+}\left(S^{3}\right)$. Deduce that M is orientable.

Exercise 2.5. Let $L(p, q)$ denote the (p, q)-lens space. Let S^{k} and P^{k} denote the sphere and the projective space, respectively. Let $\mathrm{SU}(n)$ denote the special unitary group. Let $\operatorname{UT}(M)$ denote the unit tangent bundle to the manifold M. Verify the following homeomorphisms.
a) $L(1,1) \cong S^{3} \cong \mathrm{SU}(2)$
b) $L(2,1) \cong P^{3} \cong \mathrm{SO}(3) \cong \mathrm{UT}\left(S^{2}\right) \cong \operatorname{Isom}^{+}\left(S^{2}\right)$
c) $L(4,1) \cong \mathrm{UT}\left(P^{2}\right)$

Exercise 2.6. Suppose that $L=L(p, q)$ and $L^{\prime}=L\left(p^{\prime}, q^{\prime}\right)$ are lens spaces.
a) Suppose that $L \cong L^{\prime}$. Prove that $p=p^{\prime}$.
b) Give necessary and sufficient conditions on q and q^{\prime} to ensure that $L \cong L^{\prime}$.
c) [Hard.] Give necessary and sufficient conditions on q and q^{\prime} to ensure that L is homotopy equivalent to L^{\prime}.

Exercise 2.7. Suppose that $L=L(p, q)$ is a lens space equipped with its usual round metric. Fix $x \in L$. We define $\mathcal{D}_{x} \subset L$, the Dirichlet domain about x, as follows.

$$
\mathcal{D}_{x}=\{y \in L \mid \text { there is a unique shortest path from } y \text { to } x\}
$$

The complement $\mathcal{C}_{x}=L-\mathcal{D}_{x}$ is called the cut locus.
a) Find a point $x \in L$ so that \mathcal{D}_{x} is a lens: a three-ball bounded by two spherical caps.
b) [Hard.] Describe, for generic $x \in L$, the combinatorics of \mathcal{D}_{x}.
c) [Open.] Suppose that $x \in L$ is generic. The dual of the Dirichlet domain \mathcal{D}_{x}, denoted \mathcal{T}_{x}, is the Delaunay triangulation at x. Show that \mathcal{T}_{x} is minimal in the following sense: it has the smallest number of tetrahedra amongst all combinatorial triangulations of L.

Exercise 2.8. [Medium.] Any elliptic manifold is covered (at most 60 -fold) by a lens space.

Exercise 2.9. Let D be a dodecahedron. For each $k=1,3,5$, we can form a topological space M_{k} by gluing opposite faces of D with a $2 \pi k / 10$ twist. For each k,
a) verify that M_{k} is a three-manifold,
b) give a presentation of $\pi_{1}\left(M_{k}\right)$, and
c) realise M_{k} as a geometric manifold.

Exercise 2.10. Give an explicit example of a (pseudo-)Anosov map $f: F \rightarrow F$. Sketch its singular foliations; compute its stretch factor $\lambda=\lambda_{f}$.

