Please let me know if any of the problems are unclear or have typos. Please let me know if you have suggestions for exercises. For some of the problems I have given a (very vague) level of difficulty.

Exercise 1.1. Prove that S^n is an *n*-manifold.

Exercise 1.2. Suppose that $M = M^n$ is a manifold. [You may assume n > 1 if you find reduced homology annoying.]

- a) Recall the definition of orientability of M (given in lecture), in terms of (G, X)-structures. Define what it means for two orientations of M to be *compatible*.
- b) Suppose that M is connected. Prove that M has either zero orientations or has exactly two (up to compatibility).
- c) [Medium.] Prove that S^n is orientable.

Exercise 1.3.

- a) Prove that B^n is an *n*-manifold with boundary.
- b) Prove that $\partial B^n = S^{n-1}$.

Exercise 1.4. Suppose that M^n is an *n*-manifold with boundary.

- a) Prove that ∂M is an (n-1)-manifold.
- b) Prove that $\partial(\partial M)$ is empty.

Exercise 1.5. [Hard.] Classify closed, connected one-manifolds.

Exercise 1.6. Suppose that $M = M^n$ is an *n*-manifold.

- a) Give (or look up) a definition of a k-dimensional submanifold $N = N^k$ in M, in terms of (G, X) structures.
- b) Show that, if k = n and M is orientable, then N is orientable.

Exercise 1.7. [Medium.] Prove that the open Möbius band $M = M^2$ is not orientable. Deduce that any surface containing a Möbius band is not orientable.

Exercise 1.8. Suppose that $M = M^n$ is an *n*-manifold.

- a) Recall the definition of a k-dimensional foliation \mathcal{F} in M (given in lecture), in terms of (G, X)-structures.
- b) Suppose that $x \in M$ is a point. We define the *leaf* L_x of \mathcal{F} through x to be the subset of M reachable from x via paths that, in charts, remain in the \mathbb{R}^k factor. Prove that L_x is a k-dimensional submanifold of M.

Exercise 1.9. Suppose that M is a manifold. Suppose that \mathcal{F} is a foliation in M.

- a) Define what it means for \mathcal{F} to be *orientable*, in terms of (G, X)-structures.
- b) Suppose that \mathcal{F} is orientable and L is a leaf of \mathcal{F} . Prove that L is an orientable manifold.
- c) Give an example of a non-orientable foliation in an orientable manifold.

Exercise 1.10.

- a) Prove that \mathbb{RP}^n is a closed manifold.
- b) Prove that $\mathbb{CP}^1 \cong S^2$.

Exercise 1.11. [Medium.] Give an elegant drawing of \mathbb{RP}^2 .

Exercise 1.12. [Medium.] Suppose that $S = S_g$ is the closed connected oriented surface of genus g. Prove that S admits a one-dimensional foliation if and only if S is the two-torus. [You may assume that the foliation \mathcal{F} is smooth.]

Exercise 1.13. [Hard.] Sketch a classification, up to homeomorphism, of smooth one-dimensional foliations in the two-torus.

Exercise 1.14. [Hard.] Give an example of a two-dimensional foliation in the three-sphere.