Introduction to three-manifolds : See Schleiner
Lest time Cecture 10
- Disjointness of PL 2021-03-24
minimal surfaces.
· The Meeles-You trick
· Tower construction - proof of sphere theorem.
(Non-peripheral surfaces
Refinition: Suppose for (F2 OF) -> (M3, DM) is a
map of pairs. We call to peripheral if there is
a homotopy of pairs of fo to fo with fo(F)
a homotopy of pairs of f. to f. with f.(F) contained in a collar neighbourhood of am.
F peripheral for M
Example:
Page Princh and Les in R3
amk A (votace (F, 2F) -> (M, DM) 13 "interesting" if it is
13 "interestina" it it is
essential and non-peripheral.
B ²
Atoroidal
Definition: A manifold 11/3 is geometrically atraided
if every embedded essential (17,-injective) two- torus TaM is puripheral.
torus TCM & puripheral.

Definition: A manifold M3 is elgebraically atrovaled if for every IZ= [∠ II, (M) and for every map f: T2 -> M with fx (T (T))=1 we have f per phend. Ruck: Aly atoroidal > germ. atrioidal Rmk: The converse is feelse [Exercise: Give example] of such M3 but all counterexamples are "special". see below. Example: (1) The solid torus U=S'xD's storoidal ble J(M) contains no Z? (2) The figure-eight knot complement is atoroidal That is let F be the knot Set $X_F = S^3 - n(F)$. Note $\partial X_F = T$. Exercises • Prove $\partial X_F \to X_F$ is π_i -inj o Prove X = 13 atoroidal [Give "direct proof] (3) Let K be the square boot K = Tref # Tref Then $X_K = S^3 - n(K)$ 13 toroidal

[Exercise: Suppose] H, H' are northwell knots sullow-follow brows Thun K=H#H's toroidal Definition: Suppose Mirreducible. We call M. bounday irreducible if any prop. emb. dish (D, D) = (m, 2M) 3 peripheral OD DM · S'xD2 - No. · XF = fig 8 - YES.

Question: Suppose M irreducible. IS M 2-irred iff the double D(M) is irreducible? Def: $D(M) = M \times \{0\} \sqcup M \times \{1\} / (x,0) \sim (x,1) \notin x \in \partial M$ Example: D(B3) & S3. Exercise: What is $D(S'\times D^2)?$ Ans: $S'\times S^2$. gives S3. gives 5'x 5? Def: Suppose M is wred, boundary wood, ortoroidal We call M acylindrical if all essential, prop emb annili (A, 2A) c (M, 2M) are peripheral. III Geometrization of knots in S3 [Muratur] Flouchast: Suppose KCS3 B a knot. St X=XK= S3-n(K). Thm [Alex] X is irreducible Is X boundary roducible? TES Tris unknot - No Is X toroided?

YES Knot [202 II.(Xx) not]

I No

[No Is X cylindrical? YES Knot [Iff TI(XK) has wentere] X admits a finite ve Kis a hyperbolie [Z]
volume IH3 structure

Definitions: Consider T2 C S3 the standard trans [also ralled the afford torus] Preture

If KCT is a knot in 53 we rall K a tons knut. left trefoil Refunction: Suppose C is a knot in 83, called the companion Suppose P is a knot in S'xD2, called the pottern Fix a homeomorphism f: SxD2-N(C), the framing. Set $K = f(P) \in S^3$ This is a satellite knot. Skp² C Exercice: · Connect sums our satellites: · satellites are toroidal. [Need P. C nontrivial] (II) JSJ decompositions: Theorem [Jaco-Shalen, Johannson 1979] Suppose Mis irreducible, connected, oriented three-manifold, OM= 4 tori. Then there is a collection (Ti); of disjoint emb. ess, non-peripheral tori so that the components of

M-n (1) are (i) seifert fibered or

(ii) algebraically uteroided.

Firthermore any two minimal such collections are

isotopic.

Rink: A major step in the proof of this is the

torus theorem: this can be proved using

Ph minimal surfaces and covering arguments.

Question: What whout cutting using highwageons surfaces?

Answer: This is done (items, splittings, fibrings.) but it

is not necessary for geometrisation and it is varely

canonical.

Thorem [Perchan] Suppose M is med, conn, ormeted edg. atworded, and DM= H tori. Then M has

alg. attroided, and $\partial M = H$ tori. Then M S^3 or H^3 geometry.

[This space left intensorally blank]

A flow chart Suppose M B compact, oriented, $\partial M = \Box \text{ tori}$ Is M not connected? Yes take companents.
2M= 11 €VI
Is M not connected ? Tes take components.
Is M a connect sum? Tes foller connect summands
J. No
Is M reducible? YES M2 S'XS?
Is II, (m) finite? Tes M has \$3 geometry
medimal,
IS M geom toroidal? TES IS Matoria System of Semi-) bundle? No empressed.
No M has (E), Nil Solv
W 100 112 0
Is M alg toroidal? TES or PEC Jearn.
INO "Soral Seifart fiberal spaces"
A. Suran sertant 4 phrian shares
M has IH3 geom.