Introduotim to three-manifolds
Last time: - Existence f PL
minimal surfaces

- Balance condition at vertices
- Begin proof of disjointress.

Question: What is a reference for the problem
$\left\{p: \pi_{1}(F) \rightarrow \pi_{122}\right\} \cong\{I$-bundles over $F\} ?$
Answer: will post ref to this kind of problem on webpage.
(1) Fix statement of Corot. to lem 5.4

Corollary: Suppose $f: S \rightarrow(M, k)$ and $g: T \rightarrow(M, k)$ are PL minional. Suppose $a \in S, b \in T$ with $f(a)=g(b)$ on an edge e of $K^{\prime \prime}$. Then there are open sets $u \subset \Gamma_{f}, v<\Gamma_{g}$ with $a \in u, b \in V$ so that either
*) $f(u)=g(x)$ or
(x) $g(x)$ mots both "sidles" of $f(u)$

Picture:

That is, we doit get control of open neigh in $S_{S} T$ but only in $\Gamma_{f} \cdot \Gamma_{g}$
(II) Disjointress of minimal surf.

This relies on the "exchange and round off" trick and the "Meeks-Yau" trick.
Picture:

Lemma 5.5: Suppose $f, g: S^{2} \rightarrow(m, k)$ are least area and essential. Suppose both are one-to-one Then either
(i) $f\left(s^{2}\right) \cap g\left(s^{2}\right)=\phi$
(ii) $f\left(s^{2}\right)=g\left(\delta^{2}\right)$

Proof: Suppose $f a g \neq \phi$.
Case 1: Suppose f trave. to g and $f \cap g \cap K^{(1)}=\phi$
Done last time use exchange and round off.
Cause 2: Suppose not So we see either intersection in
the one-skeltion $\}$

We reduce to the previons case using "my "trick Apply small skeletal rotopies to f and g to obtain f^{\prime}, g^{\prime} [straight] Now f^{\prime}, g^{\prime} are os in case 1. with

$$
\begin{array}{lrl}
w(f)=w\left(f^{\prime}\right) & \text { and } & l\left(f^{\prime}\right)<l(f)+\varepsilon \\
w(g)=w\left(g^{\prime}\right) & l\left(g^{\prime}\right)<l(g)+\varepsilon .
\end{array}
$$

If $f^{\prime} \cap g^{\prime}=\phi$,then we contradict corollary [sag, b / c g is locally "above" $f I$.
Picture:

Note $w(h) \leq w(f)=w(g)$
However we may have $\ell(h)>\ell(f)=l(g)$
[by at most $\varepsilon \mathcal{1}$. So let φ_{i} be the angles of h about e. there we have $\varphi_{i}=\max \left\{\theta_{i}, \phi_{i}\right\} \quad[$ the angles of $f, g]$ because h (at $f(a)=g(b))$ below buth f, g.
So h is not balanced and we com reduce $l(h)$ by a def amount x [that is, we com slide a vertex down to reduce $l(h)$]
Question: Where do we see the
 conclusion $f\left(S^{2}\right)=g\left(s^{2}\right)$ of lemma?
Answer: Define $\Sigma^{+}(f)=f^{-1}(f \circ g)$

$$
\Sigma(g)=g^{-1}(f \circ g)
$$

Either $\Sigma_{1}^{+}(f)=S^{2}$ and we cure done ar $\Sigma_{1}^{(}(f)$ has a vertex on its "boundary".
Picture of $\sum(f)$:
Picture of $\Sigma_{i}(f)$:

Exercise:
Give the details.
(III) The sphere (and dirk, torus, aronulus) theorems. Theorean [sponere] Suppose M is closed conn three mfd. suppose M contains an essential sing. two sphere Then it contains an embedded ess two-sphere.
(D) A bit of dy topology:

Lemma: Suppoce M^{3} is opt and oriented. Then the kernel of the induced homomorphism, $i_{*}: H_{1}(\partial M) \longrightarrow H_{1}(m)$ has rank onehulf that of $H_{1}(\partial M)$. [This murres themed dmansiondity]
Pf: Exercise. Mint: Rincewe duality. //
Proposition: suppose M is apt and $\pi_{\pi_{1}}(M) \cong \mathbb{1}$
Then (1) all compts of ∂M are two-spheres
(2) $\pi_{2}(M)$ is gen by [S] for S com compt

Also comp
Lemma: Suppose M is opt and $\pi_{1}(M) \cong \underline{\underline{1}}$
Then $\sum_{\text {Scam }}^{1}[\delta]=0$. If ∂M is zero in $H_{2}=\pi_{2}$
Examples: $\delta^{3}-14$ small three balls has $\pi_{1} \cong \mathbb{1}$.
(V) Proof of sphere theorem: Given M dosed corrected three manifold with $\pi_{2}(M) \neq \mathbb{1}$. Fix k a triangulation of M. Fix $f: S^{2} \rightarrow(m, k)$
Assume f is PL min among ass sing two-spheres. [so f is normal, straight]
Historical aside: The issue for attempts to prove this was triple points
Define $\sum_{1}(f)=\left\{x \in S^{2} \mid\right.$ thine is some

Ouse 1: Suppose f is self transverse and $f\left(\Sigma_{1}\right)$ misses $K^{(1)}$.
Thus Σ_{1} is a union of transverse curves in S^{2}.
carton

Suppose C is a compt of $S-\Gamma_{f}$ So $f l c$ is a normal disk. Let $N(C)$ be an e-neigh of $f(c)$. Defile $N=U_{c} N(c)$. Ricers:

Note that N def retracts to $f(S)$ so $\pi_{1}(N) \cong \pi_{1}(f(S))$.
(II) The tower [Papakyriakopoulos 19577

The base of the tower:

$$
\text { Set } f_{0}=f, N_{0}=N, m_{0}=M
$$

So $S^{2} \xrightarrow{f_{0}} N_{0} \subset M_{0}$
Climbing the tower: we are given

$$
s^{2} \xrightarrow{f_{k}} N_{k} \subset M_{k}
$$

If $\pi_{1}\left(N_{k}\right) \cong \mathbb{1}$ set $n=k$, we are ot the top.

If not: set $M_{k+1}=\tilde{N}_{k}$ univ cover.
Lift f_{k} to a $\operatorname{map} \tilde{f}_{k}: S^{2} \longrightarrow \tilde{N}_{k}=m_{k}$. Let N_{b+1} be an (even smaller) reg neigh of $\tilde{f}_{k}\left(S^{2}\right)$ in M_{k+1}. Finally restrike t the range to obtain $f_{k+1}: S^{2} \longrightarrow N_{k+1}$
The tower

Rob: "Projecting" f_{k} down gives $f_{0}=f$.
[that B. composing the covers and inclusions]
Step 1: The tower is finite: $\pi_{1}\left(N_{n}\right) \cong \mathbb{1}$ If: Note $\Sigma_{k}^{+}=\Sigma_{1}\left(t_{k}\right)$ is a finite graph and $\Sigma_{k+1}^{1} \subset \Sigma_{k}^{+}$. So the sequence $\left(\Sigma_{k}\right)$ stabdires [Exercise: Prove the above I If $\sum_{k+1}=\sum_{k}$ then $N_{k+1} \longrightarrow N_{k}$ is a homotopy equivalence *. [Again Exercise I

Step 2: If f_{n} is one to ore then $n=0$ Pf: $G=\pi_{1}\left(N_{n-1}\right)$ is the deck group of
$M_{n} \rightarrow N_{n-1}$. Pick $\gamma \in G$ non trivial
Define $g_{n}=\gamma \circ f_{n}$. so g_{n}, f_{n} are camb. and transverse. Apply 6.5 and do a disk surgery of $f_{a} \cap g_{n}$ is non-ewpty. So got a smaller urea map $h: S^{2} \rightarrow M$. \neq Thus $f_{n} \circ g_{n}=\phi$ and this holds for all γe $G-\{1\}$. Thus f_{n-1} was one-to-one $*$.
Step 3: f_{n} is one-to-one
with f_{n}, N_{n}, M_{n} as above: All components of ∂N_{n} are two-spheres, ole $\pi_{1}\left(N_{n}\right) \xlongequal{=} \mathbb{I}$. Note $\left[f_{n}\right] \in \pi_{2}\left(N_{n}\right)$ is non-trivid Exercise] So: As \{[S]|ScaNn compt\} generate $\pi_{2}\left(N_{n}\right)$ there are at least two nontrivial spheres in that collection.
Suppose for cortridiotion that f_{n} is not 1-1. Picture

Note $w\left(\partial N_{n}\right) \leqslant 2 w\left(f_{n}\right)=2 w(f)$

Also $l\left(\partial N_{n}\right) \leq 2 l\left(f_{n}\right)+\varepsilon=2 l(f)+\varepsilon$
straightening reduces $l\left(\partial N_{n}\right)$ by a def amount so $\ell\left(\partial N_{n}^{*}\right)<2 \ell(f)$.

Thus, one of the cot least two less cumpts of ∂N_{n} either has smaller weight or has some weight and smaller length.
This cortradicts the minimality of f.
Case 2: Ether f is not self trensserse or
$\Sigma_{1}^{+}(f)$ meets $K^{(1)}$. Apply meeks - tau: perturb f to by in case 1 but at cost of increasing $l(f)$ by small amount. Now proceed as in cause 2 of 5.5 . when $\sum_{i}\left(f_{n}\right)=S^{2}$ then fr 13 a double cover of a proj. plane. Mich ingredients:
(1) $P L$ min. surfaces $[J a c o-R u b i n s t e i n ~] ~$
(2) Exchange and round off $[$ and MY] tricks
(3) The tower [Papakariakopoulos].

